
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

CHART R3B3 Detailed Design

Contract SHA-06-CHART

− Document # WO15-DS-001

− Work Order 15, Deliverable 04

− December 23, 2008

− By

− CSC

CHART R3B3 Detailed Design ii 12/23/2008

Revision Description Pages Affected Date
0 Initial Release All 12/23/2008

0 Address customer comments:

Revised definition of

TravTimeQuality (no longer used).

Replaced DB tables section ,

2.4.1.1.2.3 with latest design

Add text to explain grey shading in

mapping To requirements section

2-21 – 2-31,

5-409 – 5-410

6-1

CHART R3B3 Detailed Design iii 12/23/2008

Table of Contents

1 Introduction...1-1

1.1 Purpose ... 1-1

1.2 Objectives ... 1-3

1.3 Scope ... 1-3

1.4 Design Process.. 1-3

1.5 Design Tools ... 1-3

1.6 Work Products ... 1-3

2 Architecture ..2-1

2.1 Network/Hardware.. 2-1

2.2 Software.. 2-1

2.2.1 COTS Products .. 2-1

2.2.2 Deployment /Interface Compatibility .. 2-3

2.3 Security ... 2-9

2.4 Data... 2-11

2.4.1 Data Storage... 2-11

2.4.2 Database Design .. 2-35

3 Key Design Concepts...3-1

3.1 Travel Routes ... 3-1

3.2 Traveler Information Message Templates... 3-1

3.3 Traveler Information Messages.. 3-2

3.4 External Interface to INRIX... 3-2

3.5 External Interface to Vector ... 3-3

3.6 External Interface to RITIS.. 3-3

3.7 CHART Data Export... 3-4

3.8 External System Connection Status ... 3-5

3.9 Device Locations .. 3-5

3.10 TCP/IP DMS and TSS Communications ... 3-5

3.11 Error Processing .. 3-6

3.12 Packaging ... 3-6

3.13 Assumptions and Constraints ... 3-9

4 Use Cases ...4-1

4.1 High Level .. 4-1

4.1.1 R3B3HighLevel (Use Case Diagram).. 4-1

CHART R3B3 Detailed Design iv 12/23/2008

4.2 Travel/Toll Routes ... 4-5

4.2.1 R3B3ManageTravelRoutes (Use Case Diagram) .. 4-5

4.2.2 R3B3ImportInrixData (Use Case Diagram) .. 4-10

4.2.3 R3B3ImportVectorData (Use Case Diagram) ... 4-13

4.2.4 R3B3ManageTravelerInformationMessages (Use Case Diagram).. 4-17

4.2.5 R3B3ManageDeviceQueue (Use Case Diagram) .. 4-23

4.2.6 R3B3ConfigureDMSTravelerInfoMsgSettings (Use Case Diagram) .. 4-28

4.3 Device Enhancements .. 4-31

4.3.1 R3B3ConfigureDevices (Use Case Diagram).. 4-31

4.3.2 R3B3ViewDeviceLists (Use Case Diagram) ... 4-34

4.3.3 R3B3ViewDeviceDetails (Use Case Diagram) ... 4-37

4.3.4 R3B3ManageTrafficEvents (Use Case Diagram).. 4-40

4.3.5 R3B3ManageDevices (Use Case Diagram) ... 4-44

4.4 External Interfaces (RITIS Import)... 4-46

4.4.1 R3B3ImportRITISData (Use Case Diagram) .. 4-46

4.4.2 R3B3ConfigureExternalSystemSettings (Use Case Diagram) .. 4-50

4.5 Public/Private Data Sharing ... 4-55

4.5.1 R3B3ManageUsers (Use Case Diagram)... 4-55

4.5.2 R3B3ProvideDataToExternalSystems (Use Case Diagram).. 4-59

4.6 Alerts/Notifications .. 4-63

4.6.1 R3B3ManageAlertsAndNotifications (Use Case Diagram) .. 4-63

4.7 Configure system ... 4-68

4.7.1 R3B3ConfigureSystem (Use Case Diagram)... 4-68

5 Detailed Design...5-1

5.1 Human-Machine Interface.. 5-1

5.1.1 Travel Routes... 5-1

5.1.2 DMS Message Templates .. 5-16

5.1.3 Travel Time and Toll Rate Messages .. 5-24

5.1.4 DMS Travel Time / Toll Rate Settings .. 5-29

5.1.5 System Profile Travel Time Settings ... 5-32

5.1.6 Geographical Settings .. 5-36

5.1.7 External Events .. 5-41

5.1.8 External Devices .. 5-45

5.1.9 External System Related Settings .. 5-51

5.1.10 External System Connection Status ... 5-58

5.1.11 Alerts ... 5-59

CHART R3B3 Detailed Design v 12/23/2008

5.1.12 Device Locations ... 5-65

5.1.13 Miscellaneous Device Enhancements.. 5-69

5.1.14 Public / Private Data Sharing... 5-72

5.2 Alert Module .. 5-74

5.2.1 Classes ... 5-74

5.3 Camera Control Module ... 5-88

5.3.1 Classes ... 5-88

5.3.2 Sequence Diagrams.. 5-112

5.4 DMS Control Module .. 5-114

5.4.1 Classes ... 5-114

5.4.2 Sequence diagrams .. 5-132

5.5 DMS Protocols Pkg.. 5-165

5.5.1 Classes ... 5-165

5.5.2 Sequence Diagrams.. 5-165

5.6 DMSUtilityPkg... 5-171

5.6.1 Classes ... 5-171

5.6.2 Sequence diagrams .. 5-179

5.7 DeviceUtilityPkg .. 5-182

5.7.1 Classes ... 5-182

5.7.2 Sequence Diagrams.. 5-185

5.8 External Interface Module.. 5-191

5.8.1 Classes ... 5-191

5.8.2 Sequence Diagrams.. 5-221

5.9 GeoAreaModulePkg .. 5-255

5.9.1 Classes ... 5-255

5.9.2 Sequence Diagrams.. 5-258

5.10 HARControlModulePkg ... 5-264

5.10.1 Classes ... 5-264

5.10.2 Sequence Diagrams.. 5-274

5.11 INRIXDataImportModule .. 5-277

5.11.1 Classes ... 5-277

5.11.2 SequenceDiagram .. 5-282

5.12 INRIXLinkImportProgramPkg ... 5-288

5.12.1 Classes ... 5-288

5.12.2 Sequence Diagrams.. 5-290

5.13 Java Classes.. 5-292

5.13.1 Classes ... 5-292

CHART R3B3 Detailed Design vi 12/23/2008

5.14 MessageTemplateModulePkg ... 5-297

5.14.1 Classes ... 5-297

5.14.2 Sequence Diagrams.. 5-300

5.15 RoadwayLocationModule ... 5-308

5.15.1 Classes ... 5-308

5.15.2 Sequence Diagrams.. 5-311

5.16 SHAZAMControlModulePkg... 5-314

5.16.1 Classes ... 5-314

5.16.2 SequenceDiagrams... 5-322

5.17 SHAZAMManagementPkg... 5-323

5.17.1 Classes ... 5-323

5.18 SystemInterfaces .. 5-324

5.18.1 Classes ... 5-324

5.19 TSSManagementModulePkg .. 5-418

5.19.1 Classes ... 5-418

5.19.2 SequenceDiagrams... 5-431

5.20 TravelRouteModulePkg .. 5-437

5.20.1 Classes ... 5-437

5.20.2 SequenceDiagrams... 5-447

5.21 UserManagementmodulePkg.. 5-469

5.21.1 Classes ... 5-469

5.22 UtilityPkg.. 5-471

5.22.1 Classes ... 5-471

5.22.2 SequenceDiagrams... 5-485

5.23 UtilityPkg.wrappers... 5-486

5.23.1 Classes ... 5-486

5.24 Webservices.WSTrafficEventExportModule .. 5-490

5.24.1 Classes ... 5-490

5.24.2 SequenceDiagrams... 5-494

5.25 WSDMSExportModulePkg... 5-499

5.25.1 Classes ... 5-499

5.25.2 Sequence Diagrams.. 5-504

5.26 WebServices.TollrateImportModule ... 5-511

5.26.1 Classes ... 5-511

5.26.2 Sequence Diagrams.. 5-517

5.27 Webservices.base ... 5-522

5.27.1 Classes ... 5-522

CHART R3B3 Detailed Design vii 12/23/2008

5.27.2 Sequence Diagrams.. 5-527

5.28 Chartlite.data ... 5-531

5.28.1 Classes ... 5-531

5.29 Chartlite.data.dms-data .. 5-538

5.29.1 Classes ... 5-538

5.29.2 Sequence Diagrams.. 5-542

5.30 Chartlite.data.video-data .. 5-549

5.30.1 Classes ... 5-549

5.31 Chartlite.data.location-data.. 5-552

5.31.1 Classes ... 5-552

5.32 Chartlite.data.shazam-data... 5-553

5.32.1 Classes ... 5-553

5.33 Chartlite.data.har-data ... 5-555

5.33.1 Classes ... 5-555

5.34 Chartlite.data.arbqueue-data ... 5-559

5.34.1 Classes ... 5-559

5.35 Chartlite.data.travelroutes-data... 5-560

5.35.1 Classes ... 5-560

5.35.2 Sequence diagrams .. 5-568

5.36 Chartlite.data.templates-data ... 5-584

5.36.1 Classes ... 5-584

5.36.2 Sequence Diagrams.. 5-588

5.37 Chartlite.data.geoareas-data... 5-591

5.37.1 Classes ... 5-591

5.37.2 Sequence Diagrams.. 5-593

5.38 Chartlite.data.alerts-data.. 5-594

5.38.1 Classes ... 5-594

5.39 Chartlite.data.externalsystem-data .. 5-598

5.39.1 Classess.. 5-598

5.39.2 Sequence Diagrams.. 5-600

5.40 Chartlite.data.tss-data... 5-604

5.40.1 Classes ... 5-604

5.41 Chartlite.data.trafficevents-data .. 5-606

5.41.1 Classes ... 5-606

5.42 Chartlite.data.plans-data .. 5-612

5.42.1 Classes ... 5-612

5.43 Chartlite.servlet ... 5-615

CHART R3B3 Detailed Design viii 12/23/2008

5.43.1 Classes ... 5-615

5.43.2 Sequence Diagrams.. 5-619

5.44 Chartlite.servlet.usermgmt ... 5-620

5.44.1 Class Diagrams .. 5-620

5.44.2 Sequence diagrams .. 5-621

5.45 Chartlite.servlet.tss .. 5-638

5.45.1 Classes ... 5-638

5.45.2 Sequence Diagrams.. 5-642

5.46 Chartlite.servlet.servlet-dynlist .. 5-648

5.46.1 Classes ... 5-648

5.46.2 Sequence Diagrams.. 5-652

5.47 Chartlite.servlet.dms ... 5-654

5.47.1 Class diagrams ... 5-654

5.47.2 Sequence Diagrams.. 5-658

5.48 Chartlite.servlet.alerts ... 5-683

5.48.1 Sequence Diagrams.. 5-683

5.49 Chartlite.servlet.geoareamgmt ... 5-685

5.49.1 Class Diagrams .. 5-685

5.49.2 Sequence Diagrams.. 5-686

5.50 Chartlite.servlet.travelroutes .. 5-690

5.50.1 Class Diagrams .. 5-690

5.50.2 Sequence Diagrams.. 5-695

5.51 Chartlite.servlet.externalsystemmgmt ... 5-722

5.51.1 ClassFiles... 5-722

5.51.2 Sequence Diagrams.. 5-725

5.52 chartlite.servlet.messagetemplates ... 5-741

5.52.1 Class Diagrams .. 5-741

5.52.2 Sequence Diagrams.. 5-745

5.53 Chartlite.servlet.video ... 5-749

5.53.1 Class Diagrams .. 5-749

5.53.2 Sequence Diagrams.. 5-751

5.54 Chartlite.servlet.trafficevents ... 5-755

5.54.1 Class Diagrams .. 5-755

5.54.2 Sequence Diagrams.. 5-760

5.55 Chartlite.servlet.trafficevents.location... 5-781

5.55.1 Classes ... 5-781

5.55.2 Sequence Diagrams.. 5-783

CHART R3B3 Detailed Design ix 12/23/2008

5.56 Chartlite.servlet.shazam.. 5-786

5.56.1 Class Diagrams .. 5-786

5.56.2 Sequence Diagrams.. 5-788

5.57 Chartlite.servlet.har .. 5-795

5.57.1 Class diagrams ... 5-795

5.57.2 Sequence Diagrams.. 5-798

5.58 Charlite.Flex.shared.components-flex.. 5-802

5.58.1 Class Diagrams .. 5-802

5.59 Chartlite.Flex.editlocation... 5-803

5.59.1 Class Diagrams .. 5-803

5.60 Chartlite.util ... 5-805

5.60.1 Classes ... 5-805

5.60.2 Sequence Diagrams.. 5-807

5.61 Chartlite.util.dynlist .. 5-808

5.61.1 Class Diagrams .. 5-808

6 Mapping To Requirements...6-1

7 Acronyms/Glossary..7-1

CHART R3B3 Detailed Design x 12/23/2008

Table of Figures
Figure 2-1 CHART and External Interfaces .. 2-5
Figure 2-2 CHART R3B3 External Interface Deployment ... 2-6
Figure 2-3 CHART Internal Interfaces (GUI Deployment)... 2-8
Figure 2-4 CHART Internal Interfaces (Server Deployment) ... 2-9
Figure 2-5 CHART R3B3 Database Architecture ... 2-12
Figure 4-1 R3B3ManageTravelRoutes (Use Case Diagram) .. 4-5
Figure 4-2 R3B3ImportInrixData (Use Case Diagram)... 4-10
Figure 4-3 R3B3ImportVectorData (Use Case Diagram).. 4-13
Figure 4-4 R3B3ManageTravelerInformationMessages (Use Case Diagram) .. 4-17
Figure 4-5 R3B3ManageDeviceQueue (Use Case Diagram) .. 4-23
Figure 4-6 R3B3ConfigureDMSTravelerInfoMsgSettings (Use Case Diagram) .. 4-28
Figure 4-7 R3B3ConfigureDevices (Use Case Diagram).. 4-31
Figure 4-8 R3B3ViewDeviceLists (Use Case Diagram) ... 4-34
Figure 4-9 R3B3ViewDeviceDetails (Use Case Diagram).. 4-37
Figure 4-10 R3B3ManageTrafficEvents (Use Case Diagram) .. 4-40
Figure 4-11 R3B3ManageDevices (Use Case Diagram) ... 4-44
Figure 4-12 R3B3ImportRITISData (Use Case Diagram) .. 4-46
Figure 4-13 R3B3ConfigureExternalSystemSettings (Use Case Diagram)... 4-50
Figure 4-14 R3B3ManageUsers (Use Case Diagram)... 4-55
Figure 4-15 R3B3ProvideDataToExternalSystems (Use Case Diagram).. 4-59
Figure 4-16 R3B3ManageAlertsAndNotifications (Use Case Diagram)... 4-63
Figure 4-17 R3B3ConfigureSystem (Use Case Diagram) ... 4-68
Figure 5-1 View Travel Routes menu item.. 5-1
Figure 5-2 View Travel Routes page... 5-2
Figure 5-3 Set Travel Route List Columns.. 5-3
Figure 5-4 Add Travel Route... 5-5
Figure 5-5 Travel Route Links - Empty List ... 5-7
Figure 5-6 Select Link, No Prior Link Selected .. 5-7
Figure 5-7 Select Link – Search Results.. 5-8
Figure 5-8 Travel Route Links - Populated List .. 5-8
Figure 5-9 Link Settings for Travel Route... 5-9
Figure 5-10 Select Link - Prior Link Exists... 5-10
Figure 5-11 Select Link - Search for Links ... 5-10
Figure 5-12 Toll Rate Source Unspecified .. 5-11
Figure 5-13 Select Toll Rate Source.. 5-11
Figure 5-14 Toll Rate Source Specified .. 5-11
Figure 5-15 Travel Route Details - Status Section .. 5-12
Figure 5-16 Travel Route Details - Link Status Section.. 5-12
Figure 5-17 Travel Route Details - Link History Section.. 5-13
Figure 5-18 Travel Route Details - Toll Rate History Section .. 5-13
Figure 5-19 Travel Route Details - Link Configuration Section ... 5-13
Figure 5-20 Travel Route Details - Toll Rate Configuration Section.. 5-14
Figure 5-21 Travel Route Details - General Settings Section.. 5-14
Figure 5-22 Travel Route Details - Location Settings Section .. 5-14
Figure 5-23 Travel Route Details - Travel Time Settings Section... 5-14
Figure 5-24 Travel Route Details - Toll Rate Settings Section ... 5-15
Figure 5-25 Link Details.. 5-15
Figure 5-26 View / Edit DMS Message Templates Link... 5-16
Figure 5-27 Travel Time / Toll Message Template List .. 5-16
Figure 5-28 Template List Column Settings.. 5-18
Figure 5-29 Add Message Template - Select Sign Size... 5-19
Figure 5-30 Add DMS Message Template .. 5-20
Figure 5-31 DMS Message Templates - Adding Data Fields .. 5-21

CHART R3B3 Detailed Design xi 12/23/2008

Figure 5-32 DMS Message Templates - Default Editor .. 5-23
Figure 5-33 Travel Time / Toll Rate Message List on DMS Details Page .. 5-24
Figure 5-34 Add Travel Time / Toll Rate Message - Initial Form... 5-25
Figure 5-35 Add Travel Time / Toll Rate Message - Template Selected .. 5-26
Figure 5-36 DMS Arbitration Queue With Toll Rate Message ... 5-28
Figure 5-37 DMS Travel Time / Toll Rate Arb Queue Levels .. 5-30
Figure 5-38 DMS Travel Time Message Schedule.. 5-30
Figure 5-39 DMS Travel Time Message Schedule Form.. 5-31
Figure 5-40 DMS Associated Travel Routes - DMS Details Page .. 5-32
Figure 5-41 DMS Associated Travel Routes - Edit Form ... 5-32
Figure 5-42 Travel Time System Profile Settings ... 5-33
Figure 5-43 Configure Travel Time Range Settings.. 5-34
Figure 5-44 System Wide Travel Time Message Schedule ... 5-35
Figure 5-45 Miscellaneous Travel Time Settings .. 5-36
Figure 5-46 Geographical Settings .. 5-37
Figure 5-47 Geographical Areas – List.. 5-38
Figure 5-48 Add Geographical Area ... 5-39
Figure 5-49 Miscellaneous Geographical Settings .. 5-40
Figure 5-50 External Event Rules Link ... 5-41
Figure 5-51 Add External Event Inclusion Rule.. 5-43
Figure 5-52 External Device Management Links .. 5-46
Figure 5-53 Manage External DMSs - Query Page ... 5-47
Figure 5-54 Manage External DMSs - Search Results .. 5-48
Figure 5-55 Message Signs Link on Home Page... 5-49
Figure 5-56 DMS List with External DMSs .. 5-49
Figure 5-57 Detectors Link on Home Page ... 5-50
Figure 5-58 TSS List with External TSSs ... 5-50
Figure 5-59 External System Alert and Notification Settings ... 5-51
Figure 5-60 External System Alert and Notification Settings - Edit ... 5-52
Figure 5-61 External Agency / Organization Mapping ... 5-53
Figure 5-62 External Client Management - view/edit Link... 5-53
Figure 5-63 External Client List .. 5-54
Figure 5-64 Add External System Client... 5-55
Figure 5-65 Set External Client Role(s) .. 5-56
Figure 5-66 Edit External System Client ... 5-57
Figure 5-67 External System Connection Status – Link.. 5-58
Figure 5-68 External System Connection Status ... 5-58
Figure 5-69 R3B3 Alerts on the Home Page ... 5-59
Figure 5-70 External Connection Alert Details - Type Specific Fields ... 5-60
Figure 5-71 External Event Alert Details - Type Specific Fields .. 5-61
Figure 5-72 Toll Rate Alert Details - Type Specific Fields ... 5-61
Figure 5-73 Travel Time Alert Details - Type Specific Fields .. 5-61
Figure 5-74 Configure Alert Audio Cues .. 5-63
Figure 5-75 Alert Timeout and Policy Settings ... 5-64
Figure 5-76 Location Settings Form.. 5-66
Figure 5-77 Device List with Location Columns .. 5-67
Figure 5-78 Device List - Set Column Visibility... 5-67
Figure 5-79 Location Fields on Device Details Page .. 5-68
Figure 5-80 Devices Close to Traffic Event .. 5-69
Figure 5-81 Field Comm Settings - TCP/IP .. 5-70
Figure 5-82 NTCIP DMS Font and Line Spacing Settings ... 5-71
Figure 5-83 Lane Level Detector Data .. 5-72
Figure 5-84 Incident Name with Fatality... 5-72
Figure 5-85 Incident Details with Fatality ... 5-73
Figure 5-86 Event History Link... 5-73
Figure 5-87 Summary and Detailed Speed Data.. 5-73

CHART R3B3 Detailed Design xii 12/23/2008

Figure 5-88 Traffic Parameters showing Detailed Data .. 5-74
Figure 5-89 Sensitive Device Configuration Data... 5-74
Figure 5-90 AlertModule (Class Diagram).. 5-76
Figure 5-91 ProxyAlertClasses (Class Diagram)... 5-84
Figure 5-92 VideoHighLevel (Class Diagram).. 5-89
Figure 5-93 VideoHighLevel-VideoSource (Class Diagram).. 5-97
Figure 5-94 CameraControlModule (Class Diagram) ... 5-103
Figure 5-95 CameraControlModule:SetCameraConfiguration (Sequence Diagram) .. 5-113
Figure 5-96 DMSControlClassDiagram (Class Diagram) ... 5-114
Figure 5-97 DMSControlClassDiagram-ExternalDMS (Class Diagram).. 5-125
Figure 5-98 QueueableCommandClassDiagram (Class Diagram) .. 5-128
Figure 5-99 CHART2DMSImpl:validate (Sequence Diagram) .. 5-132
Figure 5-100 Chart2DMSFactoryImpl:checkTravInfoMsgSchedule (Sequence Diagram)................................... 5-133
Figure 5-101 Chart2DMSImpl:RouteUpdate (Sequence Diagram)... 5-134
Figure 5-102 Chart2DMSImpl:addDMSTravInfoMsg (Sequence Diagram) .. 5-135
Figure 5-103 Chart2DMSImpl:computeTravInfoMsgSchedEnabled (Sequence Diagram) 5-136
Figure 5-104 Chart2DMSImpl:modifyDMSTravInfoMsg (Sequence Diagram) .. 5-137
Figure 5-105 Chart2DMSImpl:removeDMSTravInfoMsg (Sequence Diagram) .. 5-138
Figure 5-106 Chart2DMSImpl:routeDeleted (Sequence Diagram) ... 5-139
Figure 5-107 Chart2DMSImpl:setQueueLevels (Sequence Diagram) .. 5-140
Figure 5-108 Chart2DMSImpl:setRelatedRoutes (Sequence Diagram) .. 5-141
Figure 5-109 Chart2DMSImpl:setTravInfoMsgEnabledFlag (Sequence Diagram) .. 5-142
Figure 5-110 Chart2DMSImpl:setTravelTimeSchedule (Sequence Diagram) .. 5-143
Figure 5-111 DMSControlModule:FmsGetConnectedPort (Sequence Diagram) ... 5-144
Figure 5-112 DMSControlModule:FmsReleasePort (Sequence Diagram).. 5-145
Figure 5-113 DMSControlModule:HandleOpStatus (Sequence Diagram) ... 5-147
Figure 5-114 DMSControlModule:Initialize (Sequence Diagram) ... 5-149
Figure 5-115 DMSControlModule:RestoreDMS (Sequence Diagram)... 5-151
Figure 5-116 DMSControlModule:SetConfiguration (Sequence Diagram) .. 5-153
Figure 5-117 DMSControlModule:Shutdown (Sequence Diagram) ... 5-154
Figure 5-118 DMSImpl:setLocation (Sequence Diagram) .. 5-155
Figure 5-119 DMSTravInfoMsgHandler:checkMessage (Sequence Diagram)... 5-156
Figure 5-120 DMSTravlInfoMsgDataSupplier:getData (Sequence Diagram) .. 5-157
Figure 5-121 EnabledTravInfoMsgCmd:execute (Sequence Diagram)... 5-158
Figure 5-122 ExternalDMSImpl:GetExternalConfiguration (Sequence Diagram).. 5-159
Figure 5-123 ExternalDMS:GetStatus (Sequence Diagram) ... 5-160
Figure 5-124 ExternalDMS:RemoveDMS (Sequence Diagram)... 5-161
Figure 5-125 ExternalDMS:SetExternalConfiguration (Sequence Diagram).. 5-162
Figure 5-126 ExternalDMS:updateStatus (Sequence Diagram) .. 5-163
Figure 5-127 chartlite.servlet.dms:setDMSConfigCommSettings (Sequence Diagram)....................................... 5-164
Figure 5-128 DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram).. 5-166
Figure 5-129 FP9500ProtocolHdlr:GetStatus (Sequence Diagram) .. 5-167
Figure 5-130 FP9500ProtocolHdlr:PixelTest (Sequence Diagram) .. 5-168
Figure 5-131 NTCIPProtocolHdlr:SetMessage (Sequence Diagram) ... 5-169
Figure 5-132 TS3001ProtocolHdlr:GetStatus (Sequence Diagram).. 5-170
Figure 5-133 DMSUtility (Class Diagram) ... 5-172
Figure 5-134 DMSTravInfoMsgFormattingClasses (Class Diagram) ... 5-176
Figure 5-135 DMSTravInfoMsgTemplateModel:formatMulti (Sequence Diagram) .. 5-179
Figure 5-136 DMSTravInfoMsgTemplateModel:formatPageMulti (Sequence Diagram) 5-180
Figure 5-137 TemplateRow:formatMulti (Sequence Diagram)... 5-181
Figure 5-138 . PortLocatorClasses (Class Diagram) ... 5-182
Figure 5-139 PortLocator:ReleasePort (Sequence Diagram)... 5-185
Figure 5-140 PortLocator:ReleasePort2 (Sequence Diagram)... 5-186
Figure 5-141 PortLocator:getConnectedPort (Sequence Diagram) ... 5-188
Figure 5-142 PortLocator:getConnectedPort2 (Sequence Diagram) ... 5-189
Figure 5-143 PortLocator:getPort (Sequence Diagram) .. 5-190

CHART R3B3 Detailed Design xiii 12/23/2008

Figure 5-144 DMSImportAcquireClasses (Class Diagram) .. 5-191
Figure 5-145 DMSImportChartClasses (Class Diagram) .. 5-194
Figure 5-146 DMSImportModuleClasses (Class Diagram)... 5-197
Figure 5-147 DMSImportTranslationClasses (Class Diagram)... 5-201
Figure 5-148 EventAtisImportChartClasses (Class Diagram)... 5-203
Figure 5-149 ExternalDeviceManagerClasses (Class Diagram).. 5-206
Figure 5-150 ExternalSystemConnectionClasses (Class Diagram) ... 5-208
Figure 5-151 TSSImportAcquireClasses (Class Diagram) .. 5-210
Figure 5-152 TSSImportChartClasses (Class Diagram) .. 5-213
Figure 5-153 TSSImportModuleClasses (Class Diagram) .. 5-216
Figure 5-154 TSSImportTranslationClasses (Class Diagram)... 5-219
Figure 5-155 DMSImportAcquireTask:execute (Sequence Diagram)... 5-222
Figure 5-156 DMSImportHandler:getCandidates (Sequence Diagram).. 5-223
Figure 5-157 DMSImportRitisAcquirer:connectIfNecessary (Sequence Diagram) .. 5-224
Figure 5-158 DMSImportRitisAcquirer:initialize (Sequence Diagram).. 5-226
Figure 5-159 DMSImportRitisAcquirer:onMessage (Sequence Diagram).. 5-227
Figure 5-160 EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram) ... 5-228
Figure 5-161 EventImportRitisAcquirer:connectIfNecessary (Sequence Diagram).. 5-229
Figure 5-162 ExternalDeviceManagerImpl:searchCandidates (Sequence Diagram)... 5-230
Figure 5-163 ExternalDeviceManagerImpl:setCandidates (Sequence Diagram) .. 5-231
Figure 5-164 ExternalInterfaceModule:dmsTranslationStep1Translate (Sequence Diagram) 5-232
Figure 5-165 ExternalInterfaceModule:handleDITranslationTask (Sequence Diagram) 5-233
Figure 5-166 ExternalInterfaceModule:handleDMSImportTask (Sequence Diagram) ... 5-234
Figure 5-167 ExternalInterfaceModule:handleExternalImport (Sequence Diagram).. 5-235
Figure 5-168 ExternalInterfaceModule:handleTITranslationTask (Sequence Diagram)....................................... 5-236
Figure 5-169 ExternalInterfaceModule:handleTSSImportTask (Sequence Diagram)... 5-237
Figure 5-170 ExternalInterfaceModule:initializeDMSImportModule (Sequence Diagram) 5-238
Figure 5-171 ExternalInterfaceModule:initializeEventImportModule (Sequence Diagram) 5-239
Figure 5-172 ExternalInterfaceModule:initializeTSSImportModule (Sequence Diagram)................................... 5-240
Figure 5-173 ExternalInterfaceModule:restartDMSImportModule (Sequence Diagram) 5-241
Figure 5-174 ExternalInterfaceModule:restartDMSImportModule (Sequence Diagram) 5-242
Figure 5-175 ExternalInterfaceModule:restartTSSImportModule (Sequence Diagram)....................................... 5-243
Figure 5-176 ExternalInterfaceModule:shutdownDMSImportModule (Sequence Diagram) 5-244
Figure 5-177 ExternalInterfaceModule:shutdownTSSImportModule (Sequence Diagram) 5-245
Figure 5-178 ExternalInterfaceModule:tssTranslationStep1Translate (Sequence Diagram)................................. 5-246
Figure 5-179 ExternalSystemConnectionImpl:init (Sequence Diagram) .. 5-248
Figure 5-180 ExternalSystemConnectionImpl:sendNotificationsIfNecessary (Sequence Diagram)..................... 5-249
Figure 5-181 TSSImportAcquireTask:execute (Sequence Diagram) .. 5-250
Figure 5-182 TSSImportRitisAcquirer:connectIfNecessary (Sequence Diagram) .. 5-252
Figure 5-183 TSSImportRitisAcquirer:initialize (Sequence Diagram) ... 5-253
Figure 5-184 TSSImportRitisAcquirer:onMessage (Sequence Diagram) ... 5-254
Figure 5-185 GeoAreaModulePkg (Class Diagram) ... 5-255
Figure 5-186 GeoAreaFactoryImpl:addGeoArea (Sequence Diagram)... 5-258
Figure 5-187 GeoAreaFactoryImpl:getGeoAreas (Sequence Diagram) .. 5-259
Figure 5-188 GeoAreaFactoryImpl:removeGeoArea (Sequence Diagram) .. 5-260
Figure 5-189 GeoAreaFactoryImpl:updateGeoArea (Sequence Diagram).. 5-261
Figure 5-190 GeoAreaModulePkg:Initialize (Sequence Diagram).. 5-262
Figure 5-191 GeoAreaModulePkg:Shutdown (Sequence Diagram).. 5-263
Figure 5-192 HARControlModule (Class Diagram) ... 5-265
Figure 5-193 HARControlModule:SetConfiguration (Sequence Diagram) .. 5-274
Figure 5-194 HARControlModule:setConfigurationImpl (Sequence Diagram).. 5-276
Figure 5-195 INRIXDataImportModuleClasses (Class Diagram)... 5-277
Figure 5-196 CHART2.INRIXDataImportModule:DataImportTimerTask.run (Sequence Diagram) 5-283
Figure 5-197 CHART2.INRIXDataImportModule:INRIXDataImportModule.initialize (Sequence Diagram) 5-285
Figure 5-198 CHART2.INRIXDataImportModule:INRIXLinkDataProvider.getLinkData (Sequence Diagram) 5-286
Figure 5-199 CHART2.INRIXDataImportModule:PushINRIXLinkDataCmd.execute (Sequence Diagram)...... 5-287

CHART R3B3 Detailed Design xiv 12/23/2008

Figure 5-200 INRIXLinkDefImportProgram (Class Diagram) ... 5-288
Figure 5-201 INRIXDefLinkImportProgramPkg:importINRIXLinks .. 5-291
Figure 5-202 JavaClasses (Class Diagram) ... 5-292
Figure 5-203. MessageTemplateModule (Class Diagram) .. 5-297
Figure 5-204. DMSTravInfoMsgTemplateImpl:getConfig (Sequence Diagram) ... 5-300
Figure 5-205. DMSTravInfoMsgTemplateImpl:remove (Sequence Diagram) ... 5-301
Figure 5-206. DMSTravInfoMsgTemplateImpl:setConfig (Sequence Diagram) .. 5-302
Figure 5-207. MessageTemplateFactoryImpl:createDMSTravInfoMsgTemplate (Sequence Diagram)............... 5-303
Figure 5-208. MessageTemplateFactoryImpl:getDMSTravInfoMsgTemplates (Sequence Diagram) 5-304
Figure 5-209. MessageTemplateFactoryImpl:getTollRateTimeFormats (Sequence Diagram) 5-305
Figure 5-210. MessageTemplateModule:initialize (Sequence Diagram) .. 5-306
Figure 5-211. MessageTemplateModule:shutdown (Sequence Diagram)... 5-307
Figure 5-212. RoadwayLocationModule (Class Diagram).. 5-308
Figure 5-213. RoadwayLocation:ProvideCountyData (Sequence Diagram) ... 5-311
Figure 5-214. RoadwayLocationModule:Initialize (Sequence Diagram) .. 5-312
Figure 5-215. RoadwayLocationModule:Shutdown (Sequence Diagram) .. 5-313
Figure 5-216. SHAZAMControl (Class Diagram) .. 5-315
Figure 5-217. SHAZAMControlModule:setConfiguration (Sequence Diagram).. 5-322
Figure 5-218. SHAZAMUtility (Class Diagram) .. 5-323
Figure 5-219. AlertManagement (Class Diagram) .. 5-324
Figure 5-220. Common (Class Diagram) .. 5-330
Figure 5-221. Common2 (Class Diagram) .. 5-335
Figure 5-222. DMSControl (Class Diagram)... 5-339
Figure 5-223. DeviceManagement (Class Diagram) ... 5-348
Figure 5-224. ExternalDMS (Class Diagram) ... 5-352
Figure 5-225. ExternalSystem (Class Diagram) .. 5-356
Figure 5-226. FieldCommunications (Class Diagram) .. 5-359
Figure 5-227. GeoAreaManagement (Class Diagram) .. 5-363
Figure 5-228. HARControl (Class Diagram)... 5-365
Figure 5-229. HARNotification (Class Diagram).. 5-371
Figure 5-230. MessageTemplateManagement (Class Diagram).. 5-374
Figure 5-231. ResourceManagement (Class Diagram).. 5-377
Figure 5-232. TSSManagement (Class Diagram).. 5-381
Figure 5-233. TrafficEventManagement (Class Diagram) .. 5-389
Figure 5-234. TrafficEventManagement2 (Class Diagram) .. 5-395
Figure 5-235. TrafficEventRule (Class Diagram) ... 5-400
Figure 5-236. TravelRouteManagement (Class Diagram)... 5-403
Figure 5-237. TravelRouteManagement2 (Class Diagram)... 5-411
Figure 5-238. UserManagement (Class Diagram) ... 5-414
Figure 5-239. RTMSObject (Class Diagram).. 5-418
Figure 5-240. TSSManagementModulePkg (Class Diagram) ... 5-424
Figure 5-241. PolledTSSImpl:computeZoneGroupTrafficParms (Sequence Diagram) .. 5-431
Figure 5-242. PolledTSSImpl:processPollResults (Sequence Diagram) ... 5-432
Figure 5-243. PolledTSSImpl:setConfiguration (Sequence Diagram) .. 5-433
Figure 5-244. RTMSFactoryImpl:constructor (Sequence Diagram) ... 5-434
Figure 5-245. RTMSImpl:constructor (Sequence Diagram) ... 5-435
Figure 5-246. RTMSImpl:poll (Sequence Diagram) ... 5-436
Figure 5-247. TravelRouteModule (Class Diagram) ... 5-438
Figure 5-248. TravelRouteDB:getLinks (Sequence Diagram) .. 5-447
Figure 5-249. TravelRouteDB:getRoutes (Sequence Diagram) .. 5-448
Figure 5-250. TravelRouteFactoryImpl:addRoute (Sequence Diagram) ... 5-449
Figure 5-251. TravelRouteFactoryImpl:computeTravelTime (Sequence Diagram).. 5-451
Figure 5-252. TravelRouteFactoryImpl:pushConsumerUpdate (Sequence Diagram)... 5-453
Figure 5-253. TravelRouteFactoryImpl:sendUpdatesCompleted (Sequence Diagram) .. 5-454
Figure 5-254. TravelRouteFactoryImpl:updateLinkData (Sequence Diagram)... 5-456
Figure 5-255. TravelRouteFactoryImpl:updateTollRateData (Sequence Diagram) .. 5-458

CHART R3B3 Detailed Design xv 12/23/2008

Figure 5-256. TravelRouteImpl:addRemoveConsumer (Sequence Diagram) ... 5-459
Figure 5-257. TravelRouteImpl:computeTravelTime (Sequence Diagram).. 5-461
Figure 5-258. TravelRouteImpl:remove (Sequence Diagram) .. 5-462
Figure 5-259. TravelRouteImpl:setConfig (Sequence Diagram)... 5-464
Figure 5-260. TravelRouteImpl:setLinkStats (Sequence Diagram)... 5-465
Figure 5-261. TravelRouteImpl:setPartialConfig (Sequence Diagram) .. 5-466
Figure 5-262. TravelRouteModule:initialize (Sequence Diagram) ... 5-467
Figure 5-263. TravelRouteModule:shutdown (Sequence Diagram) .. 5-468
Figure 5-264. UserManagementClassDiagram (Class Diagram)... 5-469
Figure 5-265. UtilityClasses (Class Diagram) ... 5-472
Figure 5-266. UtilityClasses2 (Class Diagram) ... 5-480
Figure 5-267. TravelTimeRange:constructor (Sequence Diagram)... 5-485
Figure 5-268. WrappersCD (Class Diagram) .. 5-487
Figure 5-269. WSTrafficEventExportModuleClasses (Class Diagram) .. 5-490
Figure 5-270. TrafficEventExportHandler:getTrafficEventList (Sequence Diagram) .. 5-494
Figure 5-271. TrafficEventHandler:initialize (Sequence Diagram)... 5-495
Figure 5-272. TrafficEventRequestHandler:processRequest (Sequence Diagram) ... 5-496
Figure 5-273. WSTrafficEventExportModule:initialize (Sequence Diagram) .. 5-497
Figure 5-274. WSTrafficEventExportModule:shutdown (Sequence Diagram)... 5-498
Figure 5-275. WSDMSExportModuleClasses (Class Diagram).. 5-500
Figure 5-276. DMSExportHandler:getDMSInventoryList (Sequence Diagram) .. 5-504
Figure 5-277. DMSExportHandler:getDMSStatusList (Sequence Diagram) .. 5-505
Figure 5-278. DMSExportHandler:initialize (Sequence Diagram) ... 5-506
Figure 5-279. DMSRequestHandler:handleExceptions (Sequence Diagram) ... 5-507
Figure 5-280. DMSRequestHandler:processRequest (Sequence Diagram)... 5-508
Figure 5-281. WSDMSExportModule:initialize (Sequence Diagram) .. 5-509
Figure 5-282. WSDMSExportModule:shutdown (Sequence Diagram) .. 5-510
Figure 5-283. TollRateImportModuleClasses (Class Diagram) .. 5-511
Figure 5-284. CHART2.webservices.tollrateimportmodule:TollDataManager.tollRateDataUpdated (Sequence

Diagram).. 5-517
Figure 5-285. CHART2.webservices.tollrateimportmodule:TollDataManager.updateTollRateData (Sequence

Diagram).. 5-518
Figure 5-286. CHART2.webservices.tollrateimportmodule:TollDataPushTask.run (Sequence Diagram) 5-519
Figure 5-287. CHART2.webservices.tollrateimportmodule:WSTollRateImportModule.initialize (Sequence

Diagram).. 5-521
5-288. WebServicesBaseClasses (Class Diagram) .. 5-522
Figure 5-289. CHART2.webservices.base:BasicRequestHandler.processRequest (Sequence Diagram).............. 5-528
Figure 5-290. CHART2.webservices.base:WebService.handleRequest (Sequence Diagram).............................. 5-529
Figure 5-291. CHART2.webservices.base:WebService.init (Sequence Diagram) .. 5-530
Figure 5-292. MiscDataClasses (Class Diagram) .. 5-531
Figure 5-293. MiscDataClasses2 (Class Diagram) .. 5-534
Figure 5-294. chartlite.data_location_classes (Class Diagram)... 5-535
Figure 5-295. GUIDMSDataClasses (Class Diagram) .. 5-538
Figure 5-296. GUIDMSDataClasses2 (Class Diagram) .. 5-541
Figure 5-297. DiscoverDMSClassesCommand:discoverDMSClasses (Sequence Diagram) 5-542
Figure 5-298. DMSTravInfoMsgTrueDisplayMgr:updateGIF (Sequence Diagram) .. 5-543
Figure 5-299. WebChart2DMS:create (Sequence Diagram) ... 5-544
Figure 5-300. WebChart2DMS:setupDMSTravInfoMsgs (Sequence Diagram) ... 5-545
Figure 5-301. WebChart2DMS:updateConfig (Sequence Diagram) ... 5-546
Figure 5-302. WebChart2DMS:update_ModelChange (Sequence Diagram).. 5-547
Figure 5-303. WebDMSFactory:createDMS (Sequence Diagram) ... 5-548
Figure 5-304. GUIVideoDataClasses (Class Diagram) ... 5-549
Figure 5-305. GUILocationDataClasses (Class Diagram)... 5-552
Figure 5-306. GUIShazamClasses (Class Diagram).. 5-553
Figure 5-307. GUIHARDataClasses (Class Diagram) .. 5-555
Figure 5-308. chartlite.data.arbqueue_classes (Class Diagram) .. 5-559

CHART R3B3 Detailed Design xvi 12/23/2008

Figure 5-309. GUITravelRouteClasses (Class Diagram) .. 5-561
Figure 5-310. chartlite.data.travelroutes.HistoryList:addElement (Sequence Diagram) 5-568
Figure 5-311. chartlite.data.travelroutes.HistoryList:toBucketArray (Sequence Diagram)................................... 5-569
Figure 5-312. chartlite.data.travelroutes.RoadwayLinkManager:addOrUpdateLink (Sequence Diagram)........... 5-571
Figure 5-313. chartlite.data.travelroutes.RoadwayLinkManager:suggestLinks (Sequence Diagram)................... 5-573
Figure 5-314. chartlite.data.travelroutes.TravelRoutePushConsumer:routeAdded (Sequence Diagram).............. 5-574
Figure 5-315. chartlite.data.travelroutes.TravelRoutePushConsumer:routeConfigChanged (Sequence Diagram)5-575
Figure 5-316. chartlite.data.travelroutes.TravelRoutePushConsumer:routeDeleted (Sequence Diagram)............ 5-576
Figure 5-317. chartlite.data.travelroutes.TravelRoutePushConsumer:routeTollRateUpdated (Sequence Diagram)... 5-

577
Figure 5-318. chartlite.data.travelRoutes.TravelRoutePushConsumer:routeTravelTimeUpdated (Sequence Diagram)

... 5-578
Figure 5-319. chartlite.data.travelroutes.WebTravelRoute:updateConfig (Sequence Diagram) 5-580
Figure 5-320. chartlite.data.travelroutes.WebTravelRoute:updateStatus (Sequence Diagram)............................. 5-582
Figure 5-321. chartlite.data.travelroutes:TravelRouteDiscovery (Sequence Diagram) ... 5-583
Figure 5-322. GUIMessageTemplateDataClasses (Class Diagram) .. 5-585
Figure 5-323. chartlite.data.templatemanagement:discoverTemplateClasses (Sequence Diagram)...................... 5-589
Figure 5-324. chartlite.data.templatemanagement:handleEventData (Sequence Diagram)................................... 5-590
Figure 5-325. GUIGeoAreaClasses (Class Diagram) .. 5-591
Figure 5-326. chartlite.data.geoareamgmt:discoverGeoAreaClasses (Sequence Diagram)................................... 5-593
Figure 5-327. data.alerts.classes (Class Diagram) ... 5-594
Figure 5-328. GUIExternalSystemClasses (Class Diagram) ... 5-598
Figure 5-329. chartlite.data.externalsystem:DiscoverExternalSystemClasses (Sequence Diagram)..................... 5-600
Figure 5-330. ExternalSystemPushConsumer:clientAdded (Sequence Diagram) ... 5-601
Figure 5-331. ExternalSystemPushConsumer:clientRemoved (Sequence Diagram) .. 5-602
Figure 5-332. ExternalSystemPushConsumer:clientUpdated (Sequence Diagram) .. 5-602
Figure 5-333. ExternalSystemPushConsumer:connectionStatusChanged (Sequence Diagram) 5-603
Figure 5-334. GUITSSDataClasses (Class Diagram) .. 5-604
Figure 5-335. chartlite.data.trafficevents_classes (Class Diagram)... 5-606
Figure 5-336. chartlite.data.trafficevents_event_type_classes (Class Diagram) ... 5-608
Figure 5-337. chartlite.data.trafficevents_misc_classes (Class Diagram) ... 5-610
Figure 5-338. plans_data_classes (Class Diagram) ... 5-612
Figure 5-339. plans_data_classes (Class Diagram) ... 5-614
5-340 ServletBaseClasses (Class Diagram)... 5-615
5-341. ServletMiscClasses (Class Diagram).. 5-617
5-342. DynImageCleanupTask:run (Sequence Diagram) .. 5-619
5-343. chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram) ... 5-620
Figure 5-344. SystemProfileReqHdlr:addDMSMsgComboProps (Sequence Diagram) 5-622
Figure 5-345. SystemProfileReqHdlr:getExternalConnectionAlertAndNotificationSettingsForm (Sequence Diagram)

... 5-623
Figure 5-346. SystemProfileReqHdlr:getExternalOrgToAgencyMappingsForm (Sequence Diagram)................ 5-624
Figure 5-347. SystemProfileReqHdlr:getTSSSpeedSummaryRangesForm (Sequence Diagram) 5-625
Figure 5-348. SystemProfileReqHdlr:getTravelTimeMiscSettingsForm (Sequence Diagram) 5-626
Figure 5-349. SystemProfileReqHdlr:getTravelTimeRangesForm (Sequence Diagram)...................................... 5-628
Figure 5-350. SystemProfileReqHdlr:getTravelTimeScheduleForm (Sequence Diagram)................................... 5-629
Figure 5-351. SystemProfileReqHdlr:setExternalAgencyToOrgMappings (Sequence Diagram)......................... 5-630
Figure 5-352. SystemProfileReqHdlr:setExternalConnectionAlertAndNotificationSettingsForm (Sequence Diagram)

... 5-631
Figure 5-353. SystemProfileReqHdlr:setTSSSpeedSummaryRanges (Sequence Diagram) 5-632
Figure 5-354. SystemProfileReqHdlr:setTravelTimeMiscSettings (Sequence Diagram)...................................... 5-633
Figure 5-355. SystemProfileReqHdlr:setTravelTimeRanges (Sequence Diagram)... 5-635
Figure 5-356. SystemProfileReqHdlr:setTravelTimeSchedule (Sequence Diagram).. 5-637
Figure 5-357. chartlite.servlet.tss_classes (Class Diagram)... 5-638
Figure 5-358. chartlite.servlet.tss_dynlist_classes (Class Diagram).. 5-639
Figure 5-359. EditTSSLocationSupporter:setObjectLocation (Sequence Diagram) ... 5-643
Figure 5-360. TSSListSupporter:createDynList (Sequence Diagram) .. 5-645

CHART R3B3 Detailed Design xvii 12/23/2008

Figure 5-361. TSSReqHdlr:getEditTSSLocationForm (Sequence Diagram) .. 5-646
Figure 5-362. chartlite.servlet.tss:setTSSConfigCommSettings (Sequence Diagram) .. 5-647
Figure 5-363. ServletDynListClasses (Class Diagram) ... 5-649
Figure 5-364. chartlite.servlet.dynlist.DynListReqHdlrDelegate:createDynList (Sequence Diagram) 5-652
Figure 5-365. chartlite.servlet.dynlist.DynListReqHdlrDelegate:setColumnVisibility (Sequence Diagram) 5-653
Figure 5-366. chartlite.servlet.dms.dynlist_classes (Class Diagram) .. 5-654
Figure 5-367. GUIDMSServletClasses (Class Diagram) .. 5-656
Figure 5-368. chartlite.servlet.dms:createDMSEditorData (Sequence Diagram) .. 5-659
Figure 5-369. chartlite.servlet.dms:createOrUpdateDMSTravInfoMsgTemplate (Sequence Diagram)................ 5-660
Figure 5-370. chartlite.servlet.dms:getAddEditDMSTravInfoMsgForm (Sequence Diagram)............................. 5-661
Figure 5-371. chartlite.servlet.dms:getDMSEditorImageJSON (Sequence Diagram)... 5-663
Figure 5-372. chartlite.servlet.dms:getDMSTravInfoMsgImageJSON (Sequence Diagram) 5-665
Figure 5-373. chartlite.servlet.dms:getDMSTravInfoMsgTemplateDataJSON (Sequence Diagram)................... 5-666
Figure 5-374. chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram) .. 5-667
Figure 5-375. chartlite.servlet.dms:parseDMSTravInfoMsg (Sequence Diagram) ... 5-668
Figure 5-376. chartlite.servlet.dms:removeDMSTravInfoMsg (Sequence Diagram).. 5-669
Figure 5-377. chartlite.servlet.dms:saveDMSEditorDataFromForm (Sequence Diagram) 5-670
Figure 5-378. chartlite.servlet.dms:setDMSConfigBasicSettings (Sequence Diagram).. 5-671
Figure 5-379. chartlite.servlet.dms:setDMSTravelRoutes (Sequence Diagram) ... 5-672
Figure 5-380. chartlite.servlet.dms:setDMSTravelTimeDisplaySchedule (Sequence Diagram)........................... 5-673
Figure 5-381. chartlite.servlet.dms:setDMSTravInfoMsgEnabledFlag (Sequence Diagram) 5-674
Figure 5-382. chartlite.servlet.dms:submitDMSTravInfoMsgForm (Sequence Diagram) 5-675
Figure 5-383. chartlite.servlet.dms:submitDMSTravInfoMsgTemplateForm (Sequence Diagram) 5-677
Figure 5-384. chartlite.servlet.dms:viewDMSMessageEditorForm (Sequence Diagram)..................................... 5-678
Figure 5-385. chartlite.servlet.dms:viewEditDMSTravelRoutesForm (Sequence Diagram) 5-679
Figure 5-386. DMSListSupporter:createDynList (Sequence Diagram)... 5-680
Figure 5-387. DMSReqHdlr:getEditDMSLocationForm (Sequence Diagram)... 5-681
Figure 5-388. EditDMSLocationSupporter:setObjectLocation (Sequence Diagram) ... 5-682
Figure 5-389. chartlite.servlet.alerts:resolveAlert (Sequence Diagram).. 5-684
Figure 5-390. GUIGeographicAreasServletClasses (Class Diagram) ... 5-685
Figure 5-391. GeographicAreasReqHdlr:displayAddEditGeoAreaForm (Sequence Diagram) 5-686
Figure 5-392. GeographicAreasReqHdlr:importKMLFileJSON (Sequence Diagram) ... 5-687
Figure 5-393. GeographicAreasReqHdlr:removeGeoArea (Sequence Diagram) .. 5-688
Figure 5-394. GeographicAreasReqHdlr:submitAddEditGeoAreaForm (Sequence Diagram) 5-689
Figure 5-395. GUITravelRouteServletClasses (Class Diagram) ... 5-691
Figure 5-396. TravelRouteDynListSupporter:createDynList (Sequence Diagram)... 5-696
Figure 5-397. TravelRouteDynListSupporter:getDynListSubjects (Sequence Diagram)...................................... 5-697
Figure 5-398. TravelRouteReqHdlr:addEditTravelRoute (Sequence Diagram).. 5-698
Figure 5-399. TravelRouteReqHdlr:addEditTravelRouteForm (Sequence Diagram) ... 5-700
Figure 5-400. TravelRouteReqHdlr:addTravelRouteLink (Sequence Diagram) ... 5-701
Figure 5-401. TravelRouteReqHdlr:addTravelRouteLinkForm (Sequence Diagram) .. 5-703
Figure 5-402. TravelRouteReqHdlr:findTravelRouteLinksJSON (Sequence Diagram) 5-705
Figure 5-403. TravelRouteReqHdlr:getHistoryBucketTimes (Sequence Diagram) .. 5-706
Figure 5-404. TravelRouteReqHdlr:moveTravelRouteLink (Sequence Diagram).. 5-707
Figure 5-405. TravelRouteReqHdlr:removeTollRateSource (Sequence Diagram) ... 5-708
Figure 5-406. TravelRouteReqHdlr:removeTravelRoute (Sequence Diagram) .. 5-709
Figure 5-407. TravelRouteReqHdlr:removeTravelRouteLink (Sequence Diagram)... 5-710
Figure 5-408. TravelRouteReqHdlr:setTollRateSource (Sequence Diagram)... 5-712
Figure 5-409. TravelRouteReqHdlr:setTollRateSourceForm (Sequence Diagram) .. 5-713
Figure 5-410. TravelRouteReqHdlr:setTravelRouteLinkSettings (Sequence Diagram) 5-715
Figure 5-411. TravelRouteReqHdlr:setTravelRouteLinkSettingsForm (Sequence Diagram)............................... 5-717
Figure 5-412. TravelRouteReqHdlr:viewTravelRouteDetails (Sequence Diagram) ... 5-718
Figure 5-413. TravelRouteReqHdlr:viewTravelRouteLinkDetails (Sequence Diagram)...................................... 5-719
Figure 5-414. TravelRouteReqHdlr:viewTravelRoutes (Sequence Diagram) ... 5-721
Figure 5-415. GUIExternalSystemServletClasses (Class Diagram) .. 5-722
Figure 5-416. ExternalDeviceDynListSupporter:createDynList (Sequence Diagram).. 5-725

CHART R3B3 Detailed Design xviii 12/23/2008

Figure 5-417. ExternalDeviceDynListSupporter:getDynListSubjects (Sequence Diagram) 5-726
Figure 5-418. ExternalSystemReqHdlr:addEditExternalClient (Sequence Diagram) ... 5-727
Figure 5-419. ExternalSystemReqHdlr:addEditTrafficEventInclusionRule (Sequence Diagram)........................ 5-728
Figure 5-420. ExternalSystemReqHdlr:downloadPrivateKey (Sequence Diagram) ... 5-729
Figure 5-421. ExternalSystemReqHdlr:generateKeyPair (Sequence Diagram) .. 5-730
Figure 5-422. ExternalSystemReqHdlr:getAddEditExternalClientForm (Sequence Diagram)............................. 5-731
Figure 5-423. ExternalSystemReqHdlr:getAddEditTrafficEventInclusionRuleForm (Sequence Diagram) 5-732
Figure 5-424. ExternalSystemReqHdlr:getExternalDeviceQueryForm (Sequence Diagram)............................... 5-733
Figure 5-425. ExternalSystemReqHdlr:removeExternalClient (Sequence Diagram).. 5-734
Figure 5-426. ExternalSystemReqHdlr:removeTrafficEventInclusionRule (Sequence Diagram) 5-735
Figure 5-427. ExternalSystemReqHdlr:submitExternalDeviceQueryForm (Sequence Diagram)......................... 5-736
Figure 5-428. ExternalSystemReqHdlr:submitExternalDeviceSelectionForm (Sequence Diagram) 5-737
Figure 5-429. ExternalSystemReqHdlr:viewExternalClientList (Sequence Diagram).. 5-738
Figure 5-430. ExternalSystemReqHdlr:viewExternalSystemConnectionStatus (Sequence Diagram) 5-739
Figure 5-431. ExternalSystemReqHdlr:viewTrafficEventInclusionRules (Sequence Diagram) 5-740
Figure 5-432. DMSTravInfoMsgTemplateDynListClasses (Class Diagram).. 5-741
Figure 5-433. GUIMessageTemplateServletClasses (Class Diagram) .. 5-743
Figure 5-434. MessageTemplateReqHdlr:filterDMSTravInfoMsgTemplateList (Sequence Diagram) 5-745
Figure 5-435. MessageTemplateReqHdlr:getDMSTravInfoMsgTemplateList (Sequence Diagram) 5-746
Figure 5-436. MessageTemplateReqHdlr:removeDMSTravInfoMsgTemplate (Sequence Diagram) 5-747
Figure 5-437. MessageTemplateReqHdlr:sortDMSTravInfoMsgTemplateList (Sequence Diagram) 5-748
Figure 5-438. GUIVideoServletClasses (Class Diagram) ... 5-749
Figure 5-439. EditCameraLocationSupporter:setObjectLocation (Sequence Diagram).. 5-751
Figure 5-440. MonitorListSupporter:createDynList (Sequence Diagram) .. 5-752
Figure 5-441. VideoSourceConfigReqHdlr:getEditCameraLocationForm (Sequence Diagram).......................... 5-753
Figure 5-442. VideoSourceListSupporter:createDynList (Sequence Diagram)... 5-754
Figure 5-443. GUITrafficEventsDynListClasses (Class Diagram) ... 5-755
Figure 5-444. chartlite.servlet.trafficevents_classes (Class Diagram)... 5-758
Figure 5-445. AddTrafficEventReqHdlr:copyExternalEventAsCHARTEventWithoutForm (Sequence Diagram).... 5-

761
Figure 5-446. TrafficEventDynListSupporter:addCol (Sequence Diagram) ... 5-762
Figure 5-447. TrafficEventDynListSupporter:createDynList (Sequence Diagram) .. 5-763
Figure 5-448. TrafficEventDynListSupporter:createDynListCols (Sequence Diagram)....................................... 5-765
Figure 5-449. TrafficEventReqHdlr:getNearbyCameraJSONArray (Sequence Diagram) 5-766
Figure 5-450. TrafficEventReqHdlr:getNearbyDMSJSONArray (Sequence Diagram).. 5-768
Figure 5-451. TrafficEventReqHdlr:getNearbyDevicesJSON (Sequence Diagram)... 5-770
Figure 5-452. TrafficEventReqHdlr:getNearbyHARJSONArray (Sequence Diagram) .. 5-771
Figure 5-453. TrafficEventReqHdlr:getNearbyTSSJSONArray (Sequence Diagram) ... 5-774
5-454. TrafficEventReqHdlr:populateNearbyDeviceLocationJSON (Sequence Diagram)................................... 5-775
Figure 5-455. TrafficEventReqHdlr:setNearbyDevicesRadiusJSON (Sequence Diagram) 5-776
Figure 5-456. TrafficEventReqHdlr:viewEventDetails (Sequence Diagram) ... 5-778
Figure 5-457. TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)............................... 5-780
Figure 5-458. chartlite.servlet.location_classes (Class Diagram) .. 5-781
Figure 5-459. SpecifyLocationReqHdlr:displayEditObjectLocationDataForm (Sequence Diagram)................... 5-783
Figure 5-460. SpecifyLocationReqHdlr:getEditObjectLocationDataXML (Sequence Diagram) 5-784
Figure 5-461. SpecifyLocationReqHdlr:setObjectLocationDataXML (Sequence Diagram) 5-785
Figure 5-462. GUISHAZAMServletClasses (Class Diagram) .. 5-786
Figure 5-463. EditSHAZAMLocationSupporter:setObjectLocation (Sequence Diagram) 5-788
Figure 5-464. SHAZAMListSupporter:createDynList (Sequence Diagram) .. 5-789
Figure 5-465. SHAZAMReqHdlr:getAddSHAZAMForm (Sequence Diagram) .. 5-791
Figure 5-466. SHAZAMReqHdlr:getSHAZAMEditLocationForm (Sequence Diagram) 5-792
Figure 5-467. SHAZAMReqHdlr:processAddSHAZAM (Sequence Diagram).. 5-794
Figure 5-468. GUIHARServletClasses (Class Diagram)... 5-795
Figure 5-469. EditHARLocationSupporter:setObjectLocation (Sequence Diagram).. 5-798
Figure 5-470. HARListSupporter:createDynList (Sequence Diagram)... 5-799
Figure 5-471. HARReqHdlr:getEditHARLocationForm (Sequence Diagram) ... 5-801

CHART R3B3 Detailed Design xix 12/23/2008

Figure 5-472. GUIFlexComponentsClasses (Class Diagram) ... 5-802
Figure 5-473. GUIFlexEditLocationClasses (Class Diagram)... 5-803
Figure 5-474. chartlite.util_classes (Class Diagram) ... 5-805
Figure 5-475. ServletUtil:getNearbyObjects (Sequence Diagram) ... 5-807
Figure 5-476. DynamicListClasses (Class Diagram)... 5-808

CHART R3B3 Detailed Design 1-1 12/23/2008

1 Introduction

1.1 Purpose

This document describes the design of the software for Release 3, Build 3 of the CHART system.

This build provides:

• Traveler Information Messages, including Travel Times and Toll Rates. The system will

allow automatic display of DMS messages that include travel times and/or toll rates for

one or more destinations. Data for these messages will be supplied by CHART travel

routes, new for R3B3. Features to allow travel routes to be added, configured, viewed,

and removed are included in R3B3. The underlying travel time data for travel routes will

be obtained via an external connection to the INRIX system, while underlying toll rate

data for travel routes will be provided to CHART by the Vector system. R3B3 will

provide consistent formats for traveler information messages using system-wide message

templates. Traveler information message templates can be configured by an

administrator to specify the layout of a message as well as the message content, including

data provided by CHART travel routes.

• Device Locations. R3B3 adds location fields to CHART devices, including DMS, TSS

(Detectors), HAR, SHAZAM, and Cameras. In device lists, users can sort and filter on

location fields, making it easier to view devices by county, roadway, or even the order

they occur on the roadway (by mile marker). The addition of device locations in R3B3

also allows the system to show devices close to traffic events to aid in event response.

• External Event Import Enhancements. New R3B3 features allow rules to be defined to

control which external events get imported from RITIS into CHART. These rules

contain various criteria that external events must meet for CHART to import them. Each

rule can also specify if external events meeting that rule should generate an External

Event Alert (new for R3B3). Likewise, rules can specify if external events that meet the

rule criteria should be automatically marked as “interesting” and be shown on the

CHART system home page. To support geographical criteria in these import rules,

capability to manage geographical area definitions is included in R3B3. These

geographical areas can be used in external event import rules and can also be used when

managing external DMS and TSS to be included in CHART (see below), and lay the

foundation for inclusion of Areas of Responsibility in a future release.

• External DMS and TSS. R3B3 adds the ability to import DMS and TSS devices from

RITIS. The administrator can manage the potentially large list of external devices

available to pick and choose which devices will be included in CHART. Once included

in CHART, the status of external devices will be maintained in the CHART system,

allowing users to see current DMS messages and current TSS traffic parameters (volume,

speed, occupancy). These external devices will be included when showing users devices

close to traffic events.

• Web Service to Provide CHART Data to External Systems. A new web service is

included in R3B3 to allow external systems such as RITIS to connect to CHART to

CHART R3B3 Detailed Design 1-2 12/23/2008

retrieve information. This new service provides better security and data protection than

the existing CORBA based interface. It also provides better isolation of the CHART

system from external systems.

• Enhanced user rights for Traffic Events, Detectors, and Device Configuration data. New

user rights are included in R3B3 to allow better protection at viewing sensitive traffic

event data, such as the indication that a fatality is involved. New user rights for detectors

allow volume, speed, and occupancy (VSO) data to be better protected. Users can be

given the right to view detailed VSO data or summary VSO data (speed range) based on

the owning organization of each device. The user rights for device configuration data are

changed in R3B3 to make them consistent across device types and to ensure sensitive

settings are only shown to permitted users.

• TCP/IP Communications for DMS and TSS. The R3B3 system allows DMS and TSS

devices to be connected to CHART via TCP/IP communications. A new option is added

to the DMS and TSS configuration pages to allow this new communication option to be

used.

• NTCIP DMS Font Settings. New configuration settings for NTCIP DMSs are added in

R3B3 to allow the default font and line spacing to be set and will be used by CHART

each time a message is set. This works around a problem where the default font on

NTCIP DMSs gets reset when power is lost.

• Miscellaneous Enhancements. Several other enhancements are added to CHART in

R3B3:

o Show / Display Columns in Lists. When viewing a list of devices, traffic events,

or travel routes in the working window, the user can choose which columns to

show. Several new columns are being added to these lists, such as location fields,

and this new feature allows the user to keep their lists at a minimum width by

displaying only the columns in which they are interested.

o Show Devices Close to an Event. A new section is added to the traffic event

details page in R3B3 to show devices located within a specified radius of the

traffic event. The radius can be changed by the user per traffic event, and the user

can choose to add close DMSs and HARs directly to the event’s response plan.

o Lane Level Detector Data. A new feature in R3B3 allows users to view the

volume, speed, and occupancy data for each detection zone within a detector’s

zone groups. This data is also being made available to external systems such as

RITIS (with appropriate user rights).

o DMS Alerts and Notifications. New DMS configuration values in R3B3 allow

the device failure alert to be sent for DMS communications failures in addition to

hardware failures. Notifications can also be configured to be sent when a

hardware failure or communication failure is detected. These settings are

configured separately for each DMS.

CHART R3B3 Detailed Design 1-3 12/23/2008

1.2 Objectives

The main objective of this detailed design document is to provide software developers with a

framework in which to implement the requirements identified in the CHART R3B3

Requirements document. A matrix mapping requirements to the design is presented in Section 6.

1.3 Scope

This design is limited to Release 3, Build 3 (R3B3) of the CHART System. It addresses both the

design of the server components of CHART and the Graphical User Interface (GUI) components

of CHART. Since the CHART GUI is browser based, the GUI refers to both the user interface

and the components actually executing on the web server. This design does not include designs

for components implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams.

Class diagrams were generated showing the high level objects that address the Use Cases.

Sequence diagrams were generated to show how each piece of major functionality will be

achieved. This process was iterative in nature – the creation of sequence diagrams sometimes

caused re-engineering of the class diagrams, and vice versa.

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling

Language (UML) Suite design tool. Within this tool, the design will be contained in the CHART

project, CHART R3B3, Analysis phase and System Design phase.

1.6 Work Products

The final R3B3 design consists of the following work products:

• Use Case diagrams that capture the requirements of the system

• UML Class diagrams, showing the software objects which allow the system to

accommodate the uses of the system described in the Use Case diagrams

• UML Sequence diagrams showing how the classes interact to accomplish major

functions of the system

CHART R3B3 Detailed Design 2-1 12/23/2008

2 Architecture

The sections below discuss specific elements of the architecture and software components that

are created, changed, or used in R3B2.

2.1 Network/Hardware

CHART R3B3 will introduce several new interfaces for CHART – the INRIX system for travel

times, the Vector system for toll rates, and additional RITIS connections to import DMS and

TSS devices. Additionally, an export service is included to allow external systems to retrieve

data from the CHART system. CHART will connect to the INRIX system using its

HTTPS/XML interface. Vector will connect to the CHART system on an HTTPS/XML

interface hosted on the CHART system. The CHART system will also host an HTTPS/XML

interface for data export. The connections to RITIS to import DMS and TSS devices will use the

same type of connection that is used in R3B2 for importing traffic events from RITIS: a JMS

connection initiated from a CHART service.

2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base

architecture, with custom built software objects made available on the network to allow their

data to be accessed via well defined CORBA interfaces. Communications to remote devices use

the Field Management Server (FMS) architecture. This architecture will continue forward for

Release R3B3. There will be no major changes to the CHART software architecture

infrastructure.

2.2.1 COTS Products

CHART uses numerous COTS products for both run-time and development.

Product Name Description
Apache ActiveMQ CHART uses this to connect to RITIS JMS queues

Apache Jakarta Ant CHART uses Apache Jakarta Ant 1.6.5 to build

CHART applications and deployment jars.

Apache Tomcat CHART R3B3 will use Apache Tomcat 6.0.18 as the

GUI web server.

Attention! CC CHART uses Attention! CC Version 2.1 to provide

notification services.

Attention! CC API CHART uses Attention! CC API Version 2.1 to

interface with Attention! CC.

Attention! NS CHART uses Attention! NS Version 6.1 to provide

notification services.

Bison/Flex CHART uses Bison and Flex as part of the process of

compiling binary macro files used for performing

camera menu operations on Vicon Surveyor VFT

cameras.

CHART R3B3 Detailed Design 2-2 12/23/2008

CoreTec Decoder Control CHART uses a CoreTec supplied decoder control API

for commanding CoreTec decoders.

Dialogic API CHART uses the Dialogic API for sending and

receiving Dual Tone Multi Frequency (DTMF) tones

for HAR communications.

Flex2 SDK The R3B3 CHART GUI will use the Flex2 SDK,

version 3.1 to provide the Flex compiler, the standard

Flex libraries, and examples for building Flex

applications.

GIF89 Encoder Utility classes that can create .gif files with optional

animation. This utility is used for the creation of DMS

True Display windows.

JDOM CHART uses JDOM b7 (beta-7) dated 2001-07-07.

JDOM provides a way to represent an XML document

for easy and efficient reading, manipulation, and

writing.

JacORB CHART uses a compiled, patched version of JacORB

2.2.4. The JacORB source code, including the patched

code, is kept in the CHART source repository.

Java Run-Time (JRE) CHART R3B3 will use 1.5.0_16.

JavaService CHART uses JavaService to install the server side Java

software components as Windows services.

JAXEN CHART uses JAXEN 1.0-beta-8 dated 2002-01-09.

The Jaxen project is a Java XPath Engine. Jaxen is a

universal object model walker, capable of evaluating

XPath expressions across multiple models.

JoeSNMP CHART uses JoeSNMP version 0.2.6 dated 2001-11-

11. JoeSNMP is a Java based implementation of the

SNMP protocol. CHART uses for commanding iMPath

MPEG-2 decoders and for communications with NTCIP

DMSs.

JSON-simple CHART uses the JSON-simple java library to

encode/decode strings that use JSON (JavaScript Object

Notation).

JTS CHART uses the Java Topology Suite (JTS) version

1.8.0 for geographical utility classes.

NSIS CHART uses the Nullsoft Scriptable Installation

System (NSIS), version 2.20, as the server side

installation package.

Nuance Text To Speech For text-to-speech (TTS) conversion CHART uses a

TTS engine that integrates with Microsoft Speech

Application Programming Interface (MSSAPI), version

CHART R3B3 Detailed Design 2-3 12/23/2008

5.1. CHART uses Nuance Vocalizer 4.0 with Nuance

SAPI 5.1 Integration for Nuance Vocalizer 4.0.

Oracle CHART uses Oracle 10.1.0.5 as its database and uses

the Oracle 10G JDBC libraries (ojdbc1.4.jar) for all

database transactions.

O’Reilly Servlet Provides classes that allow the CHART GUI to handle

file uploads via multi-part form submission.

Prototype Javascript

Library

The CHART GUI uses the Prototype Javascript library,

version 1.5.1, a cross-browser compatible Javascript

library provides many features (including easy Ajax

support).

SAXPath CHART uses SAXPath 1.0-beta-6 dated 2001-09-27.

SAXPath is an event-based API for XPath parsers, that

is, for parsers which parse XPath expressions.

Velocity Template Engine Provides classes that CHART GUI uses in order to

create dynamic web pages using velocity templates.

Vicon V1500 API CHART uses a Vicon supplied API for commanding

the ViconV1500 CPU to switch video on the Vicon

V1500 switch

2.2.2 Deployment /Interface Compatibility

2.2.2.1 External Interfaces

The diagram below presents an overall view of CHART within the context of other external

systems. The green boundaries represent devices that the CHART software communicates with

directly. The major external interfaces include:

1. CHART Web Server – Receives information from the CHART system for publishing on the

Web. This information includes incident reports, lane closure data, speed sensor data, DMS

messages, and camera video. In the future (sometime after R3B3 is deployed), the CHART

Web Server will migrate to using the CHART HTTPS/XML external interface to obtain data

from the CHART system.

2. CHART Map – The CHART Web Event Listener is used to receive CORBA Events from

CHART relating to roadway conditions for display with the CHART Mapping application.

The data includes incident reports, lane closure data, DMS messages, and speed sensor data.

CHART also queries the mapping database to get counties, roads, and road intersection data.

In the future (sometime after R3B3 is deployed), the CHART Map will migrate to using the

CHART HTTPS/XML external interface to obtain data from the CHART system.

3. Emergency Operations Reporting System (EORS) – Legacy system providing information on

road closures and road status.

4. Media – Commercial and public broadcasters.

5. SCAN – SHA legacy system supplying weather sensor data.

CHART R3B3 Detailed Design 2-4 12/23/2008

6. CHART Reporting Tool – Generates reports from data on CHART databases.

7. University of Maryland Center for Advanced Transportation Technology (CATT) Lab as

Regional Integrated Transportation Information System (RITIS) - Receives CORBA Events

from CHART and will migrate to use the CHART HTTPS/XML external interface for this

purpose in the future (sometime after R3B3 is deployed). Provides SAE J2354 standard

regional traffic events and TMDD standard DMS and TSS data via java messaging service

connections.

8. Notification Recipients – Receive notification from CHART about significant events via e-

mail or page/text.

9. INRIX – External system that provides travel time data to the CHART system. CHART

connects to INRIX via an HTTPS/XML interface.

10. Vector – External (MdTA) system that provides toll rate data to the CHART system. The

Vector system connects to CHART via an HTTPS/XML interface provided by CHART.

CHART R3B3 Detailed Design 2-5 12/23/2008

Figure 2-1 CHART and External Interfaces

CHART R3B3 Detailed Design 2-6 12/23/2008

For CHART R3B3, the following diagram describes how the new external interfaces will be deployed within

CHART.

Outside firewall

RITIS

CHART
Map

CHART
Public Web

IIS Server

Apache Tomcat

DataCacheServlet

Vector

ChartExportServlet

Outside firewall

IIS Server

Apache Tomcat

PRIMARY

TollRate
ImportServlet

Similar to the ChartGUI.

TollRateImportServlet provides web service to allow data providers (Vector) to
import toll rates into Chart. Toll rate data complying with the TollRates.xsd will be
converted to corba messages. It interacts with Link/Route centric corba interface(s).

DataCacheServlet will provide ObjectCache that will be used by the export functionality
provided by the ChartExportServlet.

ChartExportServlet has logic to interact with the ObjectCache to build responses for
exporting Traffic Event, DMS, TSS, HAR, SHAZAM data.

Authentication will be handled consistently among servlets whether they are import or
export oriented.

Outside firewall.

IIS Server

Apache Tomcat

IIS/Tomcat pairs running on
two seperate servers or two
virtual servers.

SECONDARY

TollRate
ImportServlet

RITIS
JMS

DMSService

RITIS Service

TSSService

TrafficEventService

EventImportModule R3B2

DMSImportModule R3B3

TravelRouteService

TSSImportModule R3B3

INRIX Import Service

TravelTimeImportModule

INRIX
WebService

All modules are configured
to acquire data for
import from RITIS
JMS and to translate
imported messages into
Chart..

Outside firewall.

The TravelTimeImportModule
is configured to acquire data for
import from WebService
provided by INRIX and translate
INRIX messages to Chart Link
Route Data.

Figure 2-2 CHART R3B3 External Interface Deployment

2.2.2.2 Internal Interfaces

The architecture for the CHART system distributes complete system functionality to a number of

districts throughout the State of Maryland. Each of these complete systems can provide full

functionality for the devices connected to the system and objects created within that system (such

as traffic events), and provides functionality for other district's systems that are available. Thus

the absence of one district's server does not affect the ability of another district to use their own

system or other systems that are available. Although the server deployment is spread across

multiple sites, the user sees one large system, as CORBA is used to pull together objects served

from the many deployment sites.

The CHART GUI is able to locate the software objects at all deployment sites through the use of

the CORBA Trading Service. A CORBA Trading Service runs at each deployment site. Each

CHART service that publishes CORBA objects offers the objects through its local CORBA

Trading Service. The GUI provides a unified view of the system, even though the system is

actually distributed over multiple deployment sites.

In addition to showing the software objects throughout the system on a single interface, it is also

necessary to reflect the current state of the software objects as they are changed during real time

CHART R3B3 Detailed Design 2-7 12/23/2008

operations. The CORBA Event Service is used to allow objects to push changes in their state to

the GUI, other back end CHART services, the CHART Event Listener, or any other interested

CORBA clients. Each deployment site has an instance of a CORBA Event Channel Factory,

which is an extension of the CORBA Event Service that allows multiple event channels. Each

CHART service whose objects are subject to real time changes will create one or more Event

Channels in its local Event Channel Factory. Each event channel is earmarked for a specific

class of events (such as DMS events). Each service that creates channels in the CORBA Event

Channel Factory publishes the event channel in the CORBA Trading Service and then uses the

channel to push events relating to object state, configuration updates, etc.

An interface that wishes to listen for events at a system wide level discovers all of the event

channels via the CORBA Trading Service and registers itself as a consumer on each of the event

channels. Using this scheme, an interface uses the Trading Service to discover all software

objects and Event Channels regardless of their deployment site. The interface may then provide

the user with a unified view of the system, both in the objects presented and the ability to show

near real time updates of these objects. Since the nature of the system is dynamic, processes

periodically rediscover new objects and event channels from known districts via the Trading

Service.

Most CHART background services which communicate with physical devices deployed along

Maryland highways do so via FMS servers. One or more CHART Communications Services run

on each FMS in the system. The CHART background services requiring FMS services for this

purpose are the DMS Service, HAR Service (which also serves SHAZAMs), and the TSS

Service. The communications between these three services and the Communications Services

are IIOP, over TCP/IP. Communications from the Communications Services out to the physical

devices are accomplished by telephone (via either POTS or ISDN modems, or via Telephony

DTMF communications) or by direct serial connection. Telephone service is usually provided

via landline, although cellular service occasionally needs to be utilized.

CHART background services that communicate with physical DMS and TSS devices also allow

direct TCP/IP communications if supported by the devices. FMS servers and CHART

Communications Services are not used by these background services to communicate with

devices configured for this type of communication.

The remaining CHART background service controlling physical field devices is the Video

Service. Video communication is accomplished via TCP/IP. Communication to CoreTec

decoders is accomplished via proprietary CoreTec protocol over TCP/IP. Communication to

iMPath decoders is accomplished via SNMP over TCP/IP, with published MIBs. CHART does

not directly command either the iMPath or the CoreTec encoders; they are used only as a pass-

through to pass camera control commands and responses to/from the attached cameras.

CHART’s communication with the encoders, then, is via TCP/IP with no proprietary protocol

involved. Communications to the Vicon V1500 NTSC video switch is accomplished via a

proprietary Vicon protocol over TCP/IP. Once video connections are thus established, video

flows directly from encoder to decoder via MPEG2 or MPEG4 over TCP/IP, and/or through a

V1500 analog video switch.

CHART R3B3 Detailed Design 2-8 12/23/2008

The following deployment diagrams show the deployment of CHART at a single district within

the larger CHART system. The diagrams depict the various computers that are deployed at the

site. Each computer shows the processes that are installed and running on it. The lines between

the computers show the protocols that are used for communication between the various processes

involved. The GUI deployment diagram shows that the web browser (Internet Explorer) on the

operator workstation can send requests to the GUI web server machine using the standard HTTP

or HTTPS protocols. These requests are handled by the Microsoft IIS web server process which

uses the requested URL to determine that the request is intended for the CHART GUI servlet

application. IIS forwards requests for CHART to the installed Apache Tomcat application which

passes the request to the CHART GUI Servlet for processing. This servlet communicates with

the processes on the CHART Server machine via the standard CORBA IIOP protocol which

utilizes the TCP/IP protocol. Additionally this servlet communicates with the CHART Database

server via the JDBC API which utilizes the TCP/IP protocol.

Oracle RDBMS Service

CHART Database Server

CHART Services

CORBA Event Service

CORBA Trading Service

CHART Application Server

CHART Application Server

See Server Deployment Diagram
for more details.

CHART GUI Servlet

Apache Tomcat

Microsoft IIS

GUI Web Server

GUI Flex2 Application

Adobe Flash Player 9

Audio Recording Applet

Java 5 Plug In

Internet Explorer

Operator Workstation

TCPIP-JDBC

TCPIP - JDBC

IIOP

HTTPS-HTML

TCPIP-JDBC

TCPIP-JDBC

IIOP

HTTPS-XML

HTTPS-JSON

HTTPS

Figure 2-3 CHART Internal Interfaces (GUI Deployment)

The server deployment diagram shows the services running on the CHART application server in

more detail. New for R3B3 are the Travel Route Service, the INRIX import service, and an

IIS/Tomcat instance used to allow Vector to supply toll rate data and to allow CHART to provide

its data to external systems. The CHART application server uses the standard CORBA IIOP

protocol to communicate to the GUI web server to handle user requests and to update system

state, and to the field management (FMS) server to communicate to DMS, HAR, SHAZAM, and

TSS field devices. It also uses TCP/IP to control camera and monitor video devices and certain

DMS and TSS devices. Finally, the CHART application server communicates with the CHART

Mapping database to obtain roadway location information via the JDBC API which utilizes the

TCP/IP protocol.

CHART R3B3 Detailed Design 2-9 12/23/2008

DEPRECATED IN R3B3.
Legacy Listener Service
to be replaced by controlled
data export service.
See External Interfaces
Deployment Diagram.

DELETED IN R3B3.
To be replaced in R3B3.
See External Interfaces
Deployment Diagram.

See External Interfaces
Deployment Diagram for
additional External Inteface
Modules.

NEW FOR R3B3.
Added new module for DMS Travel Route Message Templates

MessageTemplateModule

GeoAreaModule

MODIFIED FOR R3B3.
Added new module
to manage geographical
areas.

Schedule Service

Message Utility Service

Alert Service

User Manager Service

CORBA Trading Service

CHART Application Server

IIOP

IIOP

TCPIP-JDBC

TCPIP

ISDN POTS
Telephony

IIOP

IIOP

TCPIP

IIOP

IIOP

COTS

MODIFIED FOR R3B3.
4 new alert types.

Travel Route Service

Travel RouteFactory

RoadwayLink

via Listener database

COTS

ISDN POTS
Telephony

TCPIP-JDBC

Email-Fax-Page Providers

RITIS System

Firewall

COTS Notification Tool

Notification Server

Runs on one
primary server and
one backup server

UMd Listener Service

UMd Listener Server

CHART Listener Service

TravelRouteModule

TravelRoute

Oracle RDBMS Service

CHART Mapping Server

Field Devices
[DMSs HARs SHAZAMs TSSs]

Mapping DB

CHART Mapping Server

Notification Service

EORS DB

EORS Server

Video Device
[Cameras Monitors]

Communications Service

Field Management Server

CORBA Event Services

See GUI Deployment Diagram
for details.

Roadway Location Lookup Service

EORS Service

Traffic Event Service

Web Server

Video Service

TSS Service

HAR Service

NEW FOR R3B3.

DMS Service

Figure 2-4 CHART Internal Interfaces (Server Deployment)

2.3 Security

The CHART System itself runs entirely behind the MDOT firewall. CHART R3B3 requires a

new interface to the INRIX system which resides on the Internet. CHART connects to INRIX

via HTTPS. This connection requires an outbound connection through the MDOT firewall to

port 443 of the INRIX server. This is permitted because the connection is initiated from within

the MDOT network.

CHART R3B3 introduces two new connections to the RITIS system developed by the University

of Maryland, making a total of 3 (one connection already exists as of R3B2). These connections

require the opening of a few specific ports in the MDOT firewall. This is permitted because the

connection is initiated from within the MDOT network.

CHART R3B3 Detailed Design 2-10 12/23/2008

Since the CHART System runs entirely behind the MDOT firewall, user access to the CHART

system via the GUI from the outside world must be specifically enabled for users to connect

from specific external locations. Control of video cameras is ostensibly limited to users which

can see camera images on a local monitor, which are limited in number and restricted to

controlled locations within designated facilities.

The CHART browser interface can be configured to run with HTTP or HTTPS (Secure HTTP).

The fielded production system is always configured to run with HTTPS. HTTPS provides an

additional SSL or TLS encryption/authentication layer between HTTP and TCP, which protects

data in transit between the client machine web browser and the web server machine.

Additionally, the system runs with Microsoft’s Internet Information Services (IIS).

All users connecting to CHART are required to provide a user name and password before any

CHART information is provided or any actions can be attempted. Invalid login attempts are

logged to the CHART Operations Log (database table), a permanently archived log of system

activity. Users with appropriate rights can see all users logged into the system and can force

users off the system at any time, directly from the CHART GUI. Before editing the CHART

dictionary, a particularly sensitive area, a logged on user is reauthenticated on the spot by

requiring the user to provide a user name and password again.

When a legitimate CHART user logs in, he or she is granted certain functional rights, based on

the user ID. These rights typically include, for instance, the ability to create, edit and close

traffic events and create and execute response plan items in response to traffic events. Other

rights allow direct interaction with CHART devices, such as the ability to put them offline,

online, or into maintenance mode, and to issue maintenance mode commands. Video rights are

very granular, so camera control rights can be issued with a very fine grain. Users cannot

perform actions for which they do not have rights. Typically rather than graying out buttons,

prohibited actions do not even appear on the user’s browser, so in most cases users may not even

know what they are missing. There is a special “view-only” user configured which can see

CHART status within the system but cannot perform any actions which would change system

status in any way.

Rights can be assigned to users on an organization-by-organization level. For instance, a user

may be able to issue maintenance commands on one organization’s DMSs, but not others. The

rights are stored in an opaque access control token obtained during the login transaction. Users

cannot see or modify this token, and generally are not aware of its existence. It is held by the

web service on behalf of the user and is passed from the web service to the background services

on all but the most benign service requests.

CHART R3B3 introduces a web service that allows the MdTA Vector system to provide toll rate

data to the CHART system. This data will be provided over HTTPS on a non-standard port (not

443). A second web service introduced in R3B3 allows external systems (such as RITIS) to

obtain data from CHART. This will eventually eliminate the need for CHART to allow external

systems to connect via its CORBA interfaces, although access to the CORBA interfaces will still

be required until existing external consumers of CHART data are updated to use the new

HTTPS/XML interface. These new web services will require the opening of a specific port in

CHART R3B3 Detailed Design 2-11 12/23/2008

the MDOT firewall. This is permitted because these services use a non-standard port for

HTTPS.

All external systems that connect to a CHART HTTPS/XML web service (Vector, to supply toll

rate data, and others to obtain data from CHART) will be assigned a unique client ID and must

be pre-configured in the CHART system by an Administrator to allow access. A public/private

key pair will be generated by the Administrator for each external system, with the public key

being stored in the CHART system, and the private key being provided to the external system

owner for their use when connecting to the CHART system. Each request received by an

external system will include the external system client ID and a digital signature created with

their private key. CHART will validate all requests using the client’s public key to ensure the

request is from a trusted source. The Vector system provides data to CHART and does not

request data from CHART, and for this reason the signature validation is all that is required

before CHART accepts toll rate data from Vector. For external systems retrieving data from

CHART via the HTTPS/XML interface, each external system client ID will also be pre-

configured in CHART by an Administrator to assign one or more CHART user roles. The

CHART user roles and the functional rights contained in each role will be used by CHART to

determine the data an external client is permitted to retrieve from CHART, and in some cases the

detail of the data retrieved. (For example for some detectors an external system may be provided

actual speeds, others a speed range, and yet others no speed data, depending on the organization

that owns the detector and the functional rights assigned to the client’s role(s)).

2.4 Data

CHART R3B3 will be tested with the Oracle database patches that are available and will be

deployed in the field at the time of CHART R3B3 deployment. The database patches may

possibly be applied in the field before CHART R3B3 deployment.

2.4.1 Data Storage

The CHART System stores most of its data in an Oracle database. However, some data is stored

in flat files on the CHART servers. This section describes both types of data.

CHART R3B3 Detailed Design 2-12 12/23/2008

2.4.1.1 Database

2.4.1.1.1 Database Architecture

Figure 2-5 CHART R3B3 Database Architecture

aocchart2

CHART

C2AOC3

AOC

•24/7

•MdTA

•200 cameras

•DMSs

•Backup DMSs

•Traffic Events

•Cameras

•Toll Rates

•Traffic
Events

•Cameras

•DMSs

•

•HARs

•SHAZAMs

•TSS

•

hanoverchart1

CHART

C2SOC3 C2ARCH3

greenbltchart1

CHART

C2D3G
R

brookd4chart1

CHART

C2D4B
R

annad5chart1

CHART

C2D5A
N

fredlecchart1

CHART

C2LEC

eastonmwchart
1

CHART

C2MW
EST

pgtripchart1

CHART

C2TRIP

Replicated

•DMS Templates

CHART Database Architecture

•DMSs

•Backup DMSs

•HARS

•SHAZAM

•TSS

•Plans

•Libraries

•Travel Time

•External
Events

•External DMS

SOC

•Statewide

•Archive DB

•Replication Master

CHART R3B3 Detailed Design 2-13 12/23/2008

2.4.1.1.2 Logical Design

2.4.1.1.2.1 Entity Relationship Diagram (ERD)

CHART R3B3 Detailed Design 2-14 12/23/2008

CHART R3B3 Detailed Design 2-15 12/23/2008

CHART R3B3 Detailed Design 2-16 12/23/2008

CHART R3B3 Detailed Design 2-17 12/23/2008

CHART R3B3 Detailed Design 2-18 12/23/2008

CHART R3B3 Detailed Design 2-19 12/23/2008

CHART R3B3 Detailed Design 2-20 12/23/2008

Figure 2-6 ERD for CHART R3B3

CHART R3B3 Detailed Design 2-21 12/23/2008

2.4.1.1.2.2 Function to Entity Matrix Report

 - Create, Retrieve, Update, Delete (CRUD) matrix cross-references business functions to entities

and shows the use of the entities by those functions. This report will be generated as part of the

CHART O&M Guide.

2.4.1.1.2.3 Table Definition Report –

2.4.1.1.2.3.1 New Tables for TravelRouteModule in CHART R3B3 Live database

ROADWAY_LINK

LINK_ID char(32) NOT NULL

EXT_SYS_NAME varchar2(10) NOT NULL

EXT_LINK_ID varchar2(9) NOT NULL

LINK_NAME varchar2(50)

USPS_STATE_CODE char(2)

STATE_FIPS_CODE char(2)

COUNTY_NAME varchar2(50)

COUNTY_FIPS_CODE varchar2(3)

ROUTE_SPEC_TYPE number(1)

ROUTE_FREE_FORM_TEXT varchar2(50)

ROUTE_TYPE number(1)

ROUTE_PREFIX varchar2(10)

ROUTE_NUMBER varchar2(10)

ROUTE_SUFFIX varchar2(10)

MILLI_MILES number(5)

START_LAT_UDEG number(9)

START_LONG_UDEG number(10)

END_LAT_UDEG number(9)

END_LONG_UDEG number(10)

LINK_TRAVEL_TIME

RL_LINK_ID char(32) NOT NULL

LINK_TRAVEL_TIME_EFF_TIME date NOT NULL

LINK_TRAVEL_TIME_SECS number(5) NOT NULL

LINK_TRAVEL_TIME_QUAL number(1) NOT NULL

LINK_TRAVEL_TIME_TREND number(1) NOT NULL

TRAVEL_ROUTE

TRAVEL_ROUTE_ID char(32) NOT NULL

NAME varchar2(50) NOT NULL

MILLI_MILES number(6)

USER_LOCATION_INDICATOR number(1) NOT NULL

PRIMARY_DEST_TEXT varchar2(30)

TRAVEL_TIME_ENABLED_INDICATOR number(1) NOT NULL

MIN_TRAVEL_TIME_MINS number(3)

MAX_TRAVEL_TIME_MINS number(3)

ALERT_TRAVEL_TIME_MINS number(3)

ALERTS_ENABLED_INDICATOR number(1) NOT NULL

CHART R3B3 Detailed Design 2-22 12/23/2008

ALERT_OP_CENTER char(32)

NOTIFS_ENABLED_INDICATOR number(1) NOT NULL

NOTIF_GROUP varchar2(33)

TOLL_RATE_EXT_SYS_NAME varchar2(35)

TOLL_RATE_EXT_START_ID varchar2(10)

TOLL_RATE_EXT_END_ID varchar2(10)

TOLL_RATE_EXT_DESC varchar2(25)

TOLL_RATE_ENABLED_INDICATOR number(1) NOT NULL

TRAVEL_ROUTE_STATE

TR_ID char(32) NOT NULL

SORT_ORDER_NUMBER number(2) NOT NULL

USPS_STATE_CODE char(2)

STATE_FIPS_CODE char(2)

TRAVEL_ROUTE_COUNTY

TR_ID char(32) NOT NULL

SORT_ORDER_NUMBER number(2) NOT NULL

COUNTY_NAME varchar2(50)

COUNTY_FIPS_CODE char(3)

TRAVEL_ROUTE_ROUTE_SPEC

TR_ID char(32) not null

SORT_ORDER_NUMBER number(2) NOT NULL

ROUTE_SPEC_TYPE number(1)

ROUTE_FREE_FORM_TEXT varchar2(50)

ROUTE_TYPE number(1)

ROUTE_PREFIX varchar2(10)

ROUTE_NUMBER varchar2(10)

ROUTE_SUFFIX varchar2(10)

TRAVEL_ROUTE_DEST

TR_ID char(32) not null

SORT_ORDER_NUMBER number(1) NOT NULL

ALT_DEST_TEXT varchar2(30)

TRAVEL_ROUTE_CONSUMER

TR_ID char(32) not null

SORT_ORDER_NUMBER number(2) NOT NULL

CONSUMER_ID char(32)

TRAVEL_ROUTE_LINK

TR_ID char(32) not null

SORT_ORDER_NUMBER number(4) NOT NULL

RL_ID char(32) NOT NULL

CHART R3B3 Detailed Design 2-23 12/23/2008

PERCENT number(3) NOT NULL

MIN_ALLOWED_QUALITY number(3) NOT NULL

ROUTE_TOLL_RATE

TR_ID char(32) NOT NULL

TOLL_RATE_EFF_TIME date NOT NULL

TOLL_RATE_EXP_TIME date

TOLL_RATE_CENTS number(5) NOT NULL

ROUTE_TRAVEL_TIME

TR_ID CHAR(32) NOT NULL

ROUTE_TRAVEL_TIME_EFF_TIME DATE NOT NULL

ROUTE_TRAVEL_TIME_SECS NUMBER(5) NOT NULL

ROUTE_TRAVEL_TIME_QUAL NUMBER(1) NOT NULL

ROUTE_TRAVEL_TIME_TREND NUMBER(1) NOT NULL

ROUTE_TRAVEL_TIME_TEXT

TR_ID CHAR(32) NOT NULL

ROUTE_TRAVEL_TIME_EFF_TIME DATE NOT NULL

ROUTE_TRAVEL_TIME_CALC VARCHAR2(1000) NOT NULL

ROUTE_TRAVEL_TIME_REASON_CODE NUMBER(2) NOT NULL

RAW_LINK_DATA

SYSTEM_TIMESTAMP DATE NOT NULL

EXT_SYS_NAME VARCHAR2(35) NOT NULL

EXT_LINK_ID CHAR(8) NOT NULL

LINK_TRAVEL_TIME_EFF_TIME DATE NOT NULL

LINK_TRAVEL_TIME_SECS NUMBER(5) NOT NULL

LINK_TRAVEL_TIME_QUAL NUMBER(1) NOT NULL

RAW_TOLL_DATA

SYSTEM_TIMESTAMP DATE NOT NULL

EXT_SYS_NAME VARCHAR2(35) NOT NULL

EXT_SYS_START_ID CHAR(32) NOT NULL

EXT_SYS_END_ID CHAR(32) NOT NULL

TOLL_RATE_EFF_TIME DATE NOT NULL

TOLL_RATE_EXP_TIME DATE

TOLL_RATE_CENTS NUMBER(5) NOT NULL

2.4.1.1.2.3.2 New Tables for External DMS in CHART R3B3 Live database

Device_location

DEVICE_ID VARCHAR2(32) NOT NULL

LOCATION_TEXT VARCHAR2(1024)

LOCATION_DESC_OVERRIDDEN NUMBER(1)

CHART R3B3 Detailed Design 2-24 12/23/2008

COUNTY_NAME VARCHAR2(50)

COUNTY_FIPS_CODE CHAR(3)

COUNTY_CODE NUMBER(3)

USPS_STATE_CODE CHAR(2)

STATE_FULL_NAME VARCHAR2(32)

STATE_FIPS_CODE CHAR(2)

REGION_NAME VARCHAR2(32)

ROUTE_SPEC_TYPE NUMBER(1)

ROUTE_FREE_FORM_TEXT VARCHAR2(40)

ROUTE_TYPE NUMBER(1)

ROUTE_PREFIX VARCHAR2(10)

ROUTE_NUMBER VARCHAR2(10)

ROUTE_SUFFIX VARCHAR2(10)

INT_FEAT_TYPE NUMBER(1)

INT_FEAT_PROX_TYPE NUMBER(2)

INT_FEAT_PROX_DIST NUMBER(6)

ROAD_NAME VARCHAR2(50)

INT_ROUTE_SPEC_TYPE NUMBER(1)

INT_ROUTE_FREE_FORM_TEXT VARCHAR2(40)

INT_ROUTE_TYPE NUMBER(1)

INT_ROAD_NAME VARCHAR2(50)

INT_ROUTE_PREFIX VARCHAR2(10)

INT_ROUTE_NUMBER VARCHAR2(10)

INT_ROUTE_SUFFIX VARCHAR2(4)

INT_FEAT_MILEPOST_TYPE NUMBER(1)

INT_FEAT_MILLI_MILEPOST_DATA NUMBER(6)

ROADWAY_LOC_ALIAS_PUB_NAME VARCHAR2(32)

ROADWAY_LOC_ALIAS_INT_NAME VARCHAR2(32)

LATITUDE_UDEG NUMBER(8)

LONGITUDE_UDEG NUMBER(9)

GEOLOC_SOURCE_TYPE NUMBER(2)

GEOLOC_SOURCE_DESC VARCHAR2(35)

SHOW_ROUTE_NAME NUMBER(1)

SHOW_INT_ROUTE_NAME NUMBER(1)

DIRECTION_CODE NUMBER(3)

DEVICE_TYPE VARCHAR2(10)

DMS_TRAV_TIME_SCHEDULE

DMS_DEVICE_ID CHAR(32) NOT NULL

START_HOUR NUMBER(2) NOT NULL

START_MIN NUMBER(2) NOT NULL

END_HOUR NUMBER(2) NOT NULL

END_MIN NUMBER(2) NOT NULL

DMS_TRAV_ROUTE_MSG

DMS_DEVICE_ID CHAR(32) NOT NULL

MSG_ID CHAR(32) NOT NULL

TEMPLATE_ID CHAR(32) NOT NULL

AUTO_ROW_POSITIONING_INDICATOR NUMBER(1) NOT NULL

CHART R3B3 Detailed Design 2-25 12/23/2008

DMS_TRAV_ROUTE_MSG_ROUTE

DTRM_MSG_ID CHAR(32) NOT NULL

TRAVEL_ROUTE_ID CHAR(32) NOT NULL

DMS_RELATED_ROUTE

DMS_DEVICE_ID CHAR(32) NOT NULL

TRAVEL_ROUTE_ID CHAR(32) NOT NULL

GEO_AREA

GEO_AREA_ID CHAR(32) NOT NULL

NAME VARCHAR2(15) NOT NULL

DESCRIPTION VARCHAR2(60) NOT NULL

GEO_AREA_POINT

GA_GEO_AREA_ID CHAR(32) NOT NULL

SORT_ORDER_NUMBER NUMBER(5) NOT NULL

LATITUDE_UDEG NUMBER(8) NOT NULL

LONGITUDE_UDEG NUMBER(9) NOT NULL

EXTERNAL_OBJECT_EXCLUSION

EXCLUSION_ID CHAR(32) NOT NULL

EXTERNAL_OBJECT_ID VARCHAR2(35) NOT NULL

EXTERNAL_OBJECT_TYPE NUMBER(3) NOT NULL

EXTERNAL_SYSTEM VARCHAR2(35) NOT NULL

EXTERNAL_AGENCY VARCHAR2(35) NOT NULL

EXTERNAL_EVENT_FILTER

RULE_ID CHAR(32) NOT NULL

RULE VARCHAR2(2048) NOT NULL

2.4.1.1.2.3.3 Tables Modified for External DMS in CHART R3B3 Live database

DMS table

Existing / Deleted (“(-)”) columns

DEVICE_ID NOT NULL CHAR(32)

DMS_MODEL_ID NOT NULL NUMBER(5)

ORG_ORGANIZATION_ID NOT NULL CHAR(32)

DB_CODE VARCHAR2(1)

DEVICE_NAME NOT NULL VARCHAR2(15)

CHART R3B3 Detailed Design 2-26 12/23/2008

(-) DEVICE_LOCATION NOT NULL VARCHAR2(60)

HAR_DEVICE_ID CHAR(32)

COMM_LOSS_TIMEOUT NOT NULL NUMBER(10)

DEFAULT_JUSTIFICATION_LINE NOT NULL NUMBER(3)

DEFAULT_PAGE_OFF_TIME NOT NULL NUMBER(3)

DEFAULT_PAGE_ON_TIME NOT NULL NUMBER(3)

DROP_ADDRESS NOT NULL NUMBER(5)

INITIAL_RESPONSE_TIMEOUT NOT NULL NUMBER(10)

BEACON_TYPE NOT NULL NUMBER(3)

SIGN_TYPE NOT NULL NUMBER(3)

DEFAULT_PHONE_NUMBER VARCHAR2(25)

(-) DMS_DIRECTIONAL_CODE NUMBER(3)

POLL_INTERVAL NOT NULL NUMBER(5)

POLLING_ENABLED NOT NULL NUMBER(1)

PORT_TYPE NOT NULL NUMBER(1)

PORT_MANAGER_TIMEOUT NOT NULL NUMBER(10)

BAUD_RATE NOT NULL NUMBER(6)

DATA_BITS NOT NULL NUMBER(1)

FLOW_CONTROL NOT NULL NUMBER(1)

PARITY NOT NULL NUMBER(1)

STOP_BITS NOT NULL NUMBER(1)

ENABLE_DEVICE_LOG NOT NULL NUMBER(1)

VMS_CHARACTER_HEIGHT_PIXELS NOT NULL NUMBER(3)

VMS_CHARACTER_WIDTH_PIXELS NOT NULL NUMBER(3)

VMS_MAX_PAGES NOT NULL NUMBER(3)

VMS_SIGN_HEIGHT_PIXELS NOT NULL NUMBER(5)

VMS_SIGN_WIDTH_PIXELS NOT NULL NUMBER(5)

CREATED_TIMESTAMP DATE

UPDATED_TIMESTAMP DATE

SHAZAM_BEACON_STATE NOT NULL NUMBER(1)

SHAZAM_IS_MESSAGE_TEXT_MULTI NOT NULL NUMBER(1)

DMS_SHAZAM_MSG

VARCHAR2(1024)

COMMUNITY_STRING VARCHAR2(16)

CEN_ALERT_CENTER_ID CHAR(32)

New (“+”) columns

+TRAVEL_TIME_QUEUE_LEVEL NUMBER(5) NOT NULL

+TOLL_RATE_QUEUE_LEVEL NUMBER(5) NOT NULL

+OVERRIDE_SCHEDULE_INDICATOR NUMBER(2) NOT NULL

+ENABLED_SPECIFIC_TIMES_INDICATOR NUMBER(2) NOT NULL

+EXTERNAL_SYSTEM VARCHAR2(35)

+EXTERNAL_AGENCY VARCHAR2(35)

+EXTERNAL_OBJECT_ID VARCHAR2(35)

+EXTERNAL_OBJECT_INDICATOR NUMBER(1) NOT NULL

+TCP_HOST VARCHAR2(30)

+TCP_PORT NUMBER(5)

+DEFAULT_FONT_NUMBER NUMBER(2)

+DEFAULT_LINE_SPACING NUMBER(1)

 TSS

CHART R3B3 Detailed Design 2-27 12/23/2008

Existing / Deleted (“(-)”) columns

DEVICE_ID NOT NULL VARCHAR2(32)

TSS_MODEL_ID NOT NULL NUMBER(5)

ORG_ORGANIZATION_ID NOT NULL CHAR(32)

DB_CODE VARCHAR2(1)

DEVICE_NAME NOT NULL VARCHAR2(15)

(-) DEVICE_LOCATION NOT NULL

VARCHAR2(60)

DROP_ADDRESS NOT NULL NUMBER(5)

INITIAL_RESPONSE_TIMEOUT NOT NULL NUMBER(10)

DEFAULT_PHONE_NUMBER VARCHAR2(25)

POLL_INTERVAL_SECS NOT NULL NUMBER(5)

PORT_TYPE NOT NULL NUMBER(1)

PORT_MANAGER_TIMEOUT NOT NULL NUMBER(10)

BAUD_RATE NOT NULL NUMBER(6)

DATA_BITS NOT NULL NUMBER(1)

FLOW_CONTROL NOT NULL NUMBER(1)

PARITY NOT NULL NUMBER(1)

STOP_BITS NOT NULL NUMBER(1)

ENABLE_DEVICE_LOG NOT NULL NUMBER(1)

CREATED_TIMESTAMP DATE

UPDATED_TIMESTAMP DATE

CEN_ALERT_CENTER_ID CHAR(32)

New (“+”) columns

+EXTERNAL_SYSTEM VARCHAR2(35)

+EXTERNAL_AGENCY VARCHAR2(35)

+EXTERNAL_OBJECT_ID VARCHAR2(35)

+EXTERNAL_OBJECT_INDICATOR NUMBER(1) NOT NULL

+TCP_HOST VARCHAR2(30)

+TCP_PORT NUMBER(5)

SHAZAM

Existing / Deleted (“(-)”) columns

DEVICE_ID NOT NULL CHAR(32)

SHAZAM_MODEL_ID NOT NULL NUMBER(5)

ORG_ORGANIZATION_ID NOT NULL CHAR(32)

DB_CODE VARCHAR2(1)

DEVICE_NAME NOT NULL VARCHAR2(15)

(-) DEVICE_LOCATION NOT NULL

VARCHAR2(60)

HAR_DEVICE_ID CHAR(32)

SHAZAM_ACCESS_PIN VARCHAR2(3)

DEFAULT_PHONE_NUMBER NOT NULL VARCHAR2(25)

(-) SHAZAM_DIRECTIONAL_CODE

NUMBER(3)

REFRESH_INTERVAL NUMBER(5)

CHART R3B3 Detailed Design 2-28 12/23/2008

REFRESH_ENABLED NOT NULL NUMBER(1)

PORT_TYPE NOT NULL NUMBER(1)

PORT_MANAGER_TIMEOUT NOT NULL NUMBER(10)

CREATED_TIMESTAMP DATE

UPDATED_TIMESTAMP DATE

MESSAGE

VARCHAR2(256)

HAR

Existing / Deleted (“(-)”) columns

DEVICE_ID NOT NULL CHAR(32)

HAR_MODEL_ID NOT NULL NUMBER(5)

ORG_ORGANIZATION_ID NOT NULL CHAR(32)

DB_CODE VARCHAR2(1)

DEVICE_NAME NOT NULL VARCHAR2(15)

(-) DEVICE_LOCATION NOT NULL

VARCHAR2(60)

HAR_ACCESS_PIN NOT NULL VARCHAR2(7)

DEFAULT_PHONE_NUMBER NOT NULL VARCHAR2(25)

DEFAULT_MONITOR_PHONE_NUMBER VARCHAR2(25)

MAX_TIME NUMBER(5)

PORT_TYPE NOT NULL NUMBER(1)

PORT_MANAGER_TIMEOUT NOT NULL NUMBER(10)

MONITOR_PORT_TYPE NUMBER(1)

MONITOR_PORT_MANAGER_TIMEOUT NUMBER(10)

DEFAULT_HEADER_CLIP_PK NOT NULL NUMBER(20)

DEFAULT_BODY_CLIP_PK NOT NULL NUMBER(20)

DEFAULT_TRAILER_CLIP_PK NOT NULL NUMBER(20)

CREATED_TIMESTAMP DATE

UPDATED_TIMESTAMP DATE

ENABLE_DEVICE_LOG NOT NULL NUMBER(1)

MASTER_HAR_ID NOT NULL CHAR(32)

CAMERA

Existing / Deleted (“(-)”) columns

DEVICE_ID NOT NULL CHAR(32)

CAMERA_MODEL_ID NOT NULL NUMBER(3)

ORG_ORGANIZATION_ID NOT NULL CHAR(32)

DEVICE_NAME NOT NULL VARCHAR2(50)

LOCATION_PROFILE_TYPE NUMBER(3)

LOCATION_PROFILE_ID CHAR(32)

TMDD_CCTV_IMAGE NUMBER(2)

CAMERA_NUMBER NUMBER(5)

CAMERA_CONTROLLABLE NOT NULL NUMBER(1)

TMDD_CONTROL_TYPE NUMBER(2)

TMDD_REQUEST_COMMAND_TYPES NOT NULL NUMBER(5)

ENABLE_DEVICE_LOG NOT NULL NUMBER(1)

VIDEO_CONNECTION_ID NOT NULL CHAR(32)

CHART R3B3 Detailed Design 2-29 12/23/2008

VIDEO_CONNECTION_TYPE NOT NULL NUMBER(2)

NO_VIDEO_AVAIL_INDICATOR NOT NULL NUMBER(1)

(-) DEVICE_LOCATION_DESC VARCHAR2(50)

TMDD_DEVICE_NAME VARCHAR2(50)

POLL_INTERVAL_CONTROLLED_SECS NUMBER(5)

POLLING_ENABLED_UNCONTROLLED NUMBER(1)

DEFAULT_CAMERA_TITLE VARCHAR2(24)

DEFAULT_CAMERA_TITLE_LINE2 VARCHAR2(24)

CONTROL_CONNECTION_TYPE NUMBER(1)

CONTROL_CONNECTION_ID CHAR(32)

POLL_INTERVAL_UNCTRLD_SECS NUMBER(4)

DB_CODE VARCHAR2(1)

CREATED_TIMESTAMP DATE

UPDATED_TIMESTAMP DATE

DSP_STATUS_ENABLED NUMBER(1)

DSP_STATUS_LENGTH NUMBER(5)

2.4.1.1.2.3.4 New Tables for Travel Route Message Templates

DMS_TRAVEL_ROUTE_MSG_TEMPLATE (Replicated)

MESSAGE_TEMPLATE_ID CHAR(32)

TEMPLATE_DESCRIPTION VARCHAR2(50)

NUMBER_ROWS NUMBER(1)

NUMBER_COLUMNS NUMBER(1)

NUMBER_PAGES NUMBER(1)

TEMPLATE_MESSAGE VARCHAR2(1024)

DESTINATION_ALIGNMENT NUMBER(1)

MISSING_DATA_OPTION NUMBER(1)

MSG_FORMATS_TOLL_RATE_TIME (Replicated)

MESSAGE_FORMAT_ID (KEY) CHAR(32)

MESSAGE_TEMPLATE_ID CHAR(32) NULLABLE

NAME VARCHAR(50)

FORMAT VARCHAR2(22)

EXAMPLE VARCHAR2(22)

FORMAT_LENGTH NUMBER(2)

HOUR_START_INDEX NUMBER(2)

HOUR_END_INDEX NUMBER(2)

MINUTES_START_INDEX NUMBER(2)

MINUTES_END_INDEX NUMBER(2)

AM_PM_START_INDEX NUMBER(2)

AM_PM_END_INDEX NUMBER(2)

MSG_FORMATS_TRAVEL_TIME (Replicated)

MESSAGE_FORMAT_ID (KEY) CHAR(32)

MESSAGE_TEMPLATE_ID CHAR(32) NULLABLE

NAME VARCHAR(50)

FORMAT VARCHAR2(22)

EXAMPLE VARCHAR2(22)

FORMAT_LENGTH NUMBER(2)

CHART R3B3 Detailed Design 2-30 12/23/2008

HOUR_START_INDEX NUMBER(2)

HOUR_END_INDEX NUMBER(2)

SUPPRESS_HRS_LEAD_ZEROS NUMBER(1)

MINUTES_START_INDEX NUMBER(2)

MINUTES_END_INDEX NUMBER(2)

SUPPRESS_MIN_LEAD_ZEROS NUMBER(1)

START_HR_LITERAL_INDEX NUMBER(2)

END_HR_LITERAL_INDEX NUMBER(2)

SUPPRESS_HR_LITERAL NUMBER(1)

COLON_INDEX NUMBER(2)

SUPPRESS_COLON_LITRAL NUMBER(1)

MSG_FORMATS_TRAVEL_TIME_RANGE (Replicated)

MESSAGE_FORMAT_ID (KEY) CHAR(32)

MESSAGE_TEMPLATE_ID CHAR(32) NULLABLE

NAME VARCHAR2(50)

FORMAT VARCHAR2(22)

EXAMPLE VARCHAR2(22)

FORMAT_LENGTH NUMBER(2)

LOW_START_INDEX NUMBER(2)

LOW_END_INDEX NUMBER(2)

HIGH_START_INDEX NUMBER(2)

HIGH_END_INDEX NUMBER(2)

SUPPRESS_LEADING_ZEROS NUMBER(1)

MSG_FORMATS_TOLL_RATE (Replicated)

MESSAGE_FORMAT_ID (KEY) CHAR(32)

MESSAGE_TEMPLATE_ID CHAR(32) NULLABLE

NAME VARCHAR2(50)

FORMAT VARCHAR2(22)

EXAMPLE VARCHAR2(22)

FORMAT_LENGTH NUMBER(2)

DOLLARS_START_INDEX NUMBER(2)

DOLLARS _END_INDEX NUMBER(2)

CENTS_START_INDEX NUMBER(2)

CENTS _END_INDEX NUMBER(2)

DOLLAR_SIGN_INDEX NUMBER(2)

SUPPRESS_DOLLAR_SIGN NUMBER(1)

SUPPRESS_LEAD_ZEROS_IN_DOLLAR NUMBER(1)

MSG_FORMATS_DISTANCE (Replicated)

MESSAGE_FORMAT_ID (KEY) CHAR(32)

MESSAGE_TEMPLATE_ID CHAR(32) NULLABLE

NAME VARCHAR2(50)

FORMAT VARCHAR2(22)

EXAMPLE VARCHAR2(22)

FORMAT_LENGTH NUMBER(2)

MILES_START_INDEX NUMBER(2)

MILES_END_INDEX NUMBER(2)

TENTHS_MILE_START_INDEX NUMBER(2)

TENTHS _MILE_END_INDEX NUMBER(2)

SUPPRESS_LEAD_ZEROS_IF_NO_MILES NUMBER(1)

CHART R3B3 Detailed Design 2-31 12/23/2008

2.4.1.1.2.3.5 New Tables for External Applications

CONTACT

VIDEO_CONNECTION_TYPE NOT NULL NUMBER(2)

NO_VIDEO_AVAIL_INDICATOR NOT NULL NUMBER(1)

EXTERNAL_APPLICATION

VIDEO_CONNECTION_TYPE NOT NULL NUMBER(2)

NO_VIDEO_AVAIL_INDICATOR NOT NULL NUMBER(1)

APPLICATION_ROLE_ASSIGNMENT

VIDEO_CONNECTION_TYPE NOT NULL NUMBER(2)

NO_VIDEO_AVAIL_INDICATOR NOT NULL NUMBER(1)

2.4.1.1.2.4 PL/SQL Module Definition and Database Trigger Reports

The following PL/SQL modules will be created for CHART R3B3

Travel Time

A PL/SQL module will be written to archive travel time data from the live databases. This will

include archiving raw INRIX data, keeping the data for a configurable number of days (e.g., 90

days). This module will also include archiving relevant DMS and/or travel route configuration

information, which combined with comm/ops log entries will allow the reporting tool to

reconstruct a particular travel time message.

Toll Rates

A PL/SQL module will be written to archive toll rate data from the live databases. This will

include archiving raw Vector data, keeping the data for a configurable number of days (e.g., 90

days). This module will also include archiving relevant DMS and/or travel route configuration

information, which combined with comm/ops log entries will allow the reporting tool to

reconstruct a particular toll rate message.

2.4.1.1.2.5 Database Size Estimate - provides size estimate of current design

Storage of toll rate and travel time raw data for 90 days is expected to increase the size of the live

database by up to 10 MB, and increase the size of the archive database by 800 MB/year.

2.4.1.1.2.6 Data Distribution

For R3B3, toll rate data will be obtained from the vector system and stored in a CHART live

database prior to being (temporarily) archived. The live database will likely be the AOC

database. Travel time data will be obtained from the INRIX system and stored in a live CHART

database prior to being (temporarily) archived. This live database will likely be the SOC

database.

CHART R3B3 Detailed Design 2-32 12/23/2008

2.4.1.1.2.7 Database Replication

DMS template information will be distributed to all server sites via database replication.

2.4.1.1.2.8 Archival Migration

The CHART O&M guide contains archive information. In general, the archive process runs

nightly to archive and remove data from the live databases. For R3B3 travel time and toll rate

data will be archived.

2.4.1.1.2.9 Database Fail-Over Strategy

The SOC is the master database site and the remaining CHART server sites host a snapshot

replication database. Should the master database be down or unavailable for an extended period,

one of the snapshot databases could be converted to a master database site.

2.4.1.1.2.10 Reports

The CHART database design supports future reporting tool reports that will show travel time and

toll rate raw and calculated data to enable the report tool user to decompose a particular travel

time/toll rate message for a (configurable) specified period of time (e.g., 90 days).

2.4.1.2 CHART Flat Files

The following describes the use of flat files in CHART.

2.4.1.2.1 Service Registration Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB

Event Service directories has a set of files used to install and uninstall the particular service into

the Windows services list. When the service is thus installed it can be controlled through the

Windows Services Applet. The files to install and uninstall are *ServiceReg.cmd and

RemoveService.cmd, where “” is the name of the service, for instance, HAR or DMS, or

HAREvent or DMSEvent (for JacORB event services running for specific CHART services) or

Event (for the generic event service used by the GUI and FMS processes) or Trading for the

JacOrb Trader. These are created at installation time. The registration file is run at installation

time, and then these files are not used again. They are merely stored in the unlikely event that

they may be needed to re-register the service.

2.4.1.2.2 Service Property Files

Each of the CHART background service directories, the JacORB Trader directory, and JacORB

Event Service directories has one properties file used to set runtime parameters used to control

execution of the service. These parameters may include location of other services, the database,

timeout parameters, retry parameters, etc. These file is named *.props, where “*” is the full

name of the service, for instance, HARService, or HAREventService or TradingService.

These are created at installation time with default values appropriate for most installations.

Installation procedures may call for the person performing the installation to edit some files to

CHART R3B3 Detailed Design 2-33 12/23/2008

make specific updates immediately following installation. These are user-editable ASCII files

and parameters are stored in a Module.ParameterName=value format, with thorough in-line

documentation of each parameter, including defaults and reasonable acceptable ranges and

meanings where necessary. Typically only software engineers may occasionally change certain

runtime parameters to fine tune performance characteristics.

2.4.1.2.3 GUI Property Files

The CHART GUI has two properties files used to specify runtime parameters. These parameters

include location of other services, the database, timeout parameters, retry parameters, etc. The

primarily file is named MainServlet.props. Additional parameters are stored in the

velocity.props and RequestHandler.props files. These files are stored in the

chartlite directory under the WebApps directory in the Apache Tomcat installation area.

These are created at installation time with default values appropriate for most installations.

Installation procedures typically call for the person performing the installation to edit some files

to make specific updates immediately following installation. These are user-editable ASCII files

and parameters are stored in a Module.ParameterName=value format, with thorough in-line

documentation of each parameter, including defaults and reasonable acceptable ranges and

meanings where necessary. Typically only software engineers may occasionally change certain

runtime parameters to fine tune performance characteristics.

2.4.1.2.4 Arbitration Queue Storage Files

Each CHART DMS and HAR contains an Arbitration Queue which is used to store and manage

the messages requested to be on the online device as part of a response to ongoing traffic events.

This data is stored in a file in a directory called MessageQueuePersist/, which is a

subdirectory of the DMSService and HARService directories. These are binary files, and are

not user-editable or user-viewable from Windows. The files are named by the 32-digit

hexadecimal CHART ID plus the extension “.per”. Arbitration Queues are not generally

maintained from one version of CHART to the next. Whenever the Java version changes, they

cannot be maintained, as the old files will not be readable using the new version of Java.

2.4.1.2.5 Device Logs

DMSs, TSSs, and HARs have a capability to store communications transactions between

CHART software and the physical devices over the telephone lines. This data can be used for

debugging communications issues or for validating successful communications operations. The

device logs can be toggled on or off by editing device properties from the appropriate device

details screens. Typically all device communications logging is enabled for all devices. These

logs are automatically deleted by the system after a set period of time, so they do not accumulate

infinitely. They are stored in the DeviceLogs/ or DebugLogs/ subdirectories within the

service install directory, and are named by device name and date, plus a “.txt” extension.

These logs are typically read only by software engineering personnel.

2.4.1.2.6 Traffic Sensor Raw Data Logs

TSSs are polled periodically (typically every five minutes) for traffic volume, speed, and

occupancy data. The statistics gathered are stored in data files in the TSSService/RawData/

CHART R3B3 Detailed Design 2-34 12/23/2008

directory. From here these files are permanently archived for historical purposes. These files are

stored in a human-readable, comma-delimited, ASCII format, although they are not designed for

convenient routine interpretation directly by users.

2.4.1.2.7 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity

undertaken by the services. These logs are occasionally referenced by software engineering

personnel to diagnose a problem or reconstruct a sequence of events leading to a particular

anomalous situation. These logs are automatically deleted by the system after a set period of

time defined by the service’s properties file, so they do not accumulate infinitely. These files are

stored in the individual service directories and are named by the service name and date, plus a

“.txt” extension. These logs are typically read only by software engineering personnel.

2.4.1.2.8 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by

the services. Most messages, including most errors, are captured by the CHART software and

written to the process logs, but certain messages (typically produced by the Java Virtual Machine

itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in

these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad

installation; once the system is up and running, errors rarely appear in these error logs.

Debugging information from the JacORB COTS, which is not usually indicative of errors, can

routinely be found in these error logs, as well. These log files can be reviewed by software

engineering personnel to diagnose an installation problem or other type of problem. These logs

are automatically deleted by the system after a set period of time defined by the service's

properties file, so they do not accumulate infinitely. These files are stored in the individual

service directories and are named by the service name and date, plus an ".err" extension. These

logs are typically read only by software engineering personnel.

2.4.1.2.9 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file,

used to provide a historical record of activity undertaken by the process. These GUI process logs

are occasionally referenced by software engineering personnel to diagnose a problem or

reconstruct a sequence of events leading to a particular anomalous situation. These logs are

automatically deleted by the system after a set period of time defined by the GUI service’s

properties file, so they do not accumulate infinitely. These files are stored in the

chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat

installation area. They are named by the service name (“chartlite”) and date, plus a “.txt”

extension. These logs are typically read only by software engineering personnel. Additional log

files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache

Tomcat installation area.

2.4.1.2.10 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named

PortConfig.xml, upon startup, which indicates which ports are to be used by the service and

CHART R3B3 Detailed Design 2-35 12/23/2008

how they are to be initialized. A Port Configuration Utility is provided which allows for

addition, removal of ports and editing of initialization parameters. As indicated by the extension,

these files are in XML format. This means these files are hand-editable, although the Port

Configuration Utility allows for safer, more controlled editing. The Port Configuration files are

typically modified only by software engineers or telecommunications engineers.

2.4.2 Database Design

The CHART database design is described below. The design is based on the CHART Business

Area Architecture, and the CHART System Requirements.

The database design consists of these major areas:

• User/system management

• Device configuration

• Device status

• Traffic event response planning

• Events and logging

• Alerts

• Notification

• Schedules

• System parameters

• Travel Routes

• Replication

• Archiving

All device configuration data is maintained by the CHART database and is supplied to the FMS

as part of a service request. However, configuration data for devices related to video distribution

is not supplied to the FMS, since CCTV camera communications do not use the FMS.

2.4.2.1 User/System Management

The user/system management entities consist of the complete suite of information to tie together

the users, roles, organizations, and functional rights with the center's identification. The

user/system management entities are considered static data in the sense that the majority of the

data will be pre-loaded either through a GUI or via SQL loads.

2.4.2.2 Device Configuration

The DMS, HAR, SHAZAM, TSS, Camera, Monitor, and other CCTV video entities include data

that define the configuration of the resources for devices. Each device or detector is associated

with an organization via a foreign key. The organization is responsible for all devices and for

each model type to which it is related.

CHART R3B3 Detailed Design 2-36 12/23/2008

All of the configuration data is considered static data. It is generally changeable, but changes

infrequently.

2.4.2.3 Device Status

The DMS, HAR, SHAZAM, TSS, Camera, and Monitor entities include data that define the

status or state of the devices. Some status information (e.g. last poll time, last polled detector

speed data) changes very frequently. Other status information (e.g., the message on a DMS)

changes less frequently.

2.4.2.4 Traffic Event Response Planning

The planning entity consists of all of the data necessary for an operator to execute a response

plan from within an open traffic event. Response plans include preselected HAR and DMS

devices with messages related to a well known event such as recurring congestion at a particular

location.

This data is considered to be fairly static, although libraries and plans are easily updated. These

data set up the plan scenario for a given event. It is used manually by operators to refine the plan

or create their own.

The dictionary entity data assists the operator by checking spelling and checking for banned

words when creating messages for the message library, for DMS messages, and for HAR text

message clips, and by doing pronunciation substitution prior to text to speech for HAR text

message clips.

2.4.2.4.1 Events and Logging

The events entity includes all informational data related to traffic incidents. It also includes any

devices that are part of the response to an event, such as DMSs and HARs. Also included are

various log data that are described in more detail below.

The logs that are maintained are listed below:

• Communications Log

• Event Log

• Operations Log

The Communications Log entity documents operator communications, and may or may not be

tied to a specific traffic event. The event log contains operator and system generated entries

specific to actions associated with a particular traffic event. The Operations Log entity stores all

system generated events, including device usage and component failures.

2.4.2.5 Alerts

The alerts entity includes all informational data related to alerts. Alerts are dynamic data. Most

alerts are created by the system automatically, although manually generated generic alerts are

also supported. Alert status and history data can be updated frequently. All alert data is

archived.

CHART R3B3 Detailed Design 2-37 12/23/2008

2.4.2.6 Notification

The notification entity includes all informational data related to notifications. Notifications are

dynamic data. Notification status data are updated frequently.

2.4.2.7 Schedules

The schedules entity includes all informational data related to schedules. Schedules are fixed

data. Users add schedules to the system and delete them when they are done. Schedules do not

have dynamic status or history data.

2.4.2.8 System Parameters

The System Profile parameters are used for general CHART system operations. Examples of

system parameters include:

• Days to purge operation log

• Which event types may be combined

• Which event types are comparable for event location duplication

• HAR date stamp format

• Alert system configuration parameters

• General GUI parameters

2.4.2.9 Travel Routes

The travel routes entity includes all informational data related to travel routes, used to provide

travel time and/or toll rate data for use in traveler information messages. Travel routes are fixed

data. Administrators add travel routes to the system in preparation for displaying travel times or

toll rates on DMSs. Travel routes do not have dynamic status or history data.

2.4.2.10 Replication

The database will provide replication of all entities required for a CHART server site to run

independent of any other CHART server site, as might occur with a network outage between

sites. This includes data related to CHART GUI (profile, folders), user management (including

external client IDs and public keys), and dictionary data. The data related to logging and

resources is replicated as well.

Device configuration data is not replicated since each device is homed to only one server. Other

CHART servers access that device configuration through the appropriate CORBA Trading

Service. Similarly, traffic event information, alerts information, notification information, and

schedule information are homed to only one server and therefore not replicated.

CHART R3B3 Detailed Design 2-38 12/23/2008

2.4.2.11 Archiving

The CHART Archive database stores data from the CHART operational system as part of a

permanent archive. The CHART Archive database design is a copy of the CHART operational

system for those tables containing system, alert, and event log information. In addition, the

CHART Archive database stores detector data. This data is stored as time annotated averages at

selected frequencies. For R3B3, archiving will be updated to include traveler information

messages and their underlying data. See Figure 2-6 which includes the ERD for the Archive

database.

CHART R3B3 Detailed Design 3-1 12/23/2008

3 Key Design Concepts

3.1 Travel Routes

As a building block for traveler information messages, R3B3 introduces the concept of travel

routes. Each travel route defined in CHART represents a segment of roadway, usually starting at

a DMS and ending at some well known point (an exit number, route number, etc.) CHART

travel routes are used to supply travel time and/or toll rate data to a DMS for inclusion in a

traveler information message. Each travel route may have one or more roadway links included.

Each roadway link is identified by an ID, and for R3B3 will always correspond to a link that

exists in the INRIX system, which provides travel time data to CHART. A travel route with no

roadway links included cannot be used for travel times. Travel routes may also have a toll rate

source assigned. Toll rate sources are identified by a beginning and ending ID, and for R3B3

will always correspond to a toll route in the Vector system, which provides toll rate data to

CHART. Travel routes without a toll rate source assigned will not be used for toll rates.

In addition to being building blocks for traveler information messages, Travel Routes are also

useful by allowing users to view current travel times and toll rates. Sorting and filtering

capabilities as well as recent data trends providing users with another means to assess current

roadway conditions.

3.2 Traveler Information Message Templates

CHART R3B3 Traveler Information Message Templates are another building block for traveler

information messages. An administrator creates templates that specify the layout and content of

traveler information messages. These templates are for a specific DMS sign size, and at least

one template must exist for each size (rows/columns) of DMS where a traveler information

message will be displayed. In addition to text, the content may include data fields, which are

place holders within the message where data from travel routes is to be inserted. The following

data fields are permitted in R3B3:

• Destination

• Travel Time (actual)

• Travel Time (range)

• Toll Rate

• Distance

• Toll Rate Effective (“as of”) Time

Templates allow the administrator to specify which fields are supplied by the same travel route.

This allows templates to contain data from 1 or more travel routes, with the data from each route

correlated properly. Templates also allow the administrator to specify the format to be used for

each type of data field included in the template. All fields of the same type will share a common

format, eliminating the possibility for a mismatch within the same messages. Because it’s

possible that data fields specified in a template may become unavailable during its actual use, the

CHART R3B3 Detailed Design 3-2 12/23/2008

administrator also specifies a missing data rule for each template. Using the missing data rule,

the administrator can specify if the entire message is invalid if any data is missing, if the page

containing the missing data is invalid, or if the row containing the missing data is invalid. The

appropriate rule to choose depends on the content and layout of the template.

3.3 Traveler Information Messages

Traveler information messages combine a pre-defined message template with data from one or

more travel routes to show motorists current travel times and toll rates on DMSs. Traveler

information messages are automatically updated as data from their associated travel routes

changes. Traveler information messages are created for any DMS where travel times or toll rates

are to be displayed. These messages can be created in advance, and activated by the user when

desired. Multiple traveler information messages for a DMS can be created in advance, however

only one may be active on a DMS at any given time.

Traveler information messages, when activated, utilize the DMS arbitration queue. Two new

“buckets” created for R3B3 are used to set the initial queue priority for toll rate and travel time

messages. Any traveler information message that contains toll rate data is considered a toll rate

message (even if it also contains travel time data) and will initially be placed in the “toll rate”

queue bucket. Any traveler information message that contains travel time data (but not toll rate

data) is considered a travel time message and will be initially placed in the “travel time” queue

bucket. The system allows the administrator to override this behavior per DMS and specify

different buckets to be used for toll rate and travel time messages. Once a traveler information

message is on a DMS arbitration queue, all existing arbitration queue features apply, including

the ability to reprioritize the message within the queue, and the ability to combine the message

with other messages on the queue (if so configured).

CHART R3B3 includes a travel time display schedule which specifies the periods during the day

when travel time messages may be displayed. Travel time messages may be activated or remain

active on the arbitration queue during times when travel times are not scheduled to be displayed,

however the message will only be shown on the DMS during times when travel time display is

scheduled. The system-wide travel time display schedule can be overridden per DMS.

3.4 External Interface to INRIX

For CHART R3B3, an external interface to the INRIX system is used to obtain travel times for

travel routes. INRIX is a web service available on the Internet, and CHART will connect to it

periodically (on the order of every 5 minutes) via HTTPS to obtain travel time data for roadway

links within Maryland. Once travel time data is obtained from INRIX, CHART will update the

travel time data for roadway links used by CHART travel routes, and the travel routes will

update their overall travel time by adding together the travel times of each link contained in the

travel route. Changes to travel time data for a travel route propagate within CHART to any

active traveler information message using data from that travel route.

Settings in CHART allow a percentage of a link to be used when computing the overall travel

route travel time to accommodate situations such as when locations of DMSs that will display

travel times do not match cleanly to INRIX link starting points. Other settings in CHART

specify the minimum data quality CHART will accept from INRIX, and CHART travel routes

CHART R3B3 Detailed Design 3-3 12/23/2008

will consider the travel time unavailable if too many links fall below their configured minimum

quality level.

3.5 External Interface to Vector

An external interface to the MdTA Vector system is used by CHART R3B3 to obtain current toll

rates for CHART travel routes. Toll rate data is pushed to the CHART system via a web service

interface included in R3B3. The Vector system connects to this service via HTTPS and supplies

data to CHART in an XML format. When the CHART web service receives data from the

Vector system, it updates the current toll rate data for any CHART travel route that has a toll rate

source specified and that source is the Vector system (Vector is the only toll rate source for

R3B3). Changes to the toll rate for a CHART travel route are propagated to any traveler

information message that includes toll rate data from that travel route.

3.6 External Interface to RITIS

For CHART R3B3, the existing external interface to RITIS is enhanced and expanded. The

existing traffic event import from RITIS is being enhanced to provide configurable filtering,

alerts, and flagging of interesting events. The RITIS interface is being expanded to allow DMS

and TSS devices included in RITIS to be shown within the CHART system. The transport layer

used for these RITIS connections continues to be RITIS-specific using Apache’s ActiveMQ

implementation of the Java Messaging Service (JMS). The traffic event data layer implements

the J2354 standard with a few RITIS extensions to the standard. The DMS and TSS data layers

implement the TMDD standard for each of these devices. The sections below describe further

concepts related to RITIS data importing for R3B3.

Geographical Areas

CHART R3B3 introduces the concept of geographical areas to allow geographic filtering of

traffic events, DMSs, and TSSs that exist in the RITIS system. An administrator can define a

geographical area as a polygon containing 3 or more points specified by latitude/longitude. The

system allows the administrator to upload these points from a KML file rather than typing them

by hand to avoid typographical errors and to allow an external mapping product to be used to

define the areas. R3B3 provides features to manage these geographical areas, including add,

edit, delete, and view.

Traffic Event Import Rules

CHART R3B3 includes the ability to define traffic event import rules that will be applied

automatically by the existing RITIS traffic event importer. Each rule can contain one or more

filter criteria, including geographical areas, route types, number of lanes closed, event type, and

search type. A RITIS event must match all criteria specified in a rule to match the rule, and must

match at least one rule to be imported into CHART. Each import rule can also contain rule

actions. These actions will be performed when a RITIS event matches the rule (and is therefore

being imported into CHART). The available actions for R3B3 are Issue Alert, Send

Notification, and Mark as Interesting. The Issue Alert action, when enabled, causes CHART to

send an alert to a specified operations center when an event is imported that matches the rule.

The Send Notification action, when enabled, causes CHART to send a notification to a specified

CHART R3B3 Detailed Design 3-4 12/23/2008

notification group when an event is imported that matches the rule. The Mark as Interesting

action, when enabled, causes CHART to set the “interesting” flag for the event when an event is

imported that matches the rule. The “interesting” flag causes the event to appear on the home

page of the CHART GUI in the external events tab.

Create CHART Event from RITIS Event

CHART R3B3 adds the ability to create a new CHART event using data from an external event

(imported from RITIS). When this is done, the user can edit the basic event and location data

prior to saving the new CHART event. The system automatically associates the new CHART

event with the external event from which the operation was initiated.

DMS and TSS Import

CHART R3B3 includes the ability for the administrator to include view-only copies of RITIS

DMS and TSS devices in the CHART system. Once added to the CHART system, the CHART

RITIS import service will keep the status of these devices updated within CHART. The CHART

system allows the administrator to specify which devices from RITIS are to be included in

CHART, as well as those the administrator wants excluded from CHART. A query capability

that includes several search criteria allows the administrator to search the potentially large list of

DMS and TSS devices that may exist in RITIS so that they may choose devices to include in

CHART or mark as excluded. The search feature also allows the administrator to view the

devices they have already marked as included, already marked as excluded, and/or not yet

marked as either included or excluded.

The existing CHART DMS and TSS lists are enhanced in R3B3 to allow users with rights to

view external DMS or TSS to show or hide these external devices within the lists. When

external devices are shown, the system allows the user to filter the list to hide CHART devices

and to filter the list to show only external devices from specific agencies. CHART R3B3 uses a

different background color to differentiate external devices from CHART devices within device

lists. The device details pages for external devices are read-only for all users, except that

privileged users are permitted to mark the external device as “excluded”, removing it from the

CHART system.

Archiving of External DMS and TSS Data

External DMSs and TSSs that have been imported into the CHART system will be archived for

offline analysis along with internal CHART DMSs and TSSs, and will be permanently flagged as

external devices in the archive.

Owning Organizations

When importing traffic events, DMS devices, and TSS devices into CHART, R3B3 will utilize a

mapping from external system / agency to a CHART organization. If a mapping is not found for

a traffic event or device that is imported, the system will use a default organization.

3.7 CHART Data Export

CHART R3B3 includes a web service that allows pre-approved external systems to obtain data

from the CHART system. External systems can issue data requests (via HTTPS) and receive the

requested data in the form of an XML document. R3B3 allows traffic events, DMS, TSS, HAR,

CHART R3B3 Detailed Design 3-5 12/23/2008

and SHAZAM data to be retrieved in this manner. Authentication and data protection schemes

(as described in section 2.3 above) ensure that only authorized clients can retrieve data, and that

clients can only retrieve data for which they are permitted to receive.

3.8 External System Connection Status

CHART R3B3 includes the ability to view the status of all external connections, including those

connections from CHART to RITIS and INRIX, and connections to CHART from Vector and

clients using the CHART export web service. R3B3 also allows the administrator to configure

alerts and notifications for each external connection. The administrator can configure the system

to alert a specified operations center when a connection failure is detected. A notification group

can also be specified to receive a notification when a connection failure is detected. Optionally,

the administrator can also configure the system to send an alert or notification when warning

conditions are detected. The system utilizes an administrator specified threshold time to prevent

a flood of alerts and/or notifications from being sent if a connection is in a state where it is

frequently transitioning between OK and Failed.

3.9 Device Locations

CHART R3B3 updates all devices (except monitors) to include location fields. The following

fields are added:

• State

• County

• Route Type

• Route

• Direction

• Intersecting Feature (state milepost or intersecting route)

• Latitude / Longitude

Device lists are updated to include columns for County, Route, and Direction, and to allow the

user to sort and filter on these new columns.

CHART R3B3 uses device latitude/longitude (when specified) and traffic event

latitude/longitude (when present) to allow users to view devices close to a traffic event. The user

can select a radius when viewing the traffic event details to see all devices within that radius.

The user can also directly add DMS and HAR devices to the response plan of the traffic event

when they appear in the list of devices close to the event. External DMSs and TSSs that are

included in the CHART system and are within the specified radius from the event will appear in

the list of close devices; however the user cannot add external DMSs to an event response plan.

3.10 TCP/IP DMS and TSS Communications

CHART R3B3 adds TCP/IP as a new communication option for DMS and TSS devices. When

the physical device supports this option, and the device is configured within CHART to use

CHART R3B3 Detailed Design 3-6 12/23/2008

TCP/IP communications, the CHART backend service will communicate directly with the device

over the network and will not utilize a port manager as it does for POTS, ISDN, and direct

connect RS232 communications. TCP/IP device communications will bypass the FMS servers

and the CHART Communications Services entirely.

3.11 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are

trapped by the GUI are reported immediately back to the user. The GUI will also report

communications problems with the server back to the user. The server may also trap user errors

and those messages will be written to a server log file and returned back to the GUI for display to

the user. Additionally, server errors due to network errors or internal server problems will be

written to log files and returned back to the GUI.

3.12 Packaging

This software design is broken into packages of related classes. The table below shows each of

the CHART packages along with a description of each. New for R3B3 are the following

packages: TravelRouteModule, MessageTemplateModule, Travel Time Import Module,

DMSImportModule, TSSImportModule, dataCache servlet, CHARTExport servlet, and the Toll

Rate servlet.

Table 1 Package Descriptions

Package Name Package Description
ActionUtility This package contains code used by the GUI to invoke actions from alerts

generated by the Schedule Module. This package is separate from the

Schedule Module itself because it is currently used by the GUI, but may

be used by the Schedule Module itself in future releases.

AlertModule This package contains an installable service application module that is

responsible for handling Alerts in CHART. This module will change for

R3B3 to support new alert types.

AudioClipModule This package contains classes used during the creation and storage of

HAR audio clips.

AudioCommon This contains the CORBA interfaces, structs, enums, and constants used

to define the interface between the CHART AudioClipModule and other

applications such as the CHART GUI.

Camera Control Module This package contains an installable service application module that

serves the Camera Factory, Camera and related objects as specified in the

system interfaces. This module will change for R3B3 to support location

data for cameras.

chartlite This package contains all of the classes that comprise the CHART GUI.

CHART2Service This package contains a class that serves as a generic service application.

CommandProcessorModule This package contains an installable service application module that

serves the CommandProcessorFactory, CommandProcessor and related

objects as specified in the system interfaces.

CommLogModule This package contains classes that are used to write the

CommunicationsLog.

CHART R3B3 Detailed Design 3-7 12/23/2008

Package Name Package Description

CORBAUtilities This package contains classes included in the third party ORB product

used for implementation.

CHARTExport servlet The CHART Export servlet is used to handle those clients who wish to

receive data from CHART.

DataCache servlet The DataCache servlet is used to cache the data that will be sent to client

who wish to receive data from CHART.

DataModel This package contains classes and methods that allow for storage,

efficient lookup, and updating of object data.

DeviceManagement This package contains the CORBA interfaces, structs, enums, and

constants used to define the interface between the CHART

ArbitrationQueue and other applications such as the CHART GUI. This

package will change for R3B3 to support device locations and changes to

the arbitration queue to support traveler information messages.

DeviceUtility This package contains various utility classes used by CHART devices.

DictionaryManagement This package contains the CORBA interfaces, structs, enums, and

constants used to define the interface between the CHART Dictionary

and other applications such as the CHART GUI.

DictionaryModule This package contains an installable service application module that

serves Dictionary and related objects as specified in the system

interfaces.

DMSControl This package serves the DMS Configuration and Status Factory, DMS

Configuration and Status and related objects as specified in the system

interfaces. This will change for R3B3 to support device locations,

TCP/IP communications, and NTCIP DMS font settings.

DMSControlModule This package contains an installable service application module that

serves the DMS Factory, DMS and related objects as specified in the

system interfaces. This will change for R3B3 to support device locations,

TCP/IP communications, and NTCIP DMS font settings.

DMSProtocols This package contains classes that encapsulate the functionality used to

communicate with the various models of DMSs

DMSUtility This package contains DMS related utility classes used by the server.

DMSImportModule This package contains an installable service application module that is

used to import external DMS data into CHART.

EventImportModule This package contains an installable service application module that is

used to import external traffic event data into CHART.

ExternalInterfaceModule This package implements connections to external systems. Currently

RITIS is the only external system connecting to CHART. .

EORS This package contains classes related to EORS.

EORSModule This package contains an installable service application module that

serves EORS and related objects as specified in the system interfaces.

FieldCommunicationsModule This package contains an installable service application module that

serves Port manager and related objects used to provide access to

communications ports on the machine where this module is run.

GeoAreaModule This package contains an installable service application used for

managing and providing access to Geographical Areas configured in

CHART.

CHART R3B3 Detailed Design 3-8 12/23/2008

Package Name Package Description
HAR Control This package contains HAR utility and other HAR related classes. This

package is changed in R3B3 to include device locations.

HARControlModule This package contains an installable service application module that

serves the HAR Factory, HAR and related objects as specified in the

system interfaces. This package is changed in R3B3 to include device

locations.

HARProtocols This package contains classes that encapsulate the functionality used to

communicate with the various models of HARs.

LogCommon This package contains objects related to the commLog.

MessageLibaryModule This package contains an installable service application module that

serves the MessageLibrary Factory, MessageLibrary and related objects

as specified in the system interfaces.

MessageTemplateModule This package contains an installable service application module that

serves the MessageTemplate Factory, and related objects as specified in

the system interfaces.

MonitorControlModule This package contains an installable service application module that

serves the Monitor Factory, Monitor and related objects as specified in

the system interfaces.

NativeUtility This package contains utility classes used for calling C++ code.

Notification Module This package contains an installable service application module that

provides notification services for CHART.

PlanModule This package contains an installable service application module that

serves the Plan Factory, Plan and related objects as specified in the

system interfaces.

ResourcesModule This package contains an installable service application module that

serves the OperationsCenter Factory, OperationsCenter and related

objects as specified in the system interfaces.

RoadwayLocationLookupModule This package contains an installable service application module that

provides interfaces for querying the location data contained on the

CHART Mapping database.

RouterControlModule This package contains an installable service application module that

serves the Router Factory, Router and related objects as specified in the

system interfaces.

ScheduleModule This package contains an installable service application module that

serves the Schedule Factory and Schedule objects as specified in the

system interfaces. This package is changed in R3B3 to include device

locations.

SHAZAMControlModule This package contains an installable service application module that

serves the SHAZAM Factory, SHAZAM and related objects as specified

in the system interfaces. This package is changed in R3B3 to include

device locations.

SHAZAMProtocols This package contains classes needed for communication to a specific

model SHAZAM.

SHAZAMUtility This package contains SHAZAM related utility.

TollRateImport servlet The TollRateImport servlet provides web service to allow data providers

(Vector) to import toll rates into Chart.

CHART R3B3 Detailed Design 3-9 12/23/2008

Package Name Package Description
TrafficEventMangement This package contains classes related to TrafficEvent objects.

TrafficEventModule This package contains an installable service application module that

serves the TrafficEvent Factory, TrafficEvent and related objects as

specified in the system interfaces.

TravelRouteModule This package contains an installable service application module that

serves the Travel Route Factory, and related objects as specified in the

system interfaces.

TravelTimeImportModule This package contains an installable service application module that

serves the INRIX Import related objects as specified in the system

interfaces

TSSImportModule This package contains an installable service application module that is

used to import external TSS data into CHART

TSSMangementModule This package contains an installable service application module that

serves the RTMS Factory, RTMS and related objects as specified in the

system interfaces. This package is changed in R3B3 to include device

locations, TCP/IP device communications.

TSSUtility This package contains TSS related utility classes.

TTSControlModule This package contains an installable service application module that is

used to run the TTS server. This package is changed in R3B3 to include

device locations, TCP/IP device communications.

Utility This package contains various utility classes used throughout CHART.

VideoSwitchControlModule This package contains an installable service application module that

serves the VideoSwitch Factory, VideoSwitch and related objects as

specified in the system interfaces.

VideoUtility This package contains Video related utility classes.

3.13 Assumptions and Constraints
1. Knowledgeable SHA, MdTA, RITIS, INRIX, and VECTOR subject matter experts will be available to

support project schedules.

2. The design of the INRIX system interface and the data provided by INRIX will be substantially the same as

documented in the “I-95 Vehicle Probe Project Interface Guide”, version 2.2 dated October 11, 2008.

3. The design of the VECTOR system interface will be substantially the same as documented in the Toll Rate

Vector to CHART Interface Control Document, Revision 1, document number WO15-ID-001R1, dated

November 25, 2008.

4. A connection to the INRIX system has been provided to the development team. However, the development

team has not yet been tested this connection.

5. We assume that a connection to the VECTOR system will be provided to the development team sometime

in the early implementation phase of R3B3.

6. CHART will assume INRIX travel time data is good – correct and smoothed. CHART cannot validate

INRIX data, and will not smooth it. No limit on route travel times variance from one moment to the next

will be imposed.

7. CHART will assume VECTOR toll rate data is correct. No minimum/maximum limit on toll rates will be

imposed. CHART cannot validate VECTOR data. For instance, CHART will not understand the

relationship between toll rate routes, and therefore cannot validate that a longer route should have a higher

toll than a shorter route.

CHART R3B3 Detailed Design 3-10 12/23/2008

8. In general, once configured and enabled, travel times and toll rates will be posted to DMSs automatically.

This breaks a long-standing philosophy that all messages will be approved by a human operator before

being posted.

9. Travel times are not intended for incident detection. Travel times should not be used for automatic incident

detection, and will not be presented in a manner geared to facilitate operator-based incident detection.

10. Testing of DMS and detectors connected to the system via TCP/IP will be done using simulators. If actual

devices are made available by SHA prior to the start of integration test they will be used for testing. If

actual devices are not provided for testing during integration test, testing with live devices will occur after

R3B3 is deployed, and any post deployment changes will be billed under a work order and will not fall

under warranty.

11. Testing of the change to set the NTCIP DMS font and line spacing will primarily be done using simulators.

If an actual NTCIP DMS is made available by SHA prior to the start of integration test it will be used for

integration testing. If an actual NTCIP DMS is not provided for testing during integration test, testing with

a live NTCIP DMS should be performed instead. If there is no available NTCIP DMS to use for testing,

then the testing will occur after R3B3 is deployed, and any post deployment changes will be billed under a

work order and will not fall under warranty.

12. SHA personnel will populate the new device location fields after R3B3 is deployed.

13. CHART R3B3 will use the existing NTCIP DMS implementation as is or slightly modified, to command

and control toll rate signs. This system is a robust system capable of handling many but not all problems

and has been designed to have an uptime and (device command and control, etc.) accuracy sufficient and

acceptable for CHART traffic operations. It has not been, nor will it be for R3B3, a system with an uptime

and/or accuracy approaching that required for a true financial system. There are planned and unplanned

outages, device nuances and failures, etc. that may occur with or without knowledge and/or participation by

CSC/Team CSC staff. These and other events may impact CHART R3B3’s ability to obtain and/or

correctly display toll rates.

Should problems occur, CSC’s responsibility shall remain to fix and/or enhance the system according to the

problem report (PR) process (i.e., document the problem via PR and schedule the fix in a patch or release to

the software) or according to the normal warrantee provisions. Any and all responsibility for resolving

financial disputes related to toll rate signs, including payments due to incorrect/inconsistent toll rates, shall

be the responsibility of the corresponding State entity, and not CSC.

CHART R3B3 Detailed Design 4-1 12/23/2008

4 Use Cases

The use case diagrams depict new functionality for new CHART R3B3 features.

4.1 High Level

4.1.1 R3B3HighLevel (Use Case Diagram)

This use case diagrams shows use cases related to new R3B3 features and enhancements to

existing features at a high level.

See R3B3ImportVectorData UCD

See R3B3ManageDeviceQueue UCD

Manage Users See R3B3ManageUsers UCD

Manage Device
Queue

Manage
Devices

See R3B3ManageDevices UCD

Manage
Traveler Information

Messages

Configure System

Administrator

See R3B3ConfigureSystem UCD

Operator

Configure
Devices

Manage
Travel Routes

See R3B3ImportRITISData UCD

See R3B3ConfigureDevices UCD

See R3B3ProvideDataToExternalSystems UCD

View External
Connection

Status

See R3B3ManageTravelRoutes UCD

View Device
Lists

View Device
Details

Import Vector
Toll Rates

See R3B3ImportINRIXData UCD

See R3B3ViewDeviceLists UCD

Provide Data
to External

Systems

Manage
Traffic
Events

Manage Alerts
And Notifications

See the R3B3ManageTravelerInformationMessages UCD System

Import RITIS
Data

See R3B3ViewDeviceDetails UCD

See R3B3ManageAlertsAndNotifications UCD

Import INRIX
Data

See R3B3ManageTrafficEvents UCD

Figure 4-1. R3B3HighLevel (Use Case Diagram

4.1.1.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.1.1.2 Configure Devices (Use Case)

An administrator (operator with the correct functional rights) may configure devices. This

includes the devices themselves and all associated supporting configuration information.

CHART R3B3 Detailed Design 4-2 12/23/2008

4.1.1.3 Configure System (Use Case)

An administrator can edit the system configuration via the system profile.

4.1.1.4 Import INRIX Data (Use Case)

The system shall connect to the INRIX system and periodically import travel time data for

links on a configurable interval. CHART will maintain the connection by periodically

obtaining a new authentication key as required by the INRIX system. An External

Connection Alert (when enabled for the INRIX connection) will be sent to the operations

center configured to receive alerts for the INRIX connection. The following conditions will

trigger an alert: Data cannot be retrieved from INRIX for a configurable period of time

Data retrieved from INRIX does not comply with the documented format Data retrieved

from INRIX does not contain data for a link that is included in a CHART travel route

4.1.1.5 Import RITIS Data (Use Case)

The system shall import data from the RITIS system.

4.1.1.6 Import Vector Toll Rates (Use Case)

4.1.1.7 Manage Alerts And Notifications (Use Case)

A user with proper functional rights can view and respond to alerts generated by the system.

The system will monitor conditions and send out alerts and/or notifications. For R3B3

three new alert types are being added: Travel Time Alerts, External Connection Alerts, and

External Event Alerts. The conditions that trigger these alerts can also cause a notification

to be sent independent of the alert. Details are shown in the Manage Alerts And

Notifications use case diagram.

4.1.1.8 Manage Device Queue (Use Case)

Users with appropriate privileges can manage device queues. The traveler information

messages added to R3B3 utilize the DMS message queue and two new priorities are added

to support these messages. See the ManageDeviceQueues UCD for details.

4.1.1.9 Manage Devices (Use Case)

An operator with the correct functional rights may perform basic operations on CHART

devices including HARs, DMSs, Video related devices, TSSs, and SHAZAMs. For R3B3,

DMS and TSS communications will support TCP/IP (in addition to existing communication

methods), and the communications to set messages on NTCIP DMSs will be enhanced to

set the font and line spacing. See the R3B3ManageDevices UCD for details.

4.1.1.10 Manage Traffic Events (Use Case)

This diagram models the actions that an operator may take that relate to traffic events. This

CHART R3B3 Detailed Design 4-3 12/23/2008

includes responding to traffic events using field devices.

4.1.1.11 Manage Travel Routes (Use Case)

An administrator will be able to manage the configuration of travel routes in the system.

Travel routes represent a section of roadway (not necessarily on the same roadway/signed

route) for which travel time and/or toll rate information may be provided. The

administrator can add, edit, or remove travel routes. An operator will be able to view the

currently defined toll routes and the travel time / toll rate information for those routes. See

the Manage Travel Routes use case diagram for details.

4.1.1.12 Manage Traveler Information Messages (Use Case)

The administrator will be able to define traveler information DMS message templates for

building traveler information messages (toll rate and/or travel time messages). An

administrator will set up the messages for a DMS using the templates (see the Configure

Devices diagram) and then the operator will be able to enable or disable the messages.

Once a message is enabled, the system will format a message for use by a DMS, add it to

the arbitration queue, and keep the message up to date when a travel route's data changes.

See the Manage Traveler Information Messages diagram for details.

4.1.1.13 Manage Users (Use Case)

An administrator can manage the users that are given access to the system and manage the

roles and rights that are used to specify the actions a user may perform and the data they

may access. In R3B3, new rights are added for new features, and rights are also being

added to provide better control of sensitive data. See the R3B3ManageUsers UCD for

details.

4.1.1.14 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.1.1.15 Provide Data to External Systems (Use Case)

The system shall provide access to external systems via a web service to allow them to

receive data that the CHART system makes available to third parties. One or more Roles

assigned to each external client will be used to determine the data the client will be

permitted to access. All requests made by external systems shall be validated against

published XSD. CHART will return a response XML document for each request. The

XML returned will contain an error code and error text for invalid requests, and will return

the requested data for valid, authorized requests. The response XML shall be formatted as

specified in published XSD.

CHART R3B3 Detailed Design 4-4 12/23/2008

4.1.1.16 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

4.1.1.17 View Device Details (Use Case)

The system allows users to view details pertaining to devices. In R3B3 several new details

are being added, such as device locations. See the R3B3DeviceDetails UCD for details.

4.1.1.18 View Device Lists (Use Case)

The system allows users to view lists of devices that exist in the CHART system. For

R3B3 several new data fields are being added to most device lists, such as location data.

See the R3B3ViewDeviceLists UCD for details.

4.1.1.19 View External Connection Status (Use Case)

The system shall maintain the state of external connections established by the system and

allow users to view the status of the connections, including an indication of any connections

that are detected to be down. The following data will be displayed for each connection:

connection name, current status (OK, WARNING, FAILED), descriptive status text

(optional for status of OK), the time the connection transitioned to its current status, and the

time the status was last confirmed.

CHART R3B3 Detailed Design 4-5 12/23/2008

4.2 Travel/Toll Routes

4.2.1 R3B3ManageTravelRoutes (Use Case Diagram)

This diagram shows use cases related to managing travel routes.

Remov e Toll Rate Source

Specify
Roadway Links

To Add

Select Toll Rate Source

Add Trav el Route

Edit Trav el Route

Remov e Trav el Route

Set
Trav el Route
Properties

Add Roadway Links
To Trav el Route

Remov e
Roadway Link

From Trav el Route

Edit
Roadway Link Usage

In Trav el Route

Specify
Roadway Link

Usage Settings

Administrator
Modify

Roadway Link Order
In Trav el Route

View Trav el
Time Trend

View
Trav el Route

List

View
Trav el Route
Roadway Link

Details

Sort
Trav el Route

List

Operator

Filter
Trav el Route

List

View
Trav el Route

Details

View
Roadway Links
Specified For
Trav el Route

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-1 R3B3ManageTravelRoutes (Use Case Diagram)

4.2.1.1 Add Roadway Links To Travel Route (Use Case)

A user with appropriate rights shall be permitted to add a roadway link to a travel route.

4.2.1.2 Add Travel Route (Use Case)

The system shall allow a user with appropriate rights to add a travel route to the system.

4.2.1.3 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.2.1.4 Edit Roadway Link Usage In Travel Route (Use Case)

The system shall allow a user with appropriate rights to edit the configuration data for a link

that has been previously added to a travel route. For details see the

CHART R3B3 Detailed Design 4-6 12/23/2008

SpecifyRoadwayLinkUsageSettings use case.

4.2.1.5 Edit Travel Route (Use Case)

The system shall allow a user with appropriate rights to edit the configuration of a travel

route that exists in the system.

4.2.1.6 Filter Travel Route List (Use Case)

The user shall be able to filter the travel route list based on the value of a specific field (or

fields). The sortable fields include: travel time (based on hard-coded ranges), travel time

trend (up/down/flat), average speed (using hard-coded ranges), toll rate, roadway route,

travel direction, and county.

4.2.1.7 Modify Roadway Link Order In Travel Route (Use Case)

The system shall allow a user with appropriate rights to modify the order of roadway links

used in a travel route by moving a roadway link up or down in the order.

4.2.1.8 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.2.1.9 Remove Roadway Link From Travel Route (Use Case)

The system shall allow a user with appropriate rights to remove a roadway link from a

travel route.

4.2.1.10 Remove Toll Rate Source (Use Case)

A user with sufficient rights will be able to remove a toll rate source from a travel route,

effectively disabling toll rates for the travel route.

4.2.1.11 Remove Travel Route (Use Case)

A user with appropriate rights shall be permitted to remove a travel route from the system.

The system will prompt the user for confirmation and will provide a warning if the travel

route is being used by one or more DMSs.

4.2.1.12 Select Toll Rate Source (Use Case)

A user with sufficient rights will be able to select a toll rate source for the travel route.

4.2.1.13 Set Travel Route Properties (Use Case)

The system shall allow a user with appropriate rights to set the properties associated with a

CHART R3B3 Detailed Design 4-7 12/23/2008

travel route. A travel route has a name, up to three destination names (which the system

will ensure are of different lengths, for use on different sizes of DMSs), location settings,

and travel time and/or toll rate settings. The location settings, which can be derived from

the links if the route supports travel times, may also be specified manually, and these

settings include: counties; route type, route, and direction for each route in the travel route;

travel route length. (The system will require the user to specify the location settings). If

the travel route supports toll rates, the user will be able to specify the toll rate source and

enable or disable the toll rate functionality. If a route supports travel times (i.e., with one or

more roadway links), the user can enable or disable the travel time functionality. A travel

route supporting travel times will require a minimum displayable travel time to be specified

(below which the displayed travel time will be constrained to the minimum) and a

maximum travel time (above which the travel time will not be displayed). A travel route

supporting travel times will include a setting for the number of links in the route that are

allowed to fall below the per-link quality threshold for the route travel time to be used.

There will also be a time threshold that, if exceeded, can trigger a Travel Time Alert sent to

a specified operations center and/or notification sent to a specified notification group. The

user will be able to enable or disable travel time alerts and notifications after they are set

up. Similarly the user can enable/disable toll rate alerts and notifications for travel routes

that support toll rates. Toll rate alerts are sent when a toll rate expires.

4.2.1.14 Sort Travel Route List (Use Case)

The travel route list shall permit the user to sort the list based on specific fields, in

ascending and descending order. The fields include: travel route name, length, travel time,

travel time trend, current speed, toll rate, the name of the DMSs using the route, the

roadway route, direction, and county.

4.2.1.15 Specify Roadway Link Usage Settings (Use Case)

A user with appropriate rights shall be permitted to set the properties of a link associated

with a travel route. These settings include the percentage of the link to include, and the

minimum travel time quality to accept (low, medium, or high).

4.2.1.16 Specify Roadway Links To Add (Use Case)

The system shall allow the user to select one or more links to add to a travel route. The

user will be able to select from among a list of all links in the system. To reduce the

number of links to choose from, the user will be able to filter the list of links by county,

road type, road, direction, and external ID. After adding the first link, the user will be able

to display a list of suggested links for selection. The system will use the latitude / longitude

of the endpoints to determine what other links are nearby, and may also use the previous

link's attributes for filtering. When displaying the links available for selection, the system

will display the details for each link including the name of the external system, the external

link ID, the link name, route name and/or number, travel direction, link length, county, and

(for all links except the first) the distance of the starting point to the previous link's

endpoint.

CHART R3B3 Detailed Design 4-8 12/23/2008

4.2.1.17 View Roadway Links Specified For Travel Route (Use Case)

The system will display the details for roadway links that have been specified to be part of

the travel route when adding a travel route to the system. Details will include the external

system name, the external link ID, the name of the roadway link, the route name and/or

number, the travel direction, the county, the length of the link, and the distance of the link's

starting point from the prior link's endpoint (for all links except the first one).

4.2.1.18 View Travel Route Details (Use Case)

A user with appropriate user rights shall be permitted to view the details for a travel route.

The details will include current status information (if available/applicable) including the

travel time, travel time trend, speed, and toll rate. Details will be displayed for each

roadway link including the external link ID, link name, travel time, travel time trend, and

current speed (as reported by the data source, if available; otherwise calculated from travel

time and link length). Recent history will be shown for each link for each 5 minute period

in the last hour, and will include the reported travel time (minutes and seconds) and data

quality. If there are multiple samples in a 5 minute period, the latest will be shown.

Configuration details will also be shown for each link including the name of the external

system, the external link ID, the link name, route name and/or number, traffic direction,

length, county, and distance from the prior link (if any). The route details will include

details for a toll rate source (if applicable), which includes the recent toll rate history in 5-

minute increments for the last hour. (If more than one toll rate is reported in a 5-minute

increment the latest will be used). The toll rate source configuration will also be displayed

including the external system name, the start ID, the end ID, and the source description.

The route details displayed will include up to three destination names of varying lengths.

The route's location information will be displayed including: county(ies), roadway route

name/number and travel direction (for each roadway route), travel route length, and an

indicator showing whether the location was manually entered or derived from links. The

travel time settings will be displayed including: a travel time enabled/disabled indicator,

minimum/maximum usable travel time, alert/notification travel time, alert enabled/disabled

flag and operations center, notifications enabled/disabled flag and notification group, and

the number of allowable links below the quality threshold. The toll rate settings shall be

displayed and shall include the toll rates enabled/disabled indicator, the operations center

that is to receive toll rate alerts (if any), and the notification group to receive toll rate

notifications (if any).

4.2.1.19 View Travel Route List (Use Case)

Users with appropriate user rights shall be permitted to view the travel routes defined in the

system. The data shown for each route shall include the name of the travel route, length,

travel time (if applicable), travel time trend indicator (if applicable), average speed (total

route length divided by travel time), toll rate (if applicable), DMSs using the route (i.e.,

configured to possibly display messages involving the route, even if not currently

CHART R3B3 Detailed Design 4-9 12/23/2008

enabled/active), roadway route(s), direction(s), and county(ies). The list of routes will

allow the user to choose which column to display, and it will allow sorting and filtering.

4.2.1.20 View Travel Route Roadway Link Details (Use Case)

A user with sufficient user rights shall be permitted to view the details of a roadway link

included in a route. The details will include status information including the current travel

time, average speed, travel time trend, and last status time. It will also include the recent

travel time history for the last hour in 5-minute increments (including the latest of the

samples if more than one falls in a 5-minute increment) and the reported quality of each

sample. The configuration for the link will be displayed including the external system

name, external link ID, link name, county(ies), route type, route, travel direction, link

length, and geographic coordinates of the starting / ending point.

4.2.1.21 View Travel Time Trend (Use Case)

The system will display the travel time trend. The trend is computed by comparing the

average of the latest N recent travel times to the average of the earliest N travel times,

where N is a configurable system-wide travel time sample size, the number of recent travel

times to compare. The Trend shall be considered "up" if the recent history contains at least

2N travel times and the average of the N latest travel times is at least X percent greater than

the N earliest travel times, where X is the system-wide travel time threshold. The trend

shall be considered "down" if the history contains at least 2N travel times and the average

of the N latest travel times is at least X percent less than the average of the N earliest travel

times. The trend shall be flat if the recent history has less than 2N entries or the average of

the N latest travel times is within X percent of the N earliest travel times.

The system shall retain at most 12 recent travel times that have been computed within the

last hour. The user will be able to view the travel times that were used to compute the

trend.

CHART R3B3 Detailed Design 4-10 12/23/2008

4.2.2 R3B3ImportInrixData (Use Case Diagram)

This diagram shows use cases related to the import of travel time data from the external

INRIX system.

Send
Travel Time
Notification

Monitor External
System Connection

Archive Link
Data

Import INRIX
Links

Administrator

Create
External Connection

Alert

Create
Travel Time

Alert

Import INRIX
Data

Compute Route
Travel Time

System Archive
Route Data

Provide Link
Data to Routes

Send
External Connection

Notification

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-2 R3B3ImportInrixData (Use Case Diagram)

4.2.2.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.2.2.2 Archive Link Data (Use Case)

The system shall archive all raw link data retrieved from INRIX for a configurable period

of time.

4.2.2.3 Archive Route Data (Use Case)

The system shall store data in a form suitable for archival purpose, shall mark data when it

is ready to be archived, and shall archive and delete marked archivable route data.

4.2.2.4 Compute Route Travel Time (Use Case)

The system will compute the travel time for a route if the travel time data is available for all

links in the route and the number of links having data less than the acceptable quality (as

specified in the link's usage settings) is not greater than the maximum number links allowed

to have poor quality data (as specified in the travel route settings). Otherwise, if travel time

data is missing for any of the links or the quality is low for too many links, the travel time

CHART R3B3 Detailed Design 4-11 12/23/2008

data for the route will be unavailable. The system will compute the travel time for the

travel route by summing the travel time for the portion of each link that falls within the

route (using the percentage of the link within the route times the total link travel time). If

the computed travel time for the travel route exceeds the alert/notification travel time

threshold, the system will create an alert and/or send a notification. The system will

archive the calculated data for accountability purposes.

4.2.2.5 Create External Connection Alert (Use Case)

The system will create an External Connection Alert if an external connection transitions to

the "failed" state and remains there for an amount of time, as specified in the connection

settings, if the alert is enabled in the connection settings. The system will create an

External Connection Alert if an external connection transitions to the "warning" state and

remains there for an amount of time, as specified in the connection settings, if the alert is

enabled in the connection settings. (The time spent in the "failed" state contributes to the

time counted for a warning).

4.2.2.6 Create Travel Time Alert (Use Case)

If travel time alerts are enabled for a travel route, the system will issue an alert to the

operations center specified in the travel route settings when the travel time crosses the

threshold specified in the travel route settings.

4.2.2.7 Import INRIX Data (Use Case)

The system shall connect to the INRIX system and periodically import travel time data for

links on a configurable interval. CHART will maintain the connection by periodically

obtaining a new authentication key as required by the INRIX system. An External

Connection Alert (when enabled for the INRIX connection) will be sent to the operations

center configured to receive alerts for the INRIX connection. The following conditions will

trigger an alert: Data cannot be retrieved from INRIX for a configurable period of time

Data retrieved from INRIX does not comply with the documented format Data retrieved

from INRIX does not contain data for a link that is included in a CHART travel route

4.2.2.8 Import INRIX Links (Use Case)

The system shall allow the administrator to import INRIX links from the INRIX

distribution CD via an offline process. Running this import will completely replace any

existing INRIX link data included in CHART with the new INRIX link data. Only links

that fall within a system defined bounding rectangle will be imported. Note that the link

data is read-only within the CHART system and is used to allow users to associate INRIX

links with CHART travel routes (via the link IDs). The presence of these INRIX links

within CHART is for the sole purpose of making that association process easier for the

user.

CHART R3B3 Detailed Design 4-12 12/23/2008

4.2.2.9 Monitor External System Connection (Use Case)

The system shall monitor the state of the External System Connection.

4.2.2.10 Provide Link Data to Routes (Use Case)

The system shall provide link level data read from INRIX to an object or objects in the

system that group link level data into routes.

4.2.2.11 Send External Connection Notification (Use Case)

The system will send a notification to a specified notification group if an external

connection transitions to the "failed" state and remains there for an amount of time, as

specified in the connection settings, if enabled in the connection settings. The system will

send a notification to a specified notification group if an external connection transitions to

the "warning" state and remains there for an amount of time, as specified in the connection

settings, if enabled in the connection settings. (The time spent in the "failed" state

contributes to the time counted for a warning).

4.2.2.12 Send Travel Time Notification (Use Case)

If travel time notifications are enabled for a travel route, the system will send a notification

to the group specified in the travel route settings when the travel time crosses the threshold

specified in the travel route settings.

4.2.2.13 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

CHART R3B3 Detailed Design 4-13 12/23/2008

4.2.3 R3B3ImportVectorData (Use Case Diagram)

This diagram shows use cases related to importing toll rate data from the external Vector

system.

Create
Toll Rate

Alert

Send
Toll Rate

Notification

Authenticate
External System

System

Create External
Connection Alert

Archiv e
CHART Travel

Route Toll
Rate Data

Expire
Toll Rates

Archive Toll
Rate Data

Import Vector
Data

Prov ide Toll
Data to CHART
Trav el Routes

Monitor External
System Connection

Send External
Connection Notification

«include»«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-3 R3B3ImportVectorData (Use Case Diagram)

4.2.3.1 Archive CHART Travel Route Toll Rate Data (Use Case)

The system shall archive the toll rate data used by a travel route for a configurable period of

time for the purpose of determining the composition of toll rate messages posted at a given

time.

4.2.3.2 Archive Toll Rate Data (Use Case)

The system shall archive all toll rate data posted to the CHART system. The data shall be

kept for offline inquiry for a configurable period of time.

4.2.3.3 Authenticate External System (Use Case)

The system shall authenticate external system connections to validate that they are

authorized to connect to CHART and to enforce rights regarding the data the external

system is permitted to access. Each external system owner will be provided a private key

CHART R3B3 Detailed Design 4-14 12/23/2008

from a public/private key pair generated within the CHART system. Each request from an

external system will include the system's CHART client ID (as configured within CHART)

and a digital signature of the request data, created using the private key provided by the

CHART administrator. The CHART system will validate each request signature using the

client's public key.

4.2.3.4 Create Toll Rate Alert (Use Case)

If toll rate alerts are enabled for a travel route, the system will issue an alert to the

operations center specified in the travel route settings if the current toll rate for the travel

route expires while there is a current (non-expired) toll rates document available.

4.2.3.5 Create External Connection Alert (Use Case)

The system will create an External Connection Alert if an external connection transitions to

the "failed" state and remains there for an amount of time, as specified in the connection

settings, if the alert is enabled in the connection settings. The system will create an

External Connection Alert if an external connection transitions to the "warning" state and

remains there for an amount of time, as specified in the connection settings, if the alert is

enabled in the connection settings. (The time spent in the "failed" state contributes to the

time counted for a warning).

4.2.3.6 Expire Toll Rates (Use Case)

When toll rate data is imported, it includes an optional expiration time for all toll rates

included in the import. The system shall clear the toll rate data from all travel routes when

the expiration time for the toll rate data used by a travel route passes. It is expected that the

expiration time will be set such that it will only be used if Vector experiences a failure

updating the toll rate data at its normal rate.

4.2.3.7 Import Vector Data (Use Case)

The system shall integrate with VECTOR for the purpose of asynchronously receiving toll

rate information for routes configured within CHART. The system shall allow the

VECTOR system to post toll rate update documents to a web service hosted at a

configurable publicly accessible IP address and port. The system shall verify that posted

data has originated from the VECTOR system by requiring that the posted data be digitally

signed with a previously provided private key. The system shall validate all data posted by

the VECTOR system against the published XSD. The system shall return a response XML

document each time data is received from the VECTOR system. The system shall return a

success code and a list of accepted toll routes each time the VECTOR system successfully

posts a toll rate update. The system shall set the External Connection state to OK when a

valid, complete message is received from the VECTOR system. The system shall return a

failure code and a list of error code/error message pairs each time the VECTOR system

posts invalid data. The system shall reject any toll rate data that does not have a digital

signature with an authorizationError error code with corresponding error text. The system

CHART R3B3 Detailed Design 4-15 12/23/2008

shall reject any toll rate data that contains a digital signature that cannot be read with the

previously provided public key by returning an authorizationError error code with

corresponding error text. The system shall reject any toll rate data that does not validate

correctly against the published XSD by returning an invalidXML error code with

corresponding error text. The system shall reject any toll rate update that has a

startDateTime that is more than a configurable number of minutes in the future by returning

an invalidStartDateTime error code with corresponding error text. The system shall reject

any toll rate update that has an expirationDateTime that is not later than the posted

startDateTime by returning an invalidExpirationDateTime error code with corresponding

error text. The system shall set the External Connection state to WARNING each time the

VECTOR system posts data that fails validation or authorization. The system shall set the

External Connection state to WARNING each time the VECTOR system posts data does

not contain data for any toll route (start id/destination id pair) that is associated with a

CHART system travel route. The system shall set the External Connection state to FAILED

if it does not receive any data from the VECTOR system for a configurable period of time

(expected to be on the order of 1 hour). The system shall reject in full any toll rate update

from the VECTOR system that contains any errors and shall not use any toll rate from said

update document. (Other than sending the appropriate error code in the XML response, the

system shall otherwise react as if no document had been sent at all.) If configured to do so,

the system shall generate an alert if it does not receive any data from the VECTOR system

for a configurable period of time. If configured to do so, the system shall issue a

notification if it does not receive any data from the VECTOR system for a configurable

period of time. The system shall allow the VECTOR system to post toll rate update

documents to a backup web service hosted at a configurable publicly accessible IP address

and port. The system shall allow an administrator to configure alert and notification

settings that cause an alert and/or notification to be issued when data is posted to the backup

service. These settings shall include the ability to enable/disable these alerts and

notifications, the op center to be alerted, the notification group to be notified, and the

minimum interval at which notifications can be sent.

4.2.3.8 Monitor External System Connection (Use Case)

The system shall monitor the state of the External System Connection.

4.2.3.9 Provide Toll Data to CHART Travel Routes (Use Case)

The system shall provide toll rate data for each toll route provided by the Vector system to

CHART travel routes configured to include the toll route. Any existing toll rate data for the

travel route shall be replaced by the new toll rate data. If a toll rate import does not include

the toll rate for a toll route that is configured to be included in a travel route, the toll rate

data for that travel route shall be cleared. This includes the case where the toll route is not

included in the data import and the case where the toll route is included but a toll rate for

that toll route is not included.

CHART R3B3 Detailed Design 4-16 12/23/2008

4.2.3.10 Send Toll Rate Notification (Use Case)

If toll rate notifications are enabled for a travel route, the system will send a notification to

the group specified in the travel route settings if the current toll rate for the travel route

expires while there is a current (non-expired) toll rates document available.

4.2.3.11 Send External Connection Notification (Use Case)

The system will send a notification to a specified notification group if an external

connection transitions to the "failed" state and remains there for an amount of time, as

specified in the connection settings, if enabled in the connection settings. The system will

send a notification to a specified notification group if an external connection transitions to

the "warning" state and remains there for an amount of time, as specified in the connection

settings, if enabled in the connection settings. (The time spent in the "failed" state

contributes to the time counted for a warning).

4.2.3.12 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

CHART R3B3 Detailed Design 4-17 12/23/2008

4.2.4 R3B3ManageTravelerInformationMessages (Use Case Diagram)

This diagram shows use cases related to configuring traveler information messages.

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Administrator

Edit
Traveler Information
Message Template

View
Traveler Information
Message Templates

Specify
Traveler Information
Message Template

For the configuration of
traveler information messages
for a DMS, see the Configure
Devices use case diagram.

View DMS
Traveler Information

Messages

Operator

View
Traveler Information Message

True Display

Deactivate
Traveler Information

Message

Enable
Traveler Information

Message

Remove
Traveler Information
Message Template

Disable
Traveler Information

Message

Configure
Traveler Information
Message Templates

Check
Traveler Information
Message Template

For Banned Words

Format
Traveler Information

Message

Add
Traveler Information
Message Template

Check
Traveler Information
Message Template

Spelling

System

Activate
Traveler Information

Message

Replace
Traveler Information
Message Template

Tags

Update
Traveler Information

Message

Monitor Travel
Time Schedule

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-4 R3B3ManageTravelerInformationMessages (Use Case Diagram)

4.2.4.1 Activate Traveler Information Message (Use Case)

The system will activate a traveler information message on a DMS when the traveler

information message has been enabled by the user, or if a currently enabled travel time

message is currently not active due to the travel time display schedule and the schedule now

indicates travel time messages may be displayed. The message will be activated on the

device even if the device is not used by a traffic event. The system will format the message

and place it on the DMS's arbitration queue. The level at which the message is added will

be determined by whether a toll rate field is in the message template. If there is one, it will

use the bin that specified for toll rate messages in the DMS configuration to determine

which bin to use. (By default, it will go into the "Toll Rate" bin). If the template does not

contain a toll rate field but does contain a travel time field, the message will be placed in the

bin specified for travel time messages in the DMS configuration. (By default, it will go into

the "Travel Time" bin). Once it is added to the queue, the message will follow priority and

message combination rules to determine what message is displayed to drivers. The system

will only allow one traveler information message to be active at a time, so it will deactivate

CHART R3B3 Detailed Design 4-18 12/23/2008

any previously active message before activating the new one. The system will add an entry

to the operations log to record the message when a traveler information message is

displayed on the DMS.

4.2.4.2 Add Traveler Information Message Template (Use Case)

A user with sufficient privileges will be able to add a new traveler information DMS

message template. The user will specify a sign size for the template, and specify other

aspects of the template as defined in the Specify Traveler Information Message Template

use case.

4.2.4.3 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.2.4.4 Check Traveler Information Message Template For Banned Words (Use Case)

The system will check the traveler information message template for words that exist in the

banned words dictionary and will not allow the message to be saved if it contains banned

words.

4.2.4.5 Check Traveler Information Message Template Spelling (Use Case)

A user editing a traveler information message template will be able to perform a spell check

on the message template.

4.2.4.6 Configure Traveler Information Message Templates (Use Case)

A user with sufficient rights will be able to configure the available DMS message templates

that may be used for travel time / toll rate messages. The user will be able to add, edit,

remove, and view these templates.

4.2.4.7 Deactivate Traveler Information Message (Use Case)

The system will support deactivating an active traveler information message, causing it to

be removed from the arbitration queue. The message will be deactivated if the user disables

the message, if another traveler information message is activated, if the currently active

message or template is removed, or if the message becomes invalid or empty due to

changes in the travel route data. A travel time message can be deactivated as specified in

the travel time display schedule used by the DMS (the system-wide schedule or the

schedule specified for the DMS). Note that only traveler information messages with at least

one toll rate field are considered toll rate messages, not travel time messages, and therefore

are unaffected by the travel time schedule even if they also contain travel time fields. The

system will log a message to the operations log when a traveler information message is

deactivated, whether it was initiated by the user or automatically.

CHART R3B3 Detailed Design 4-19 12/23/2008

4.2.4.8 Disable Traveler Information Message (Use Case)

The system shall allow a user with appropriate rights to disable a traveler information

message that was previously enabled for a DMS. Disabling a message causes the system to

deactivate it.

4.2.4.9 Edit Traveler Information Message Template (Use Case)

A user with sufficient privileges will be able to edit an existing traveler information DMS

message template. The user cannot change the sign size for an existing template, but can

change any other attribute as described in the Specify Traveler Information Message

Template use case.

4.2.4.10 Enable Traveler Information Message (Use Case)

The system shall allow a user with appropriate rights to enable a traveler information

message that has been configured for a DMS. Enabling a traveler information message

allows it to be activated by the system.

4.2.4.11 Format Traveler Information Message (Use Case)

The system will format the traveler information message to obtain the final MULTI string

to be sent to the DMS or displayed to the user. This formatting algorithm will use the

settings specified in the traveler information message, which includes the message template

and the travel routes. If available, the system will use current data from the travel route(s)

used by the message. If a travel route cannot supply current data, the behavior will depend

on a flag indicating whether to use dummy data for missing travel route data. The use of

dummy data would apply if the message is being formatted for a message editor or

simulation graphic. If it is not using dummy data (e.g., if it's building a message for use on

the DMS), it will exclude the missing travel route data from the message and any associated

message text, using the rules specified in the template (i.e., discard the row, page, or

message). After the tags are replaced with data and any invalid portions of the message are

discarded, the system will apply the automatic row formatting algorithm if it is requested in

the message settings. If a page has one line of text, it will be placed on line two of a 3 or 4

line DMS. If a page has two lines of text, it will be placed on lines one and three of a 3 or 4

line DMS. If a page has three lines of text, it will be placed on the first three lines of a 3 or

4 line DMS.

4.2.4.12 Monitor Travel Time Schedule (Use Case)

If a message is a travel time message (and does not include toll rates) and is currently

enabled, the system will use the travel time schedule (system-wide by default unless

overridden in the DMS settings) to determine when to put the travel time message on the

sign. If the active message is a travel time message, the system will use the travel time

schedule to determine when to deactivate the message. It will activate or deactivate the

message at the appropriate times.

CHART R3B3 Detailed Design 4-20 12/23/2008

4.2.4.13 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.2.4.14 Remove Traveler Information Message Template (Use Case)

A user with sufficient privileges will be able to remove a traveler information DMS

message template from the system. The system will prompt the user for confirmation

before removing the template. The system will prevent the template from being removed if

it is used by a DMS.

4.2.4.15 Replace Traveler Information Message Template Tags (Use Case)

The system will replace tags in the traveler information message template when formatting

the message. A destination tag will be replaced with the preferred, alternate 1, or alternate

2 destination name for a travel route will be used such that it fits within the allocated space

for the tag. (Note that the destination tag can occupy all remaining space on a row, or it can

be a fixed number of characters). The destination name will be justified within the space

allocated for it using the justification specified in the message template. A travel time tag

will be replaced with the actual travel time, using the format specified in the template. A

travel time range tag will be replaced with a travel time range, according to the format

specified in the template. The values for the range will be calculated by using the actual

travel time and adding / subtracting the specified number of minutes as specified in the

system profile. If a travel time falls below the minimum travel time specified for the travel

route, the minimum value for the travel route will be used. The travel time / travel time

range data will not be used if travel times are disabled for the travel route, the actual travel

time exceeds the maximum travel time specified for the travel route, or the data does not

meet the data quality threshold standard for a number of links exceeding the number

specified for the travel route. A toll rate tag will be replaced with the toll rate, using the

format specified in the message template. If toll rates are disabled for the travel route, the

toll rate will not be used in the message. A toll rate time tag will be replaced with the latest

toll rate time from any of the toll rate source (travel routes) used in the message for which

toll rates are not disabled. The toll rate time will use the format specified in the message

template. If toll rates are unavailable or disabled for all travel routes used for toll rates in

the message, the toll rate time will not be used in the message. A route length tag will be

replaced with the route length, using the format specified in the message template. For all

tag types containing numbers, the numbers will be right justified within the space allocated

for them within the tag, according to the specified format. If a travel route is not found, if it

cannot provide the required data, or if the data is too large to fit in the allocated space, those

tags will be ignored and the rules for missing data as specified in the message template will

be applied.

4.2.4.16 Specify Traveler Information Message Template (Use Case)

A user adding or editing a traveler information DMS message template will be able to

CHART R3B3 Detailed Design 4-21 12/23/2008

specify a DMS message template for later use, which can be up to 2 pages long. The user

will be able to edit the contents of each row of the message using a combination of freeform

text and/or "tags" which act as placeholders for travel route information that will be filled in

later. The user will be able to specify the line justification for each row (left, center, right).

Tags types will include: destination name, travel time, travel time range, toll rate, toll rate

time, and route length. These tags (with the exception of toll rate time) contain an index

corresponding to a travel route to be assigned when the template is configured for a specific

DMS. The use of indexes will allow data for multiple routes to be represented in the same

template, and up to 6 routes may be used. By default the "destination" tag occupies all

remaining space on a row of the message (negating any line justification for that row), but

the user can also restrict a destination tag to a specified size. The user will be able to

specify the justification within all destination tags (left/right/center) in case there is extra

space. The other tags - travel time, travel time range, toll rate, toll rate time, and route

length - all contain numbers. Within the numeric portion(s) of the tags the numbers will be

right justified. For each of the numeric tag types that are used in the message, the user will

be able to select one of several different number formats of various lengths, which may be

necessary to get the message to fit on smaller signs. The user can specify the behavior to

follow if an assigned travel route cannot provide the data at run time, including: discarding

the row, discarding the page, or discarding the entire message. The user can also specify

the page on / page off times for the message, and the description for the template. If the

text of the message becomes too long for a row when the user is editing, the system will

display a warning message.

4.2.4.17 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

4.2.4.18 Update Traveler Information Message (Use Case)

The system will update an active traveler information message when new data is received

for the travel routes in the message. The system will update the message if the travel route

settings are modified (for example, if travel times and/or toll rates are enabled or disabled).

The system will also update the message if the message template is changed (e.g., by the

user), or if the message is changed as it is configured for a DMS. The system will reformat

the message and will update the message on the DMS if the message has changed. The

message will remain on the arbitration queue during this process and will not lose its place

on the queue unless the new data causes the message to become invalid or empty, in which

case it will be automatically deactivated. The system will add an entry to the operations log

to record the message when a traveler information message is updated on the DMS.

4.2.4.19 View DMS Traveler Information Messages (Use Case)

The system will allow the user to view the traveler information messages configured for a

DMS. It will display a graphical representation of the message, using actual data from the

CHART R3B3 Detailed Design 4-22 12/23/2008

routes if available, or dummy data if not available. It will also display the enabled /

disabled status of the messages.

4.2.4.20 View Traveler Information Message Templates (Use Case)

A user with sufficient rights will be able to view the list of traveler information DMS

message templates. The system will display the template name, sign size, textual and

graphical representations of the message. It will also display a representation of the formats

used in the template for travel time, travel time range, toll rate, toll rate time, and route

length. The list will be sortable on template name, sign size, travel time format, travel time

range format, toll rate format, toll rate time format, and route length format. The list will be

filterable on sign size, travel time format, travel time range format, toll rate format, toll rate

time format, and route length format. The filterable values for the formats will include

values indicating whether or not the template contains a tag of the corresponding type.

4.2.4.21 View Traveler Information Message True Display (Use Case)

The system shall allow the user to preview the traveler information message as a graphical

representation. The message will be formatted for display as described in the Format

Traveler Information Message use case. The graphic will be updated if the message

changes (although if the message exceeds the sign size, the image may not be updated).

CHART R3B3 Detailed Design 4-23 12/23/2008

4.2.5 R3B3ManageDeviceQueue (Use Case Diagram)

This diagram shows uses of the system related to managing device message queues. For

R3B3, the existing message queue functionality is being enhanced to support traveler

information messages. Two new queue priorities are being added for travel time and toll

rate messages. Traveler information messages will be added to the DMS device queue

when activated by the system, and will be removed from the DMS device queue when

deactivated by the system.

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»«uses»

«extends»

«extends»

«uses»

«uses»

«uses»

«uses»

Blank DMS

Set HAR
Message

Respond To
Traffic Events

System

Deactivate Traveler
Information Message

New for R3B3

Activate Traveler
Information Message

New for R3B3

Updated for R3B3
(new priorities)

Remove Message
From Device

Queue

Add Message
To Device

Queue

View
Device
Queue

Evaluate
DMS Device

Queue Entries Blank HAR

Set DMS
Message

Revoke
Response

Items

Execute
Response

Evaluate
Device
Queue
Entries

Operator

triggers

triggers

Evaluate
HAR Device

Queue Entries

Prioritize
Device
Queue

triggers

Figure 4-5 R3B3ManageDeviceQueue (Use Case Diagram)

4.2.5.1 Activate Traveler Information Message (Use Case)

The system will activate a traveler information message on a DMS when the traveler

information message has been enabled by the user, or if a currently enabled travel time

message is currently not active due to the travel time display schedule and the schedule now

indicates travel time messages may be displayed. The message will be activated on the

device even if the device is not used by a traffic event. The system will format the message

and place it on the DMS's arbitration queue. The level at which the message is added will

be determined by whether a toll rate field is in the message template. If there is one, it will

use the bin that specified for toll rate messages in the DMS configuration to determine

which bin to use. (By default, it will go into the "Toll Rate" bin). If the template does not

contain a toll rate field but does contain a travel time field, the message will be placed in the

bin specified for travel time messages in the DMS configuration. (By default, it will go into

the "Travel Time" bin). Once it is added to the queue, the message will follow priority and

message combination rules to determine what message is displayed to drivers. The system

will only allow one traveler information message to be active at a time, so it will deactivate

CHART R3B3 Detailed Design 4-24 12/23/2008

any previously active message before activating the new one. The system will add an entry

to the operations log to record the message when a traveler information message is

displayed on the DMS.

4.2.5.2 Add Message To Device Queue (Use Case)

When a traffic event response plan is executed, the specified messages are placed in the

specified devices' arbitration queues. A message may also be placed in a device's

arbitration queue when a traveler information message is activated on a DMS. When an

item is added to an arbitration queue, it is held with other messages that have been added to

the queue. The system selects the highest priority message to display / play on the device.

A message that does not have the highest priority at one time may become the message with

highest priority in the future due to messages being removed from the queue or by manual

intervention by an operator. For R3B3, two new message queue priorities are being added

to the arbitration queue for traveler information messages. The "Toll Rate" priority (7) is

the default priority for traveler information messages that contain at least one toll rate field.

The "Travel Time" priority (6) is the default priority for traveler information messages that

contain at least one travel time field but no toll rate fields. These default priorities can be

overridden for each DMS, causing traveler information messages to be added to the queue

with a priority as specified by an administrator rather than these defaults. The system stores

the event a message is associated with and the operations center responsible for the message

if the message is activated via a traffic event response. These fields do not apply to traveler

information messages.

4.2.5.3 Blank DMS (Use Case)

A DMS can be blanked when the DMS is online or in maintenance mode. When the DMS

is online, it is only blanked by the device's arbitration queue when the arbitration queue

becomes empty. When the DMS is in maintenance mode, the DMS can be blanked directly

by the user if they have the proper functional rights.

A DMS can be blanked indirectly by other commands, such as placing the device online,

offline or in maintenance mode or by resetting the device.

When a DMS that has beacons is blanked, its beacons are turned off.

4.2.5.4 Blank HAR (Use Case)

A HAR can be blanked if it is online or in maintenance mode. When the HAR is online,

the device is only blanked if there are no traffic events that have currently requested that a

message be placed on the device. When the HAR is in maintenance mode, the HAR can be

blanked directly by the user.

A HAR can be blanked indirectly through administrative functions such as placing the

device online or resetting the device.

When a HAR is blanked, the system will set the HAR's default message to be the current

CHART R3B3 Detailed Design 4-25 12/23/2008

message. Additionally, the system will deactivate any associated active SHAZAMs before

blanking the HAR itself.

4.2.5.5 Deactivate Traveler Information Message (Use Case)

The system will support deactivating an active traveler information message, causing it to

be removed from the arbitration queue. The message will be deactivated if the user disables

the message, if another traveler information message is activated, if the currently active

message or template is removed, or if the message becomes invalid or empty due to

changes in the travel route data. A travel time message can be deactivated as specified in

the travel time display schedule used by the DMS (the system-wide schedule or the

schedule specified for the DMS). Note that only traveler information messages with at least

one toll rate field are considered toll rate messages, not travel time messages, and therefore

are unaffected by the travel time schedule even if they also contain travel time fields. The

system will log a message to the operations log when a traveler information message is

deactivated, whether it was initiated by the user or automatically.

4.2.5.6 Evaluate Device Queue Entries (Use Case)

When the contents of a device queue are altered, it shall evaluate the entries on the queue to

determine what action (if any) to take on its associated device. When a device queue

becomes empty, it shall blank its corresponding device. When a device queue is evaluated

and it is not empty, it shall choose the highest priority message and set this message as the

device's current message if it is not set already.

4.2.5.7 Evaluate DMS Device Queue Entries (Use Case)

The system shall evaluate entries placed on a DMS's arbitration queue in response to traffic

events. The system shall use a priority algorithm to determine which message shall be

placed on the DMS device. The system shall evaluate entries when a new entry is added,

when an entry is removed, and when notified by the DMS device object that a previous

asynchronous request has completed. When the queue is evaluated, the highest priority

message shall be set on the DMS device, unless it is currently already set on the DMS

device. When an evaluation occurs and the queue has become empty, the queue shall blank

the DMS. The queue shall allow the concatenation of 2 single page messages to be set on

the DMS device according to certain rules and configuration settings. The rules that govern

this message concatenation feature are specified in the system profile.

4.2.5.8 Evaluate HAR Device Queue Entries (Use Case)

The system shall evaluate entries placed on a HAR's arbitration queue in response to traffic

events. The system shall use a priority algorithm to determine which message shall be

placed on the HAR device. The system shall evaluate entries when a new entry is added,

when an entry is removed, and when notified by the HAR device object that a previous

asynchronous request has completed. When the queue is evaluated, the highest priority

message shall be set on the HAR device, unless it is already currently set on the HAR

CHART R3B3 Detailed Design 4-26 12/23/2008

device. When an evaluation occurs and the queue has become empty, the queue shall set

the HAR device to its default message. The queue shall allow the concatenation of multiple

messages to be set on the HAR device as the recording space on the HAR allows and

according to configuration settings and concatenation rules. The rules that govern this

feature are specified by an administrator in the system profile.

4.2.5.9 Execute Response (Use Case)

An operator with the correct functional rights may execute the response plan for a particular

traffic event. Performing this operation will place the message from each response plan

item on the arbitration queue of the corresponding device.

4.2.5.10 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.2.5.11 Prioritize Device Queue (Use Case)

A user with the proper functional rights can manually change the priority of items on a

device's queue to override the queue's automated prioritization scheme. If this manual re-

prioritization causes a message on the queue to have a priority higher than the message that

is currently on the device, the device's queue will change the message to the message of

highest priority.

4.2.5.12 Remove Message From Device Queue (Use Case)

When a response plan item is removed from a traffic event's response plan, the item

removes its message from the queue of the device specified in the item. This causes the

queue to evaluate the remaining messages on the queue (if any) and either set the device to

the next highest priority message or blank the device.

4.2.5.13 Respond To Traffic Events (Use Case)

A user with proper functional rights can create a response plan associated with a traffic

event. This response plan defines DMS and HAR devices to be used to help manage the

traffic event along with the message to be placed on each device. After setting up or

changing entries in a response plan, the user can execute the plan. The user can also

execute individual items in the plan. When a user no longer wishes to use a specific device

in the response to the traffic event, the user may remove the item from the response plan.

When the user closes the traffic event, all items used in the traffic event response plan are

automatically removed. The inclusion of a device in a response plan is a request by the user

for the device to display the message. The message is only displayed if there are no traffic

events of higher priority that have also requested that a message be displayed on the device.

CHART R3B3 Detailed Design 4-27 12/23/2008

4.2.5.14 Revoke Response Items (Use Case)

A user with the proper functional rights can remove a device from the response plan of a

traffic event. The system will also automatically perform this operation when a traffic

event is closed. When a response plan item is removed from the response plan, the message

specified in the item is removed from the specified device's arbitration queue.

4.2.5.15 Set DMS Message (Use Case)

The message on a DMS can be set when the DMS is online or in maintenance mode. When

the DMS is online, the message is set by the DMS's arbitration queue. This queue sets the

message of the DMS to be the message that is on the queue that has the highest priority.

When the DMS is in maintenance mode, an operator with proper functional rights can set

the message on a DMS directly.

4.2.5.16 Set HAR Message (Use Case)

A HAR's message is set through the execution of an event response plan or set directly by

an administrator when the device is in maintenance mode. The message activation may

specify messages which were previously stored in message slots in the controller or a

message that was created using the HAR message editor.

When activating a HAR message created by the message editor the user may choose to use

the default header and trailer or just use the message body for the entire message. Messages

activated in this manner shall be loaded into the HAR controller in the slot designated for

immediate broadcast.

A HAR message activation also specifies if each associated SHAZAM should be activated

or not.

4.2.5.17 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

4.2.5.18 View Device Queue (Use Case)

An operator with proper functional rights can view the messages that are queued for a

device. The user shall be able to see the actual message to be set or a description of the

message (in the case of a voice message) and the current priority of each message.

CHART R3B3 Detailed Design 4-28 12/23/2008

4.2.6 R3B3ConfigureDMSTravelerInfoMsgSettings (Use Case Diagram)

This diagram shows use cases related to configuring the DMS settings related to traveler

information messages.

View
Traveler Information Message

True Display

Administrator

View DMS
Traveler Information

Messages

Specify
Traveler Information

Message FormatView Associated
Travel Routes

Add
Travel Route

to DMS

Remove
Travel Route
From DMS

Specify DMS
Traveler Information

Message Settings

Add
Traveler Information

Message

Edit
Traveler Information

Message

Set DMS
Travel Time

Display Schedule

Remove
Traveler Information

Message

For additional details on true display,
see the Manage Traveler Information
Message use case diagram.

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

Figure 4-6 R3B3ConfigureDMSTravelerInfoMsgSettings (Use Case Diagram)

4.2.6.1 Add Travel Route to DMS (Use Case)

The user shall be able to add a travel route to a DMS so that it is available for selection

when configuring traveler information messages for the DMS.

4.2.6.2 Add Traveler Information Message (Use Case)

A user with sufficient rights will be able to add a traveler information message to a DMS,

so that the message will be available for later use by an operator. A newly added message

will be disabled by default.

4.2.6.3 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.2.6.4 Edit Traveler Information Message (Use Case)

A user with sufficient rights will be able to edit a traveler information message that was

previously added to a DMS. The user will be able to change anything specified when

adding the message to the DMS (which does not include editing the message template

itself). See the Specify Traveler Information Message Format use case for details.

4.2.6.5 Remove Travel Route From DMS (Use Case)

The user shall be able to remove a travel route from a DMS so that it is no longer available

for selection when configuring traveler information messages for the DMS.

CHART R3B3 Detailed Design 4-29 12/23/2008

4.2.6.6 Remove Traveler Information Message (Use Case)

A user with sufficient rights will be able to remove a traveler information message that was

previously added to a DMS. The system will ask the user for confirmation, and will

automatically disable the message before removing it.

4.2.6.7 Set DMS Travel Time Display Schedule (Use Case)

The system shall allow a user with appropriate rights to set the travel time display schedule

for a DMS. The user can choose to use the system-wide schedule or to override it for the

DMS. The schedule shall include one or more time ranges when travel times should be

displayed, or it may be a 24/7 schedule.

4.2.6.8 Specify Traveler Information Message Format (Use Case)

The system shall allow a user with appropriate rights to set the format used to display a

traveler information message for a DMS. The user will be able to select one of the

previously defined message templates that exactly match the sign size. The system will

display a textual representation of the message template including the tags, which contain

index values indicating which travel route selection will serve as the data source for the tag.

For each travel route index used in the message, the user will be able to select from among

the travel routes associated with the DMS that can provide the data to satisfy all tags having

the given index. The default travel route of "None" will always be available, and this will

be the only option if there are no associated travel routes that can supply the data requested

by the tag. When specifying the message, a graphical representation of the message will be

displayed, and it will use actual data from the source if available, or dummy data if not

available. (See the View Traveler Information Message True Display use case for details).

(If routes are not selected (i.e., "None" is selected), the graphic will degrade according to

the rules specified in the template.) The user will be able to specify whether the rows of the

message (after the message is degraded due to missing data, if any) will be aligned

automatically.

4.2.6.9 Specify DMS Traveler Information Message Settings (Use Case)

A user with appropriate rights shall be permitted to configure a DMS for displaying traveler

information messages for travel times and/or toll rate information. The user will be able to

associate travel routes with the DMS to make them available for use by the message

templates, and the user will be able to view the currently associated travel routes. The user

will be able to manage (create, edit, delete, and view) traveler information messages for a

DMS. Traveler information messages use pre-defined message templates and associated

travel routes. The traveler information messages are configured in advance for a DMS so

that an operator can use the messages without having to edit them. The user will be able to

specify the arbitration queue levels at which travel time and toll rate messages will be

added. (By default, these levels will be the Travel Time and Toll Rate levels, but other

levels may be selected). The user will be able to specify a travel time display schedule for a

DMS that overrides the system-wide display schedule. See the specific use cases for

details.

CHART R3B3 Detailed Design 4-30 12/23/2008

4.2.6.10 View Associated Travel Routes (Use Case)

The system shall allow the user to view the travel routes associated with the DMS.

4.2.6.11 View DMS Traveler Information Messages (Use Case)

The system will allow the user to view the traveler information messages configured for a

DMS. It will display a graphical representation of the message, using actual data from the

routes if available, or dummy data if not available. It will also display the enabled /

disabled status of the messages.

4.2.6.12 View Traveler Information Message True Display (Use Case)

The system shall allow the user to preview the traveler information message as a graphical

representation. The message will be formatted for display as described in the Format

Traveler Information Message use case. The graphic will be updated if the message

changes (although if the message exceeds the sign size, the image may not be updated).

CHART R3B3 Detailed Design 4-31 12/23/2008

4.3 Device Enhancements

4.3.1 R3B3ConfigureDevices (Use Case Diagram)

This use case diagram shows use cases related to device configurations.

Administrator

Configure SHAZAM

Configure Detector

Set Device Location

Configure Camera

Configure
NTCIP DMS

Specify DMS
Traveler Information

Message Settings

See R3B3ConfigureDMSTravlerInfoMsgSettings UCD
for details.

Remove DMS

Configure HAR

Specify TCPIP
device connection

Configure DMS

Delete External TSS

Remove TSS

Delete External DMS

«include»

«extend»

«include»

«include»

«include»

«extend»

«include»

«include»

«include»

«include»

«extend»

Figure 4-7 R3B3ConfigureDevices (Use Case Diagram)

4.3.1.1 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.3.1.2 Configure NTCIP DMS (Use Case)

The system shall allow a user with appropriate rights to configure an NTCIP DMS. This

feature exists in R3B2 and is being enhanced in R3B3 to include the setting of the default

font and line spacing.

CHART R3B3 Detailed Design 4-32 12/23/2008

4.3.1.3 Configure Camera (Use Case)

The system shall allow a user with appropriate rights to configure cameras. This feature

exists in R3B2 and is being enhanced in R3B3 to include more location information.

4.3.1.4 Configure Detector (Use Case)

The system shall allow a user with appropriate rights to configure the settings for a detector

(TSS), unless it is an external device. This feature exists in R3B2 and is being enhanced in

R3B3 to include more location information and the ability to use TCP/IP to communicate

with the device.

4.3.1.5 Configure DMS (Use Case)

The system shall allow a user with appropriate rights to configure the settings for a DMS,

unless it is an external DMS. This feature exists in R3B2 and is being enhanced in R3B3 to

include more location information, configuration of traveler information message settings

and the ability to use TCP/IP for communication. For NTCIP DMSs, settings are being

added for default font and line spacing. Settings will include the operations center to send

an alert to when the DMS goes into hardware failure, the operations center to send an alert

to when the DMS goes into communications failure, the notification group to send a

notification to when the DMS goes into hardware failure, and the notification group to send

a notification to when the DMS goes into communication failure.

4.3.1.6 Configure HAR (Use Case)

The system shall allow a user with appropriate rights to configure HAR devices. This

feature exists in R3B2 and is being enhanced in R3B3 to include more location information.

4.3.1.7 Configure SHAZAM (Use Case)

The system shall allow a user with appropriate rights to configure SHAZAM devices. This

feature exists in R3B2 and is being enhanced in R3B3 to include more location information.

4.3.1.8 Delete External DMS (Use Case)

The system shall allow a suitably privileged user to delete an external DMS from the

CHART system. When doing so, the DMS shall remain as a candidate DMS that is marked

as being excluded from the CHART system. The administrator can choose to include the

DMS at a later time.

4.3.1.9 Delete External TSS (Use Case)

The system shall allow a suitably privileged user to delete an external TSS from the

CHART system. When doing so, the TSS shall remain as a candidate TSS that is marked

as being excluded from the CHART system. The administrator can choose to include the

TSS at a later time.

CHART R3B3 Detailed Design 4-33 12/23/2008

4.3.1.10 Remove DMS (Use Case)

A user with appropriate rights can remove a DMS from the CHART system.

4.3.1.11 Remove TSS (Use Case)

A user with appropriate rights can remove a TSS from the CHART system.

4.3.1.12 Set Device Location (Use Case)

The system shall allow a user with appropriate rights to set the location information for a

device, including: location description, latitude/longitude, state, county, route type, route

number (or name, and flag to indicate which to use), direction (including bidirectional

directions), proximity to intersecting feature (intersection or state milepost), and

intersecting feature information. The intersecting feature information will include state

milepost number or intersecting route type, route number (or name, and flag to indicate

which to use). The system will validate the geographical coordinates (if entered) against

system-wide bounds defined in the system profile to make sure that they are not

unreasonable. The location description is a required field, and it will be automatically

generated by the system but may be overridden by the user. The system will prompt for

confirmation when the user attempts to override the generated location description.

4.3.1.13 Specify DMS Traveler Information Message Settings (Use Case)

A user with appropriate rights shall be permitted to configure a DMS for displaying traveler

information messages for travel times and/or toll rate information. The user will be able to

associate travel routes with the DMS to make them available for use by the message

templates, and the user will be able to view the currently associated travel routes. The user

will be able to manage (create, edit, delete, and view) traveler information messages for a

DMS. Traveler information messages use pre-defined message templates and associated

travel routes. The traveler information messages are configured in advance for a DMS so

that an operator can use the messages without having to edit them. The user will be able to

specify the arbitration queue levels at which travel time and toll rate messages will be

added. (By default, these levels will be the Travel Time and Toll Rate levels, but other

levels may be selected). The user will be able to specify a travel time display schedule for a

DMS that overrides the system-wide display schedule. See the specific use cases for

details.

4.3.1.14 Specify TCPIP device connection (Use Case)

The system shall allow a user with appropriate rights to specify TCP/IP connection

information for a device, including the IP address and port for the device.

CHART R3B3 Detailed Design 4-34 12/23/2008

4.3.2 R3B3ViewDeviceLists (Use Case Diagram)

This diagram shows use cases related to the operator viewing device lists. In R3B3, the

operator can configure the specific columns displayed.

View DMS List

View SHAZAM List

View Camera List

Operator

View HAR List

View Detector List

Set Column
Visibility

View Monitor List
«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-8 R3B3ViewDeviceLists (Use Case Diagram)

4.3.2.1 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.3.2.2 Set Column Visibility (Use Case)

The user can choose to show or hide columns that appear within a list. The user cannot

hide the column that contains the object's name. The system will persist the user's choices

for columns to be displayed per list type, and will display the same columns the next time

the list is displayed. Preferences will be stored as cookies on the user's machine.

4.3.2.3 View Camera List (Use Case)

The system will allow a user with appropriate rights to view the list of cameras defined in

the system. This feature exists in R3B2 and is enhanced for R3B3. New columns will

include the route, county, direction, milepost, owning organization, and connection site. To

save screen space, the visible columns will be selectable. Several of the new columns

(milepost, owning organization, and connection site) will be hidden by default to save

space. The user will be able to sort the camera list by county, route, direction, connection

site, state milepost, and owning organization name (in addition to the columns that already

support sorting in R3B2). The user will be able to filter the camera list by county, route,

direction, connection site, and owning organization name (in addition to the columns that

already support sorting in R3B2).

CHART R3B3 Detailed Design 4-35 12/23/2008

4.3.2.4 View Detector List (Use Case)

The system will allow a user with appropriate rights to view the list of detectors (TSSs)

defined in the system. This feature exists in R3B2 and is enhanced for R3B3 to show new

columns and to show either the actual or summary speeds for a detector based on the user's

rights and the owning organization of the detector. New columns will include the route,

county, direction, milepost, owning organization, port managers, and connection site. To

save screen space, the visible columns will be selectable. Several of the new columns

(milepost, owning organization, port managers, and connection site) will be hidden by

default to save space. The user will be able to sort the TSS list by county, route, direction,

port manager names, connection site, state milepost, and owning organization name (in

addition to the columns that already support sorting in R3B2). The user will be able to

filter the TSS list by county, route, direction, port manager names, connection site, and

owning organization name (in addition to the columns that already support sorting in

R3B2). The system will allow the user to filter the list to include or exclude external TSSs

and/or internal (CHART) TSSs if the user has rights to view external TSSs; otherwise,

external TSSs will be filtered out. If external TSSs are displayed, the user will be able to

filter the list by agency.

4.3.2.5 View DMS List (Use Case)

The system will allow a user with appropriate rights to view the list of DMSs defined in the

system. This feature exists in R3B2 and is enhanced for R3B3. New columns will include

the route, county, direction, milepost, owning organization, port managers, connection site,

and travel time schedule overridden indicator. To save screen space, the visible columns

will be selectable. Several of the new columns (milepost, owning organization, port

managers, connection site, and travel time schedule overridden indicator) will be hidden by

default to save space. The user will be able to sort the DMS list by county, route, direction,

port manager names, connection site, travel time schedule overridden indicator, state

milepost, and owning organization name (in addition to the columns that already support

sorting in R3B2). The user will be able to filter the DMS list by county, route, direction,

port manager names, connection site, travel time schedule overridden indicator, and owning

organization name (in addition to the columns that already support sorting in R3B2). The

system will allow the user to filter the list to include or exclude external DMSs and/or

internal (CHART) DMSs if the user has rights to view external DMSs; otherwise, external

DMSs will be filtered out. If external DMSs are displayed, the user will be able to filter the

list by agency.

4.3.2.6 View HAR List (Use Case)

The system will allow a user with appropriate rights to view the list of HARs defined in the

system. This feature exists in R3B2 and is enhanced for R3B3. New columns will include

the route, county, direction, milepost, owning organization, port managers, and connection

site. To save screen space, the visible columns will be selectable. Several of the new

columns (milepost, owning organization, port managers, and connection site) will be hidden

by default to save space. The user will be able to sort the HAR list by county, route,

CHART R3B3 Detailed Design 4-36 12/23/2008

direction, port manager names, connection site, state milepost, and owning organization

name (in addition to the columns that already support sorting in R3B2). The user will be

able to filter the HAR list by county, route, direction, port manager names, connection site,

and owning organization name (in addition to the columns that already support sorting in

R3B2).

4.3.2.7 View Monitor List (Use Case)

The system shall allow a user with the proper rights to view a list of monitors defined in the

system. This feature exists in R3B2 and is enhanced in R3B3. A network connection site

column will be added, which will be hidden by default, but (when visible) will allow the

user to sort and filter the list by connection site name. To save screen space, the visible

columns will be selectable.

4.3.2.8 View SHAZAM List (Use Case)

The system will allow a user with appropriate rights to view the list of SHAZAMs defined

in the system. This feature exists in R3B2 and is enhanced for R3B3. New columns will

include the route, county, direction, milepost, owning organization, port managers, and

connection site. To save screen space, the visible columns will be selectable. Several of

the new columns (milepost, owning organization, port managers, and connection site) will

be hidden by default to save space. The user will be able to sort the SHAZAM list by

county, route, direction, port manager names, connection site, state milepost, and owning

organization name (in addition to the columns that already support sorting in R3B2). The

user will be able to filter the SHAZAM list by county, route, direction, port manager

names, connection site, and owning organization name (in addition to the columns that

already support sorting in R3B2).

CHART R3B3 Detailed Design 4-37 12/23/2008

4.3.3 R3B3ViewDeviceDetails (Use Case Diagram)

This diagram illustrates the functionality to display detailed device information. For R3B3,

device location information will be enhanced for most device types. DMS and TSS details

include TCP/IP configuration data. DMS details include traveler information messages and

NTCIP message settings. The system enforces rights to restrict access to sensitive device

configuration information, external DMS's/TSS's, and detailed lane specific data for TSS's.

View DMS
Details

View SHAZAM
Details

View Detector
Details

View Camera
Details

View Device
 Location Details

Note: see Manage Users UCD
for uses regarding setting user
rights , inc luding those that affect
viewing device details.

View TCP IP
Port Configuration

Operator

View Travel Time
Message Schedule

View DMS Traveler
Info Message Settings

View Lane
Specific Data

View NTCIP
Font Settings

View Associated
Travel Routes

For more details see the
Manage Traveler Information Messages
diagram.

View DMS
Traveler Information

Messages

View
Traveler Information Message

True Display

View HAR
Details

«inc lude»
«inc lude»

«inc lude»

«inc lude»

«include»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«inc lude»

«include»

«inc lude»

Figure 4-9 R3B3ViewDeviceDetails (Use Case Diagram)

4.3.3.1 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.3.3.2 View Associated Travel Routes (Use Case)

The system shall allow the user to view the travel routes associated with the DMS.

4.3.3.3 View Camera Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a camera. This

feature exists in R3B2 and is enhanced in R3B3 to show additional location information.

4.3.3.4 View Detector Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a detector (TSS).

This feature exists in R3B2 and is enhanced in R3B3 to show additional fields and to

provide a read-only version for external detectors. New user rights are also added in R3B3

to allow more granular control of the data displayed on the page based on the device's

organization and the rights granted to the user. Two new user rights will determine the type

of Volume, Speed, and Occupancy (VSO) data the user will see - either the actual VSO

data, just a speed range, or no VSO data. Another new user right will determine if the user

can view sensitive configuration data for a TSS.

CHART R3B3 Detailed Design 4-38 12/23/2008

4.3.3.5 View Device Location Details (Use Case)

The system shall allow a user with appropriate rights to view the location information for a

device.

4.3.3.6 View DMS Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a DMS device.

This feature exists in R3B2 and is enhanced in R3B3 to show additional fields, and to

provide a read-only version for external DMSs.

4.3.3.7 View DMS Traveler Info Message Settings (Use Case)

The system shall allow a user with proper rights to view the DMS settings related to

traveler information messages.

4.3.3.8 View DMS Traveler Information Messages (Use Case)

The system will allow the user to view the traveler information messages configured for a

DMS. It will display a graphical representation of the message, using actual data from the

routes if available, or dummy data if not available. It will also display the enabled /

disabled status of the messages.

4.3.3.9 View HAR Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a HAR device.

This feature exists in R3B2 and is enhanced in R3B3 to show location information.

4.3.3.10 View Lane Specific Data (Use Case)

The system shall allow a user with appropriate rights to view the lane specific data for a

detector, as provided by the detector. For an RTMS detector, this will likely be a lane

number (0-7) and associated traffic parameters (speed, vol, occ).

4.3.3.11 View NTCIP Font Settings (Use Case)

The system shall display the font related settings for NTCIP model DMSs. This includes

the default font number and default line spacing.

4.3.3.12 View SHAZAM Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a SHAZAM

device. This feature exists in R3B2 and is enhanced in R3B3 to show additional location

information.

4.3.3.13 View TCP IP Port Configuration (Use Case)

The system shall allow a user with proper rights to view the TCP/IP connection

CHART R3B3 Detailed Design 4-39 12/23/2008

configuration for a device that supports such connections.

4.3.3.14 View Travel Time Message Schedule (Use Case)

The system shall allow the user to view the travel time display schedule for the DMS. The

schedule specifies when travel times may be displayed on the DMS. Whether or not travel

times are actually displayed depend on whether or not a traveler information message is

currently active and whether or not it includes travel times.

4.3.3.15 View Traveler Information Message True Display (Use Case)

The system shall allow the user to preview the traveler information message as a graphical

representation. The message will be formatted for display as described in the Format

Traveler Information Message use case. The graphic will be updated if the message

changes (although if the message exceeds the sign size, the image may not be updated).

CHART R3B3 Detailed Design 4-40 12/23/2008

4.3.4 R3B3ManageTrafficEvents (Use Case Diagram)

This diagram shows use cases related to managing traffic events. In R3B3, the operator can

find close devices and add them to an event's response plan. R3B3 introduces the ability to

transfer traffic event responsibility between Op Centers. New rights for controlling access

to traffic event details data are included in R3B3. In R3B3 associations are automatically

made between CHART and external events. In addition, new columns are added to the

traffic event list.

View Time
Last Modified

View Traffic
Event Details

Create CHART
Event from

External Event

View Devices
Near Event

Associate
CHART Event
with External

Event

System

Implemented in R3B2,
but perform automatically
in R3B3 when CHART event
created from external event.

Operator

View Traffic
Event List

View Time
Opened

Set Column
Visibility

Set Close Device Radius

View Lane
Closed Percent

Create Traffic
Event 1

Add Close DMS
to Response Plan

View Network
Connection Site

Updated in R3B3.
(Existing Create Traffic Event
use case is read-only, hence the "1")

Transfer
Resources

Updated for R3B3
Existing
prior to R3B3

Transfer
Traffic
Event

Add Close HAR
to Response Plan

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-10 R3B3ManageTrafficEvents (Use Case Diagram)

4.3.4.1 Add Close DMS to Response Plan (Use Case)

The system allows appropriately privileged users to add a DMS listed as "close" to a traffic

event to the event's response plan. The DMS will be added without a message. This

feature only applies to CHART DMSs (External DMSs are excluded).

4.3.4.2 Add Close HAR to Response Plan (Use Case)

The system allows appropriately privileged users to add a HAR listed as "close" to a traffic

event to the event's response plan. The HAR will be added with the HAR's default (empty)

CHART R3B3 Detailed Design 4-41 12/23/2008

message.

4.3.4.3 Associate CHART Event with External Event (Use Case)

The system shall allow a CHART event to be associated with an event imported from an

external system. This feature exists in R3B2 and will be enhanced in R3B3 to perform this

association automatically if an external event is used to create a new opened CHART event.

4.3.4.4 Create CHART Event from External Event (Use Case)

The system shall allow a user with proper rights to create a new, opened CHART event

using the data from an existing external event. The system shall automatically create an

association between the new event and the external event.

4.3.4.5 Create Traffic Event 1 (Use Case)

The user can create a new traffic event. This functionality is being updated in R3B3 to

assign an owning organization to the traffic event when it is created. The owning

organization assigned will be the owning organization of the user's operations center.

4.3.4.6 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.3.4.7 Set Close Device Radius (Use Case)

The user can select the radius used to define how close a device must be to the event for the

device to be shown in the "close devices" section of an event details page. The user's radius

setting for an event will stay in effect until the user changes the setting or they log out, even

if they navigate away from the event details page and return to it at a later time.

4.3.4.8 Set Column Visibility (Use Case)

The user can choose to show or hide columns that appear within a list. The user cannot

hide the column that contains the object's name. The system will persist the user's choices

for columns to be displayed per list type, and will display the same columns the next time

the list is displayed. Preferences will be stored as cookies on the user's machine.

4.3.4.9 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

CHART R3B3 Detailed Design 4-42 12/23/2008

4.3.4.10 Transfer Resources (Use Case)

The system allows the user to transfer controlled resources to another operations center that

has logged in users. This is usually done when the last user at an operations center needs to

log out but still has resources for which they are responsible. This feature provides a way

for the user to hand off responsibility to another center, allowing the user to be permitted to

log out. (The system prevents the last user from logging out of a center if that center has

controlled resources.)

4.3.4.11 Transfer Traffic Event (Use Case)

The user can transfer a traffic event from their center to another center. In R3B3, this

feature is enhanced to change the owning organization of the traffic event to the owning

organization of the operations center to which the event is transferred.

4.3.4.12 View Devices Near Event (Use Case)

The system shall allow users with appropriate rights to view devices that are located close

to a traffic event. This will appear as a separate section in the traffic event details page that

is initially hidden, and can be expanded to show a heading for each device type, each of

which can be expanded to show the devices of that type. The following device types are

included: DMS, HAR, Detector, and Camera (including their local monitor usage). Details

for each device (as available) will be shown as follows: DMS: Name/Location Description,

Distance from the event, Route, Direction, Intersecting Feature, Current Message, Current

Beacon State, Current Mode, and Current Status; HAR: Name/Location Description,

Distance from the event, Route, Direction, Intersecting Feature, Current Mode, Current

Status, and Current Transmitter Status; Detector: Name/Location Description, Distance

from the event, Route, Direction, Intersecting Feature, Current Mode, Current Status, and

Average Speed. The display of average speed will be dependent on the user's rights and the

detector's owning organization, so for each detector the user may see the average speed,

average speed range, or no data; Camera: Name/Location Description, Distance from the

event, Route, Direction, Intersecting Feature, Current Mode, Current Status,Local monitors

where displayed, and controlling operations center. This feature will only be available for

traffic events that have a latitude and longitude specified, and for devices that have latitude

and longitude defined. External devices that were imported into the CHART system will be

included in the list of close devices if they fall within the specified radius of the event and

will be marked such that the user can distinguish CHART devices from External devices.

4.3.4.13 View Lane Closed Percent (Use Case)

The user can view the percent of lanes closed for a traffic event while viewing a traffic

event list. By default, this column will be hidden and the user must explicitly choose to

display this column. Sorting and filtering will be permitted on this field.

4.3.4.14 View Network Connection Site (Use Case)

The user can view the network connection site of a traffic event while viewing a traffic

CHART R3B3 Detailed Design 4-43 12/23/2008

event list. By default, this column will be hidden and the user must explicitly choose to

display this column. Sorting and filtering will be permitted on this field.

4.3.4.15 View Time Last Modified (Use Case)

The user can view the time a traffic event was last modified while viewing a traffic event

list. By default, this column will be hidden and the user must explicitly choose to display

this column. Sorting and filtering will be permitted on this field.

4.3.4.16 View Time Opened (Use Case)

The user can view the time a traffic event was opened while viewing a traffic event list. By

default, this column will be hidden and the user must explicitly choose to display this

column. Sorting and filtering will be permitted on this field.

4.3.4.17 View Traffic Event List (Use Case)

The ability to view a list of traffic events is enhanced in R3B3 to allow users to choose to

show / hide columns. A couple of new columns are also being added that previously were

sort columns (via a list box at the top of the page) but were not viewable. The traffic event

list will restrict access to information based on a user's rights and the organization of the

traffic event. The restricted information will include the ability to see external events, and

the use of the word "fatality" in the traffic event name and incident type.

4.3.4.18 View Traffic Event Details (Use Case)

A user with appropriate rights shall be permitted to view the details for an event. This

feature exists in R3B2 and is being enhanced in R3B3 to show new fields, such as the

owning organization. The event details will be changed to restrict access based on user

rights and the organization of the traffic event. The restricted information will include the

use of the word "fatality" (in the name and incident type) and access to viewing the event's

history log.

CHART R3B3 Detailed Design 4-44 12/23/2008

4.3.5 R3B3ManageDevices (Use Case Diagram)

This diagram shows uses of the system related to DMS and TSS Communication. For

R3B3, TCP/IP device communications is supported for DMS's and HARS. In addition,

R3B3 adds support for NTCIP compliant DMS messages.

System

Communicate
With TSS

Communicate
With DMS

Set NTCIP DMS
Message

Figure 4-11 R3B3ManageDevices (Use Case Diagram)

4.3.5.1 Communicate With DMS (Use Case)

The system will support TCP/IP communication with a DMS that supports it, using the IP

address and port number specified in the device configuration.

4.3.5.2 Communicate With TSS (Use Case)

The system will support TCP/IP communication with a TSS that supports it, using the IP

address and port number specified in the device configuration.

CHART R3B3 Detailed Design 4-45 12/23/2008

4.3.5.3 Set NTCIP DMS Message (Use Case)

The system will automatically set the default font number and the default line spacing (as

specified in the DMS configuration) for an NTCIP DMS before setting the message.

4.3.5.4 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

CHART R3B3 Detailed Design 4-46 12/23/2008

4.4 External Interfaces (RITIS Import)

4.4.1 R3B3ImportRITISData (Use Case Diagram)

This diagram shows use cases related to RITIS. New for R3B3 is the import of external

DMS/TSS's. Additionally, R3B3 provides enhanced Traffic Event import and connection

monitoring.

Create CHART
External DMS

Update Existing
CHART External

DMS

Create CHART
External TSS

Update Existing
CHART External

TSS

System

Import RITIS
Event Data

Import RITIS
TSS Data

Import RITIS
DMS Data

Import RITIS
Data

Create External
Connection

Alert

Create External
Event Alert

Flag Interesting
RITIS Events

Map External
Agency to

CHART Org

Translate
RITIS

Event Data

Send External
Connection Notification

Update Existing
CHART External

Traffic Event

Monitor
External System

Connection

Re-establish
Connection
To External

System

Send External
Event Notification

Translate RITIS
DMS Data

Translate RITIS
TSS Data

Create CHART
External

Traffic Event

«include» «include»

«include»

«include» «include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-12 R3B3ImportRITISData (Use Case Diagram)

4.4.1.1 Create CHART External Traffic Event (Use Case)

The system shall create a new CHART External Event when a candidate event passes one

of the configured event import rules. The data imported for an event shall include the

following, as available in the external data source: event creation time, event closed time,

scene cleared time, event state, external system name, external event id, external agency,

location description, CHART event type, lane status, vehicles involved, and geolocation

CHART R3B3 Detailed Design 4-47 12/23/2008

data (lat/long).

4.4.1.2 Create CHART External DMS (Use Case)

When DMS data is imported from RITIS, if an administrator has already indicated that the

DMS is to be included in CHART, and it has not already been added to CHART, it will be

added to CHART as an External DMS.

4.4.1.3 Create CHART External TSS (Use Case)

When TSS data is imported from RITIS, if an administrator has already indicated that the

TSS is to be included in CHART, and it has not already been added to CHART, it will be

added to CHART as an External TSS.

4.4.1.4 Create External Connection Alert (Use Case)

The system will create an External Connection Alert if an external connection transitions to

the "failed" state and remains there for an amount of time, as specified in the connection

settings, if the alert is enabled in the connection settings. The system will create an

External Connection Alert if an external connection transitions to the "warning" state and

remains there for an amount of time, as specified in the connection settings, if the alert is

enabled in the connection settings. (The time spent in the "failed" state contributes to the

time counted for a warning).

4.4.1.5 Create External Event Alert (Use Case)

The system will create an External Event Alert for the operations center specified in the

event import rule if an external traffic event matches an event import rule and the rule's

settings indicate that an alert should be issued.

4.4.1.6 Flag Interesting RITIS Events (Use Case)

The system shall set the CHART event "interesting" flag when importing a RITIS event if

an event import rule was configured to generate an alert and the rule passed.

4.4.1.7 Import RITIS Data (Use Case)

The system shall import data from the RITIS system.

4.4.1.8 Import RITIS DMS Data (Use Case)

The system shall import DMS data from RITIS. RITIS provides the data in the TMDD

standard. Only DMSs that have been selected for inclusion in CHART by the administrator

will become CHART external DMSs. Once a DMS has been included in CHART, its data

will be kept updated in CHART as updates for it are received from RITIS.

CHART R3B3 Detailed Design 4-48 12/23/2008

4.4.1.9 Import RITIS Event Data (Use Case)

The system shall import event data from RITIS. The data is provided by RITIS in the SAE

ATIS J2354 standard. This capability exists in R3B2, however it is being enhanced in

R3B3. External event import rules, configured by an administrator, will be used to

determine which events get imported into CHART. An event that meets any rule will be

imported, events that do not match any rules will not get imported.

4.4.1.10 Import RITIS TSS Data (Use Case)

The system shall import TSS data from RITIS. RITIS provides the data in the TMDD

standard. Only TSSs that have been selected for inclusion in CHART by the administrator

will become CHART external TSSs. Once a TSS has been included in CHART, its data

will be kept updated in CHART as updates for it are received from RITIS.

4.4.1.11 Map External Agency to CHART Org (Use Case)

The system shall translate the external agency ID for data imported from an external system

into a CHART Organization. This mapping is done when the external object (Ex. Event,

DMS, TSS) is created. (This is required to allow CHART to enforce organization based

user rights.) The mapping of agency to organization will be configured by a system

administrator. If an external object is received and an organization mapping has not been

configured for its agency, a default organization will be used.

4.4.1.12 Monitor External System Connection (Use Case)

The system shall monitor the state of the External System Connection.

4.4.1.13 Re-establish Connection To External System (Use Case)

The system shall attempt to re-establish connection to the External System when the

connection is down or unreasonably inactive.

4.4.1.14 Send External Connection Notification (Use Case)

The system will send a notification to a specified notification group if an external

connection transitions to the "failed" state and remains there for an amount of time, as

specified in the connection settings, if enabled in the connection settings. The system will

send a notification to a specified notification group if an external connection transitions to

the "warning" state and remains there for an amount of time, as specified in the connection

settings, if enabled in the connection settings. (The time spent in the "failed" state

contributes to the time counted for a warning).

4.4.1.15 Send External Event Notification (Use Case)

The system will send a notification to the group specified in the event import rule if an

external traffic event matches an event import rule and the rule's settings indicate that a

CHART R3B3 Detailed Design 4-49 12/23/2008

notification should be sent.

4.4.1.16 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

4.4.1.17 Translate RITIS DMS Data (Use Case)

When DMS data is imported from RITIS, the system will convert the data from the RITIS

format (TMDD with RITIS extensions) into CHART format.

4.4.1.18 Translate RITIS Event Data (Use Case)

When an External Event is created or updated the system shall translate RITIS event data

(SAE ATIS J2354) to CHART Traffic Event data. For R3B3 lane data, vehicles involved

data and geolocation have been added to existing R3B2 translations.

4.4.1.19 Translate RITIS TSS Data (Use Case)

When TSS data is imported from the RITIS system, it will be translated from the format

used by RITIS (TMDD with RITIS extensions) to CHART format.

4.4.1.20 Update Existing CHART External Traffic Event (Use Case)

The system shall update any existing CHART External Events (I.E. previously imported)

with new information provided about that event from the external source. This includes

updating CHART External Traffic Events to the closed state. The data updated for an event

shall include the following, as available in the external data source: event creation time,

event closed time, scene cleared time, event state, location description, event description,

CHART event type, lane status, vehicles involved, and geolocation data (lat/long).

4.4.1.21 Update Existing CHART External DMS (Use Case)

When a DMS is imported from RITIS, if it has been previously added to CHART as an

External DMS, the data for that external DMS will be updated.

4.4.1.22 Update Existing CHART External TSS (Use Case)

When a TSS is imported from RITIS, if it has been previously added to CHART as an

External TSS, the data for that external TSS will be updated.

CHART R3B3 Detailed Design 4-50 12/23/2008

4.4.2 R3B3ConfigureExternalSystemSettings (Use Case Diagram)

This diagram shows use cases related to external system configuration settings.

Configure External
Event Import Rules

View Event
Import Rules

Add Event
Import Rule

Edit Event
Import Rule

Delete Event
Import Rule

Configure
External System

Settings

Configure
External Connection
Alert And Notification

Settings

Configure External
Agencies To

Orgs Mapping

Configure Candidate
External DMSs

Configure Candidate
External TSSs

Delete
External TSS

Create CHART
External TSS

Filter Candidate
External Device

List

Delete
External DMS

Create CHART
External DMS

Administrator

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-13 R3B3ConfigureExternalSystemSettings (Use Case Diagram)

4.4.2.1 Add Event Import Rule (Use Case)

A suitably privileged user can add an event import rule to the system. Each rule contains

criteria that when met by an external event will cause that external event to be imported into

the CHART system. Rules can also have actions that are taken if the criteria is met,

including whether or not an External Event Alert should be sent and to which operations

center, whether or not a notification should be sent and to which notification group, and

whether or not the event's interesting flag should be set upon import. The following criteria

are included:

Geographical Area: zero or more named geographical areas that have been defined in

CHART. If an event's latitude/longitude falls within a specified geographical area, it

matches the criteria. This criteria can be set to "empty" to indicate it matches events

without a latitude/longitude, or "any" to indicate that any event (regardless of lat/long

value) matches this criteria.

U.S. State: One or more States within the U.S. If an event contains a state and it is the same

as the state criteria specified, it matches the criteria. This criteria can be set to "empty" to

indicate it matches events that have no state specified, or "any" to indicate any event

CHART R3B3 Detailed Design 4-51 12/23/2008

matches regardless of its state value.

Route Type: A type of route, such as interstate, state road, county road, etc. as defined in

CHART. An event with a route type specified that is the same as the route type specified in

the rule criteria matches the criteria. A value of "empty" can be used to match events that

don't have a route type specified, and the value of "any" can be used to cause any event to

match regardless of its route type value.

Search Text: Zero or more text strings that must be found in one of the following fields in

the event - event name, event description, route number, or county. If the search text

criteria is found anywhere in one of these fields of the event, the event matches this criteria.

Lanes Closed: The number of lanes that must be indicated as closed in the event. A value

of "empty" can be used to cause an event without lane closure data to match, and a value of

"any" can be used to cause any event to match regardless of its lane closure data.

CHART Event Type: Zero or more CHART event types, such as incident, disabled vehicle,

etc. An event whose event type maps to any of the selected CHART event types will match

this criteria. All events will match this criteria if no event types are selected.

4.4.2.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.4.2.3 Configure Candidate External DMSs (Use Case)

The administrator can view a list of DMSs that exist in external systems (candidate external

DMSs) and configure whether or not they are to be included in the CHART system.

Because the list of devices could be large, a filtering capability is provided to allow the

administrator to manage smaller groups of devices at one time. When showing a list of

candidate DMSs (full list or filtered), the following fields will be included: DMS name,

agency, location description, indication of whether the DMS is currently marked for

inclusion in CHART, and an indication of whether the DMS is currently marked for

exclusion from CHART.

4.4.2.4 Configure Candidate External TSSs (Use Case)

The administrator can view a list of TSSs that exist in external systems (candidate external

TSSs) and configure whether or not they are to be included in the CHART system.

Because the list of devices could be large, a filtering capability is provided to allow the

administrator to manage smaller groups of devices at one time. When showing a list of

candidate TSSs (full list or filtered), the following fields will be included: TSS name,

agency, location description, indication of whether the TSS is currently marked for

inclusion in CHART, and an indication of whether the TSS is currently marked for

exclusion from CHART.

CHART R3B3 Detailed Design 4-52 12/23/2008

4.4.2.5 Configure External Agencies To Orgs Mapping (Use Case)

The administrator can manage the list of external agencies that may exist in data exported

from external systems, and set the CHART organization to be assigned to external objects

from that agency during import. Each agency will be specified for use by a specific

external system and should be unique within that external system.

4.4.2.6 Configure External Connection Alert And Notification Settings (Use Case)

The system will allow a suitably privileged user to configure the settings for external

system connection alerts and notifications. For each external system the user will be able to

specify a time threshold for sending alerts/notifications if the connection is in a warning or

failure state for at least the specified period of time. The user will be able to specify

whether warning alerts/notifications should be sent in addition to failures. The user will be

able to specify whether alerts are enabled or disabled, and (if enabled) which operations

center to send the alerts to. The user will be able to specify whether notifications are

enabled or disabled, and (if enabled) which group to send notifications to.

4.4.2.7 Configure External Event Import Rules (Use Case)

A user with sufficient rights will be able to add, edit, and remove rules for importing

external events. These rules will contain criteria that an external event must meet to be

imported into the CHART system. Each rule will also specify whether the event is to be

marked "interesting", should generate an External Event Alert, or should cause a

notification message to be sent when the event is imported.

4.4.2.8 Configure External System Settings (Use Case)

The system shall allow a user with appropriate rights to configure settings related to

external systems. Several settings exist in R3B2, and R3B3 will add additional settings.

External Event Rules will govern which external events are imported into CHART, whether

they are marked as "interesting", whether an External Event Alert is generated for them,

and whether a notification is sent. The user can also choose which external DMSs and

detectors to include / exclude from CHART. The user will be able to specify connection

failure timeouts for sending External Connection Alerts and/or notifications. The user will

be able to specify the external system/agency mapping to CHART organizations, for

assigning an organization when importing traffic events and devices.

4.4.2.9 Create CHART External DMS (Use Case)

When DMS data is imported from RITIS, if an administrator has already indicated that the

DMS is to be included in CHART, and it has not already been added to CHART, it will be

added to CHART as an External DMS.

4.4.2.10 Create CHART External TSS (Use Case)

When TSS data is imported from RITIS, if an administrator has already indicated that the

CHART R3B3 Detailed Design 4-53 12/23/2008

TSS is to be included in CHART, and it has not already been added to CHART, it will be

added to CHART as an External TSS.

4.4.2.11 Delete External DMS (Use Case)

The system shall allow a suitably privileged user to delete an external DMS from the

CHART system. When doing so, the DMS shall remain as a candidate DMS that is marked

as being excluded from the CHART system. The administrator can choose to include the

DMS at a later time.

4.4.2.12 Delete Event Import Rule (Use Case)

A suitably privileged user can delete an event import rule from the system. The system

shall require the user to confirm this action before it is completed.

4.4.2.13 Delete External TSS (Use Case)

The system shall allow a suitably privileged user to delete an external TSS from the

CHART system. When doing so, the TSS shall remain as a candidate TSS that is marked

as being excluded from the CHART system. The administrator can choose to include the

TSS at a later time.

4.4.2.14 Edit Event Import Rule (Use Case)

A suitably privileged user can edit an existing event import rule. This includes changing

any of the filter criteria or actions.

4.4.2.15 Filter Candidate External Device List (Use Case)

The user may use a filter when displaying a list of external devices that are candidates for

inclusion in the CHART system. The following filter criteria are included:

Agency: zero or more agencies used to show only devices that contain that agency

Geograhpical Area: zero or more named geographical areas defined in CHART used to

show only devices whose lat/long falls within one of the specified areas

Text Search: zero or more text strings - only devices that contain one of the specified text

strings within the device's name, description, location description, county, or route name

will be shown

Included indicator: When set shows devices that have been selected for inclusion in

CHART

Excluded indicator: When set shows devices that have been selected for exclusion from

CHART

New indicator: When set shows devices that have not been selected for inclusion in OR

CHART R3B3 Detailed Design 4-54 12/23/2008

exclusion from CHART

4.4.2.16 View Event Import Rules (Use Case)

The system shall allow a suitably privileged user to view the event import rules that have

been defined.

CHART R3B3 Detailed Design 4-55 12/23/2008

4.5 Public/Private Data Sharing

4.5.1 R3B3ManageUsers (Use Case Diagram)

This diagram shows uses of the system related to user management. The system has Roles

defined by an Administrator that contain user rights. Users are assigned roles, and when a

user logs into the system they are granted all rights contained in their assigned roles. For

R3B3, several new user rights are being added that fall into the category of "public/private

data sharing". They control access to data in the system that may not be desirable to

distribute to some users of the CHART system. This may be due to the sensitive nature of

the data, or due to contractual obligations that limit the right to distribute the data to third

parties. These rights (as do all user rights) also determine the data that is accessible to a

client of the CHART system's external interface (export web service), as roles are assigned

to external systems similar to the way they are assigned to users.

These uses are unchanged from previous releases,
and are shown here for context.

Add User

Edit User

View Roles
Set Traffic Ev ent Rights

Set DMS Rights

Set HAR and SHAZAM Rights

Set TSS Rights

Set Camera Rights

Set Monitor RightsAdministrator

Add Role

Edit Role

Remov e Role

Set Role
Functional Rights

Set User
Roles

Remov e User

View Users

These uses are updated for R3B3
public/private data sharing.

«include»

«include»
«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

Figure 4-14 R3B3ManageUsers (Use Case Diagram)

4.5.1.1 Add Role (Use Case)

An administrator can add a new role to the system.

4.5.1.2 Add User (Use Case)

An administrator can add a new user to the system.

CHART R3B3 Detailed Design 4-56 12/23/2008

4.5.1.3 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.5.1.4 Edit Role (Use Case)

An administrator can edit an existing role.

4.5.1.5 Edit User (Use Case)

An administrator can edit an existing user.

4.5.1.6 Remove Role (Use Case)

An administrator can remove a role from the system.

4.5.1.7 Remove User (Use Case)

An administrator can remove a user from the system.

4.5.1.8 Set Camera Rights (Use Case)

An administrator can include rights associated with Cameras in a Role. For R3B3 the

following rights are added: View Camera Sensitive Config: controls the ability to view

sensitive camera configuration data. This right is assignable per organization. Sensitive

configuration data for cameras depends on the type of sending and control device used by

the camera as follows: Sending Device Type is Encoder: Sensitive data includes IP Video

Fabric, Encoder Type, Port, Multicast Address, and Multicast Port. Sending Device Type

is Switch: Sensitive data includes the switch and input port. Control Device Type is IP via

Codec: Sensitive data includes the IP, Port, Baud, Bits, Parity, Stop Bits, and Flow Control.

Control Device Type is Comm Port: Sensitive data includes Port, Baud, Parity, Stop Bits,

and Flow Control. Control Device Type is Command Processor: Sensitive data includes the

command processor name.

4.5.1.9 Set DMS Rights (Use Case)

An administrator can set the DMS related rights included in a Role. For R3B3, the

following rights are being added: View External DMSs: controls the ability to view external

DMSs in the DMS list; View DMS Sensitive Config: Controls the ability to view sensitive

configuration data. This right can be granted per organization. The sensitive configuration

data for a DMS includes the following communication settings: Drop Address, Port

Manager Connection Timeout, Port Type, Baud, Data Bits, Parity, Stop Bits, Flow Control,

Default Telephone Number (ISDN & POTS), and the per port manager telephone numbers.

CHART R3B3 Detailed Design 4-57 12/23/2008

4.5.1.10 Set HAR and SHAZAM Rights (Use Case)

An administrator can include rights associated with HARs and SHAZAMs in a Role. For

R3B3 new rights are being added as follows: View HAR Sensitive Config: controls the

ability to view sensitive HAR and SHAZAM configuration data. This right will be

assignable per organization. Sensitive configuration data for a HAR or SHAZAM includes

Default Phone Number, Access Code, Port Manager Connection Timeout, Port Type, and

per port manager phone numbers.

4.5.1.11 Set Monitor Rights (Use Case)

An administrator can include rights associated with Monitors in a Role. For R3B3 the

following rights are added: View Monitor Sensitive Config: controls the ability to view

sensitive monitor configuration data. This right is assignable per organization. The

configuration data considered sensitive depends on the type of receiving device used by the

monitor as follows: Receiving Device of Type Decoder: Sensitive data includes IP Video

Fabric, IP, Type, TCP Port, Video Port. Receiving Device of Type Switch: Sensitive data

includes the Switch and output port.

4.5.1.12 Set Role Functional Rights (Use Case)

An administrator can set the functional rights included in a Role when adding a role or

editing an existing role.

4.5.1.13 Set Traffic Event Rights (Use Case)

Traffic event related rights may be included in a Role. For R3B3, new rights are being

added as follows: View External Traffic Events: controls ability for user to view external

event list and external event tab on the home page; View Traffic Event Sensitive Incident

Details: controls ability to see sensitive incident details, such as if the incident involves a

fatality (in the name and the incident type); View Traffic Event Log: controls ability to

view the traffic event log. This right can be controlled per organization such that a user can

view some organization's traffic event's logs but not others.

4.5.1.14 Set TSS Rights (Use Case)

An administrator can include TSS (Detector) related rights in a Role. For R3B3, the

following rights are added: View External TSS: controls the ability to view external TSSs

in the TSS list; View TSS Sensitive Config: controls the ability to view sensitive

configuration data. This right can be assigned per organization. The sensitive configuration

data for a TSS includes the following communication settings: Drop Address, Port

Manager Connection Timeout, Port Type, Baud, Data Bits, Parity, Stop Bits, Flow Control,

Default Telephone Number (ISDN & POTS), and the per port manager telephone numbers;

View VSO Detailed Data: controls the ability to view a detector's detailed volume, speed,

and occupancy data. This right is assignable per organization. View VSO Summary Data:

controls the ability to view a detector's summary VSO data (speed range). This right is

assignable per organization and has no effect if the role also has the View VSO Detailed

CHART R3B3 Detailed Design 4-58 12/23/2008

Data right.

4.5.1.15 Set User Roles (Use Case)

An administrator can set the roles granted to a user while adding a user or editing an

existing user.

4.5.1.16 View Roles (Use Case)

The administrator can view the roles defined in the system.

4.5.1.17 View Users (Use Case)

An administrator can view the users that exist in the system.

CHART R3B3 Detailed Design 4-59 12/23/2008

4.5.2 R3B3ProvideDataToExternalSystems (Use Case Diagram)

This diagram shows uses of the system related to providing data to external systems. For

R3B3, CHART will provide Traffic Event, HAR, DMS, and SHAZAM to external systems.

In addition R3B3 will provide external client management.

Provide SHAZAM
Data To

External Systems

Provide DMS
Data To

External Systems

Authenticate
External System

Provide Detector
Data To

External Systems

Provide Data
to External

Systems

Provide Traffic
Event Data

To External Systems

View External
Clients

Provide HAR
Data To

External Systems

System

Remove External
Client

Manage External
Clients

Administrator
Add External

Client

Edit External
Client

Generate
Key Pair

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-15 R3B3ProvideDataToExternalSystems (Use Case Diagram)

4.5.2.1 Add External Client (Use Case)

The system shall allow an administrator to add an external client to the CHART system.

When doing so, the administrator will specify data pertaining to the client including a client

ID to be used by the external system and a public key used to validate data signed by the

external system. The administrator will specify whether the external system is a supplier

and/or consumer of CHART data, and if it is a consumer, one or more CHART Roles

whose user rights will determine the data accessible to the external system. The

administrator will also be able to specify a name and description of the external system,

CHART R3B3 Detailed Design 4-60 12/23/2008

contact information for a person responsible for managing the external system.

4.5.2.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.5.2.3 Authenticate External System (Use Case)

The system shall authenticate external system connections to validate that they are

authorized to connect to CHART and to enforce rights regarding the data the external

system is permitted to access. Each external system owner will be provided a private key

from a public/private key pair generated within the CHART system. Each request from an

external system will include the system's CHART client ID (as configured within CHART)

and a digital signature of the request data, created using the private key provided by the

CHART administrator. The CHART system will validate each request signature using the

client's public key.

4.5.2.4 Edit External Client (Use Case)

The system shall allow an administrator to edit the data associated with an external client,

as described in the Add External Client use case.

4.5.2.5 Generate Key Pair (Use Case)

The system shall allow an administrator to generate a public/private key pair for use in

controlling access to the CHART external interface. The private key is to be given (offline)

to the owner of the external system wishing to gain access to CHART data. The public key

is to be used by the administrator when adding the external client to the CHART system

that corresponds to the external system that wishes to retrieve data from CHART.

4.5.2.6 Manage External Clients (Use Case)

The system shall allow an administrator to manage the external clients that are permitted to

retrieve data from CHART via its external system interface.

4.5.2.7 Provide Data to External Systems (Use Case)

The system shall provide access to external systems via a web service to allow them to

receive data that the CHART system makes available to third parties. One or more Roles

assigned to each external client will be used to determine the data the client will be

permitted to access. All requests made by external systems shall be validated against

published XSD. CHART will return a response XML document for each request. The

XML returned will contain an error code and error text for invalid requests, and will return

the requested data for valid, authorized requests. The response XML shall be formatted as

specified in published XSD.

CHART R3B3 Detailed Design 4-61 12/23/2008

4.5.2.8 Provide Detector Data To External Systems (Use Case)

The system shall provide detector data to external systems. The system shall enforce

granular, organization based user rights to allow the level of detail provided for a detector

to be controlled. Two user rights will be used to determine if a detector's detailed volume,

speed, and occupancy (VSO) data is exported, only a speed range, or no VSO data. When

VSO data is provided for a detector, it will include the data for zone groups and for each

zone within the group. The detector data will be provided using the TMDD standard, with

CHART extensions as needed. External systems can obtain an inventory of detectors that

includes each detector's current status, and can obtain updates to the detector data

(including the status) by requesting a new inventory list.

4.5.2.9 Provide DMS Data To External Systems (Use Case)

The system shall allow external systems to receive data pertaining to DMSs using the

TMDD standard, with CHART extensions to the standard as needed. External systems can

obtain an inventory of DMS devices, including their current status. Updates can be

obtained by obtaining a new inventory.

4.5.2.10 Provide HAR Data To External Systems (Use Case)

The system shall provide HAR data to external systems using the TMDD standard format,

with CHART extensions as needed. External systems can obtain an inventory of HARs,

including the HAR current status. External systems can receive updates by requesting a

new inventory.

4.5.2.11 Provide SHAZAM Data To External Systems (Use Case)

The system shall provide SHAZAM (beacon) data to external systems using the TMDD

standard format, with CHART extensions as needed. External systems can obtain an

inventory of SHAZAMs, including the SHAZAM current status. External systems can

receive updates by requesting a new inventory.

4.5.2.12 Provide Traffic Event Data To External Systems (Use Case)

The system shall allow external systems to receive traffic event data from CHART. The

CHART system shall enforce granular, organization based use rights to determine the level

of detail that may be seen by each event. User rights will control whether or not the

incident type of "fatality" is exported within the event name and the incident type field. A

cleansed version of the incident type and event name that substitutes personal injury for

fatality will be exported to external clients that don't have the proper user right. A separate

user right determines whether or not event history for an event is exported. The traffic event

data is exported using the SAE ATIS J2354 standard format with CHART extensions as

needed. External systems can obtain a list of traffic events (an inventory) and can receive

updates by polling to receive a new inventory periodically.

CHART R3B3 Detailed Design 4-62 12/23/2008

4.5.2.13 Remove External Client (Use Case)

The system shall allow an administrator to remove an external client from the system,

effectively preventing them from accessing CHART's external interface to retrieve data.

The system will prompt the user for confirmation before removing the client.

4.5.2.14 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

4.5.2.15 View External Clients (Use Case)

The system shall allow an administrator to view the external clients allowed to retrieve

CHART data via its external interface.

CHART R3B3 Detailed Design 4-63 12/23/2008

4.6 Alerts/Notifications

4.6.1 R3B3ManageAlertsAndNotifications (Use Case Diagram)

This diagram shows use cases related to alerts and notifications. For R3B3, three new alert

types are added. Additionally, there are 3 conditions where notifications can be sent

automatically by the system (if configured to do so). All existing (pre-R3B3) use cases

related to managing alerts apply to the new alert types.

Send Toll Rate
Notification

Note - these use cases are used in other
diagrams but are collected here to show them
in one place.

Close Alert

Resolve Alert

Operator
System

Send
Travel Time
Notification

Send
External Connection

Notification Send
External Event
Notification

View Alerts

Accept Alert

Create
Toll Rate

Alert

Updated in R3B3
for new alert types.

Delay Alert

Confirm Unique
Alert

View Alert Details

Unaccept Alert

Undelay Alert

Manually Escalate Alert

Comment On Alert

The functionality in these
operator-initiated use cases
already exists for other
alert types but will be extended
to include the new alert types:
- Travel Time Alert
- External Connection Alert
- External Event Alert

Create
Travel Time

Alert

Create
External Connection

Alert

Create
External Event

Alert

Figure 4-16 R3B3ManageAlertsAndNotifications (Use Case Diagram)

4.6.1.1 Accept Alert (Use Case)

A user with sufficient privileges may Accept an alert. Accepting an alert implies the user's

AMG will handle the alert to closure. Accepting an alert stops any Escalation or Delay

Timer, if running. To ensure alerts do not get accepted and forgotten, Accepting an alert

starts the Accept timer for when the system should automatically revert the alert to the New

state (See Configure Alert Timeouts). A typical duration of the Accept timer is expected to

be less than a typical duration of the Delay timer.

4.6.1.2 Close Alert (Use Case)

A user with sufficient privileges may close an alert in the New, Accepted, or Delayed

states. Closing an alert stops any Escalation, Delay, or Accept Timer and starts an Archive

Timer. The alert remains visible to privileged viewers for the duration of the Archive

Timer. After the Archive Timer expires the alert is removed from being seen by operators

CHART R3B3 Detailed Design 4-64 12/23/2008

and only exists in the database archives.

4.6.1.3 Comment On Alert (Use Case)

A user with proper functional rights can add a comment to an alert. Previous comments

cannot be changed or removed, nor can the text used to create the alert be changed, but any

appropriate comment can be attached to the alert. The comment will be time stamped,

attributed to the user, stored in the Alert History in chronological order with other history

entries.

4.6.1.4 Confirm Unique Alert (Use Case)

The system ensures duplicate non-closed alerts are not seen by the users. A duplicate alert

is defined as two alerts with the same alert type and the same discriminator based on the

alert type. The alert discriminators are as follows: EventStillOpenAlert: same event;

DuplicateEventAlert: same event; UnhandledResourceAlert: same resource; ManualAlert:

same alert description; DeviceFailureAlert: same device; ExecuteScheduledActionsAlert:

same list of actions; External Connection Alert: same external connection; External Event

Alert: same external event; Travel Time Alert: same travel route. Toll Rate Alert: Same

travel route, same alert description.

4.6.1.5 Create External Connection Alert (Use Case)

The system will create an External Connection Alert if an external connection transitions to

the "failed" state and remains there for an amount of time, as specified in the connection

settings, if the alert is enabled in the connection settings. The system will create an

External Connection Alert if an external connection transitions to the "warning" state and

remains there for an amount of time, as specified in the connection settings, if the alert is

enabled in the connection settings. (The time spent in the "failed" state contributes to the

time counted for a warning).

4.6.1.6 Create External Event Alert (Use Case)

The system will create an External Event Alert for the operations center specified in the

event import rule if an external traffic event matches an event import rule and the rule's

settings indicate that an alert should be issued.

4.6.1.7 Create Toll Rate Alert (Use Case)

If toll rate alerts are enabled for a travel route, the system will issue an alert to the

operations center specified in the travel route settings if the current toll rate for the travel

route expires while there is a current (non-expired) toll rates document available.

4.6.1.8 Create Travel Time Alert (Use Case)

If travel time alerts are enabled for a travel route, the system will issue an alert to the

operations center specified in the travel route settings when the travel time crosses the

CHART R3B3 Detailed Design 4-65 12/23/2008

threshold specified in the travel route settings.

4.6.1.9 Delay Alert (Use Case)

A user with sufficient privileges may Delay an alert. The implication is that the AMG is

not going to handle the alert any time soon but still wants to take responsibility for handling

the alert to closure. Delaying an alert stops any Escalation or Accept Timer, if running. To

ensure alerts do not get delayed and forgotten, Delaying an alert starts the Delay Timer for

when the system should automatically revert the alert to the New state (See Configure Alert

Timeouts). A typical duration of the Delay timer is expected to be more than the typical

duration of the Accept timer.

4.6.1.10 Manually Escalate Alert (Use Case)

A user with proper functional rights can force escalation of an alert. This performs an

escalation cycle, which, if possible, adds additional operations centers (or in a future

release, Areas of Responsibility) to the visibility of the alert.

4.6.1.11 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password

combination and granted roles for system access.

4.6.1.12 Resolve Alert (Use Case)

A user with sufficient privileges may resolve alerts. Resolving an alert brings the user to a

page where this type of alert can be addressed. The following resolve pages are envisioned

for current alerts: DeviceFailure: Device Details page to allow the device to be taken offline

or put into maintenance mode, if appropriate; UnhandledResource: Transfer Shareable

Resource page; EventStillOpenAlert: Event Details page; DuplicateEventAlert: Merge

Events page; ManualAlert: Alert details page; ExecuteScheduledActionsAlert: For

schedules containing one action, an action specific page will be displayed to the user.

Resolving an OpenEventAction will display the Pending Event's page. For multiple

scheduled actions the execute scheduled action page for the schedule will be displayed. For

a schedule with no actions the ExecuteScheduledActionsAlert's details page will be

displayed; External Connection Alert: External connection status list page; External Event

Alert: Event details page for the external event; Travel Time Alert: Travel route details

page. Toll Rate Alert: Travel route details page.

4.6.1.13 Send External Connection Notification (Use Case)

The system will send a notification to a specified notification group if an external

connection transitions to the "failed" state and remains there for an amount of time, as

specified in the connection settings, if enabled in the connection settings. The system will

send a notification to a specified notification group if an external connection transitions to

the "warning" state and remains there for an amount of time, as specified in the connection

settings, if enabled in the connection settings. (The time spent in the "failed" state

CHART R3B3 Detailed Design 4-66 12/23/2008

contributes to the time counted for a warning).

4.6.1.14 Send External Event Notification (Use Case)

The system will send a notification to the group specified in the event import rule if an

external traffic event matches an event import rule and the rule's settings indicate that a

notification should be sent.

4.6.1.15 Send Toll Rate Notification (Use Case)

If toll rate notifications are enabled for a travel route, the system will send a notification to

the group specified in the travel route settings if the current toll rate for the travel route

expires while there is a current (non-expired) toll rates document available.

4.6.1.16 Send Travel Time Notification (Use Case)

If travel time notifications are enabled for a travel route, the system will send a notification

to the group specified in the travel route settings when the travel time crosses the threshold

specified in the travel route settings.

4.6.1.17 System (Actor)

The System actor represents any software component of the CHART system. It is used to

model uses of the system which are either initiated by the system on an interval basis, or are

an indirect by-product of another use cases that another actor has initiated.

4.6.1.18 Unaccept Alert (Use Case)

A user with sufficient privileges may unaccept an alert in the Accepted state. Unaccepting

an alert stops the Accept Timer, puts the alert in the New state, and begins the Escalation

Timer. Unaccepting an alert implies that the user's AMG has changed their mind and no

longer wishes to handle the alert.

4.6.1.19 Undelay Alert (Use Case)

A user with sufficient privileges may undelay an alert in the Delayed state. Undelaying an

alert stops the Delay Timer, puts the alert in the New state, and begins the Escalation

Timer. Undelaying an alert implies that the user's AMG has changed their mind and no

longer wishes to handle the alert.

4.6.1.20 View Alert Details (Use Case)

A user with sufficient privileges may view alert details including the alert type, alert

description, create time, next escalation time (if New), Unaccept time (if Accepted),

Undelay time (if Delayed), closed time (if Closed), the current set of AMGs, the predicted

set of AMGs at next escalation, and a history of all modifications to the alert each with a

comment.

CHART R3B3 Detailed Design 4-67 12/23/2008

4.6.1.21 View Alerts (Use Case)

A user with sufficient privileges may view alerts. Viewing an alert includes the ability to

see the alert type, the alert description, and the alert creation time. Alerts are organized by

their state including an indication of the number of alerts in each state. A visual and

auditory cue is given when the user is a member of an AMG listed in at least one New alert

and the user has the rights to control the alert. The ability to view alerts does not imply the

ability to control alerts. Closed alerts may be viewed only if they have not yet been

archived.

CHART R3B3 Detailed Design 4-68 12/23/2008

4.7 Configure system

4.7.1 R3B3ConfigureSystem (Use Case Diagram)

This use case diagram shows use cases related to system configuration.

See the R3B3ConfigureExternalSystemSettings
diagram for details.

Add
Geographical

Area

Delete
Geographical

Area

Specify Polygon

Configure
Trav el Time And Toll Rate

Settings

Configure
External System

Settings

Administrator

Configure
Geographical Settings

Configure DMS Message
Combination Rules

Configure TSS
Speed Summary Ranges

Edit
Geographical

Area

Import KML File

Configure R3B3
Alert Types

Configure
Trav eler Information
Message Templates

See the R3B3ManageTravelerInformationMessages
diagram for details.

«include»

«include»

«include»

«include»
«include»

«include»

Figure 4-17 R3B3ConfigureSystem (Use Case Diagram)

4.7.1.1 Add Geographical Area (Use Case)

A user with sufficient rights will be able to add a geographical area to the system. The user

will be able to specify a name and a polygon to represent the area.

4.7.1.2 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to

perform administrative tasks, such as system configuration and maintenance.

4.7.1.3 Configure Travel Time And Toll Rate Settings (Use Case)

The system shall allow users with appropriate rights to set configuration values related to

travel times. The user will be able to specify a system-wide display schedule for travel time

DMS messages. The user will be able to specify the travel time range settings, which

consist of boundaries for classifying an actual travel time into buckets, and for each bucket,

values to add/subtract from the actual travel time to obtain the range to display. The user

will be able to specify a threshold percentage for determining whether the travel time trend

is classified as "up", "down", or "flat".

CHART R3B3 Detailed Design 4-69 12/23/2008

4.7.1.4 Configure DMS Message Combination Rules (Use Case)

The system shall allow a user with appropriate rights to set the message combination rules

for DMSs. This feature exists in R3B2 and will be enhanced in R3B3 to support travel time

and toll rate messages.

4.7.1.5 Configure External System Settings (Use Case)

The system shall allow a user with appropriate rights to configure settings related to

external systems. Several settings exist in R3B2, and R3B3 will add additional settings.

External Event Rules will govern which external events are imported into CHART, whether

they are marked as "interesting", whether an External Event Alert is generated for them,

and whether a notification is sent. The user can also choose which external DMSs and

detectors to include / exclude from CHART. The user will be able to specify connection

failure timeouts for sending External Connection Alerts and/or notifications. The user will

be able to specify the external system/agency mapping to CHART organizations, for

assigning an organization when importing traffic events and devices.

4.7.1.6 Configure Geographical Settings (Use Case)

A user with sufficient rights will be able to specify the geographical settings. The user will

be able to add, edit, and remove named geographical areas which can be used for importing

external events and devices in R3B3 (and will be useful for defining areas of responsibility

in a future release). The user will also be able to specify the bounds (north, south, east, and

west boundaries) for acceptable geographic coordinates when coordinates are entered by the

user.

4.7.1.7 Configure R3B3 Alert Types (Use Case)

The system will allow a suitably privileged user to configure these new alert types

introduced in R3B3: External Connection Alert, External Event Alert, and Travel Time

Alert. For each of these types, the user will be able to specify the default and maximum

accept timeouts, the default and maximum delay timeouts, the escalation timeout, an

enable/disable flag for the alert type, and a flag for enabling/disabling automatic escalation.

The user will also be able to configure the alert audio cues for the new alert types.

4.7.1.8 Configure Traveler Information Message Templates (Use Case)

A user with sufficient rights will be able to configure the available DMS message templates

that may be used for travel time / toll rate messages. The user will be able to add, edit,

remove, and view these templates.

4.7.1.9 Configure TSS Speed Summary Ranges (Use Case)

A user with sufficient rights will be able to configure the speed ranges to display when a

user has rights to view speed summary information for a detector, but does not have rights

to view the details.

CHART R3B3 Detailed Design 4-70 12/23/2008

4.7.1.10 Delete Geographical Area (Use Case)

The system will allow a user with sufficient rights to remove a geographical area from the

system. The system will ask for confirmation before deleting the area, and will not allow

an area to be deleted if it is referenced in the system.

4.7.1.11 Edit Geographical Area (Use Case)

A user with sufficient rights will be able to edit an existing geographical area defined in the

system. The user will be able to specify a name and a polygon to represent the area.

4.7.1.12 Import KML File (Use Case)

A user specifying the coordinates for a geographical area polygon will be able to import the

polygon definition using a KML (Keyhole Markup Language) file. This XML-based file

format is used by Google Earth and other tools.

4.7.1.13 Specify Polygon (Use Case)

A user adding or editing a geographical area will be able to specify the coordinates of a

polygon using geographical (latitude/longitude) coordinates. The user will be able to enter

the coordinates manually, or import the polygon definition from a Keyhole Markup

Language (KML) file. If entering the coordinates manually, the user will be able to

add/insert a point, edit an existing point, or remove a point. All coordinates that are

manually entered will be validated against the system-wide bounds from the system profile

to make sure the coordinates are not unreasonable.

CHART R3B3 Detailed Design 5-1 12/23/2008

5 Detailed Design

5.1 Human-Machine Interface

R3B3 builds on the existing web based user interface that has been used for the CHART system

for past releases. A usable prototype of the proposed interface changes has been created in order

to allow the user to preview the changes and to better facilitate a common understanding of the

requirements. These changes fall into the areas of Travel Routes, DMS Message Templates,

Travel Time and Toll Rate Messages, DMS Travel Time / Toll Rate Settings, System Profile

Travel Time Settings, Geographical Settings, External Events, External Devices, External

System Settings, External Connection Status, Alerts, Device Locations, Miscellaneous Device

Enhancements, and Public/Private Data Sharing. See the sections below for details.

5.1.1 Travel Routes

Travel Routes are CHART objects that provide a building block for travel time and toll rate

messages. Travel Routes represent segments of roadway and usually start at a DMS and end at a

destination well known to travelers. A travel route may be associated with one or more roadway

links which provide travel time data for the travel route. A travel route may also be associated

with a toll rate source, which provides toll rate data for the travel route. Features exist in R3B3

to allow travel routes to be added, edited, and removed. Users can also view travel routes that

have been added to the system along with their current travel time and/or toll rate.

5.1.1.1 Viewing Travel Routes

A new menu item will appear within the existing home page navigation area to allow users to

view existing travel routes.

Figure 5-1 View Travel Routes menu item

Upon clicking the Travel Routes menu item, a page will be shown in the “working window”

listing all travel routes that exist in the system (see below).

CHART R3B3 Detailed Design 5-2 12/23/2008

Figure 5-2 View Travel Routes page

This page shows the following information for each travel route:

• Travel Route Name

• The length of the route (in miles)

• The current travel time for the route (if any)

• The current travel time trend (if any)

• The current average speed on the route (if any)

• The current toll rate for the route (if any)

• The devices using the travel route (if any). In R3B3, only DMS devices may be

considered to be using a travel route. Any DMS that contains a traveler info message that

includes the route (even if the message is not enabled) will be considered to be using the

travel route.

• The roadway route(s) that are included in the travel route.

• The roadway direction(s) that are included in the travel route.

• The Counties that are included in the travel route.

CHART R3B3 Detailed Design 5-3 12/23/2008

A Set Columns link at the top of the page allows the user to choose which of the columns are

shown / hidden on this page. When the link is clicked, a window pops up to allow the user to

place a check mark next to each column name to be displayed, and to remove check marks from

columns they do not wish to display (see below). The Travel Route Name and Actions columns

may not be hidden and will always contain a check mark.

Figure 5-3 Set Travel Route List Columns

When columns are hidden, a link will appear to allow the user to restore the list to display the

default columns.

Each column heading is a link that when clicked causes the list to be sorted on that column.

After the list is sorted on a column, the user may click the column heading link again to toggle

between an ascending and descending sort.

Seven of the ten columns provide the ability to filter the list based on values in the column as

follows:

• The Trav Time column provides the ability to filter the list to show only travel routes that

have a travel time greater than a specified number of minutes. This filter also allows the

list to be filtered to show travel routes with no travel time, and those where travel time is

not applicable (no links configured).

• The Trend column provides the ability to filter the list to show only travel routes with an

increasing travel time (Up), decreasing travel time (Down), or stead travel time (Flat).

This filter also allows the list to be filtered to show travel routes with no travel time, and

those where travel time is not applicable (no links configured).

• The Speed column provides the ability to filter the list to show only travel routes with an

average speed within a certain range (0-30, 30-50, >50). This filter also allows the list to

be filtered to show travel routes with no travel time, and those where travel time is not

applicable (no links configured).

• The Toll Rate column provides the ability to filter the list to show only travel routes with

a toll rate greater than a specified dollar amount. This filter also allows the list to be

CHART R3B3 Detailed Design 5-4 12/23/2008

filtered to show travel routes with no toll rate, and those where toll rate is not applicable

(no toll rate source configured).

• The Route column provides the ability to filter the list to show only travel routes that

include some portion of the given roadway route.

• The Dir column provides the ability to filter the list to show only travel routes that

include a specific direction of roadway.

• The County column provides the ability to filter the list to show only travel routes that

contain roadway within a specific county.

Links are provided for each travel route to allow the details for the route to be viewed and to

allow suitably privileged users to edit the travel route or remove the travel route. A link is also

available on the page to allow a travel route to be added to the system. Details on these actions

are provided in the sections below.

5.1.1.2 Adding Travel Route

Administrative users can add a travel route to the system by clicking the Add Travel Route link

on the travel route list. Upon clicking the link, the following form appears:

CHART R3B3 Detailed Design 5-5 12/23/2008

Figure 5-4 Add Travel Route

The following fields exist on this form:

• Name: name of the travel route. This would usually include a description of the starting

and ending point of the route.

• Destination (preferred): The name of the ending point of the destination as it should

appear when displayed on a DMS.

• Destination (option 1): This optional field can provide an abbreviation (or shorter

version) of the preferred destination that will help the destination fit on smaller DMSs.

• Destination (option 2): This optional field can provide a 2
nd

 abbreviation (or shorter

version) of the preferred destination that will help the destination fit on smaller DMSs. It

must be shorter than Destination option 1.

• Links: An optional list of links used to provide travel time for the travel route. When

specified, the travel time from each link included in this list will be summed to compute

CHART R3B3 Detailed Design 5-6 12/23/2008

the travel time for the travel route. If no links are specified, travel times will not be

supported for the travel route. See the “Travel Route Links” section below for details.

• Toll Rate Source: This optional selection is used to specify the source of toll rate data

for the travel route. If none is specified, toll rates will not be supported for the travel

route. See the “Travel Route Toll Rate Source” section below for details.

• Location Settings: The lists of counties and routes that the travel route traverses, as well

as the total length of the travel route. If at least 1 link is specified, the user may choose to

obtain the location information directly from the list of links rather than manually

entering the data.

• Travel Time Enabled: This setting is used to enable and disable travel times for the

route. Travel times are automatically disabled if the route has no links specified. This

setting allows the travel times to be disabled and re-enabled without losing the current list

of links or travel time related settings.

• Max # of Links Below Quality Threshold: The maximum number of links whose

travel time data can be below the minimum quality level specified for the link. When set

to zero, all links specified for the travel route must have travel time data that meets or

exceeds the minimum quality level for the link. If even one link has a quality level below

its minimum quality level, the travel time for the route will not be made available to other

parts of the system (such as DMS). This setting can be increased to make this policy

more lax for the travel route.

• Max Travel Time (mins): The maximum travel time allowed for the travel route. A

travel time that is computed above this value will be deemed invalid and will not be made

available to other parts of the system.

• Min Travel Time (mins): The minimum travel time allowed for the travel route. A

travel time that is computed to be below this amount of time will be set to this time.

• Alert and/or Notification Travel Time (mins): The travel time that when met or

exceeded may cause an alert and/or notification to be sent, depending on the alert and

notification settings that follow.

• Send Alert to Op Center: When enabled, an alert will be sent to the specified op center

when the travel time meets or exceeds the alert/notification travel time.

• Send Notification to Group: When enabled, a notification will be sent to the specified

notification group when the travel time meets or exceeds the alert/notification travel time.

• Toll Rate Enabled: This setting is used to enable and disable toll rates for the route.

Toll rates are automatically disabled if a toll rate source is not specified for the travel

route. This setting allows toll rates to be disabled and re-enabled without losing the

current toll rate source or toll rate related settings.

• Toll Rate Alerts Enabled: This setting is used to cause toll rate alerts to be sent to a

specified op center when certain conditions are detected.

CHART R3B3 Detailed Design 5-7 12/23/2008

• Toll Rate Notifications Enabled: This setting is used to cause toll rate notifications to

be sent to a specified notification group when certain conditions are detected.

After filling in the form and optionally adding one or more links to the travel route and/or a toll

rate source, the submit button can be clicked to add the travel route to the system. The travel

route list will be shown and the new travel route will appear in the list.

5.1.1.3 Travel Route Links

Links must be added to a travel route to allow travel times to be computed for the route. The

links associated with a travel route can be specified when adding the route to the system via the

Add Travel Route form, as part of an edit operation to edit the travel route configuration, or as a

stand alone operation from the travel route details page. If no links have been specified for the

travel route, an empty table of links will be shown and an Add Link option will appear, as shown

below:

Figure 5-5 Travel Route Links - Empty List

When the “Add Link” link is clicked, the form used to select links is shown (see below).

Figure 5-6 Select Link, No Prior Link Selected

CHART R3B3 Detailed Design 5-8 12/23/2008

Because of the fairly large number of links that exist in the system for selection, the system first

allows the user to enter search criteria. After picking one or more search criteria, the user must

click the “Search” button to see the results of the query. The user can click the “Show All”

button to see all links available in the system. Following is an example of the screen after a

search is executed.

Figure 5-7 Select Link – Search Results

The user may choose one or more of the links and click the “Add Link(s) to Travel Route”

button to add the selected links to the travel route. After submitting the form, the links that were

added appear in the list of links as shown below.

Figure 5-8 Travel Route Links - Populated List

The list of links is shown in order with the “Dist From Prior” column showing the distance from

the beginning of the link to the end of the link above it. When links are ordered properly, this

distance will be near zero. The user may use the “move up” and “move down” links to re-order

the list, and may use the “remove” link to remove a link from the list. The “settings” link can be

used to set settings that apply to the link’s use within the travel route. The user may drag their

mouse over the “settings” link to see the current settings. When the settings link is clicked, a

form appears that allows the link percent and travel time quality to be set for the link (see

below).

CHART R3B3 Detailed Design 5-9 12/23/2008

Figure 5-9 Link Settings for Travel Route

The link percent specifies the portion of the link that is contained within the travel route. This is

most useful for the first link within a travel route because travel routes are often defined to start

at a DMS location, and the DMS might not be located at the beginning of a defined link. (Travel

routes usually start at a DMS to allow travel time messages to imply that the travel time listed is

from the point where the person is reading the message – i.e. the DMS). When a percentage less

than 100% is specified, the travel route will use only that percent of the link’s travel time when

computing the overall travel time for the route. Likewise, only that percentage of the link’s

length will be used when computing the overall length of the travel route.

The minimum travel time quality specifies the lowest quality of travel time data that is

acceptable for the link. If travel time data is received for the link that is below the specified

minimum quality, the travel route may not be able to compute the overall travel time for the

route, depending on the “Max # of Links Below Quality Threshold” setting for the travel route.

After changing the settings for a link, the user clicks the “Submit” button to save the settings and

return to the prior page (which will be the Add/Edit Travel Route form or the Travel Route

Details page).

The “Select Next Link” link below the list of currently selected links can be used to add one or

more links to the end of the list. When this feature is used the system can use location based

information for the last link in the list to automatically provide candidates for the next link on the

travel route (see below).

CHART R3B3 Detailed Design 5-10 12/23/2008

Figure 5-10 Select Link - Prior Link Exists

The user may choose one or more of the candidate links, or can click “Search for Others” to

perform a search for other links as was required when the list of selected links was empty (no

prior link). The screen capture below shows the form when “Search for Others” has been

clicked.

Figure 5-11 Select Link - Search for Links

CHART R3B3 Detailed Design 5-11 12/23/2008

5.1.1.4 Travel Route Toll Rate Source

A Toll Rate Source may be specified for a travel route to allow toll rates to be included in the

travel route. If a toll rate source is not specified, the route will not support toll rates. The toll

rate source may be specified while adding a travel route to the system, editing an existing travel

route’s configuration, or from the travel route’s details page. A table showing the current toll

rate source (if any) will appear on the form or details page as shown below.

Figure 5-12 Toll Rate Source Unspecified

When the “Add Toll Rate Source” link is clicked, a form appears to allow the user to select the

toll rate source for the travel route (see below).

Figure 5-13 Select Toll Rate Source

The user will select the toll rate source by clicking a radio button on the left corresponding to the

toll rate source they wish to select and clicking the “Select Toll Rate Source” button. Their

selection will be saved and the Toll Rate Source section of the prior page will show their

selection.

Figure 5-14 Toll Rate Source Specified

The “Change” link can be used to select a different toll rate source for the route, and the

“Remove” link can be used to remove the toll rate source from the route (effectively disabling

toll rates for the travel route).

CHART R3B3 Detailed Design 5-12 12/23/2008

5.1.1.5 Edit Travel Route

Editing a travel route is similar to adding a travel route and uses the same form that is used when

adding a travel route, however the form is pre-populated with the travel route’s existing

configuration data when editing. See Adding Travel Route above for details.

5.1.1.6 Remove Travel Route

A travel route may be removed using the “Remove” link on the travel route list page. A warning

message will confirm the user’s intention and also indicate if the travel route is used by other

objects in the system. After the user removes a travel route, the travel route list will be refreshed

and the travel route will no longer appear.

5.1.1.7 Travel Route Details

The details page for a travel route can be accessed by clicking the “details” link for the travel

route on the travel route list page. The travel route details page shows status information for the

travel route in addition to the travel route’s configuration settings. The data is organized into

sections on the details page – each section is shown and discussed below:

Figure 5-15 Travel Route Details - Status Section

The Status section shows the current status of the travel route. The Travel Time will be shown if

the travel route has one or more links defined and each has travel time data. If the travel time is

not valid due to quality, age, etc. the travel time will still be shown, however it will be grayed out

and a message will state that the time is not valid and the reason. The time next to the travel time

is the time the travel time was computed. The Trend is the travel time trend, and only applies if

travel time applies. The Speed is computed based on the travel route length and the current

travel time and only applies if travel time applies. The Toll Rate is the toll rate supplied by the

toll rate source, if any, and the toll rate’s effective time. The Used By field shows a list of any

CHART objects that are configured to utilize the data from the travel route. For R3B3 only

DMSs use data from travel routes. Clicking on the name of an object listed in the Used By field

will cause that object’s details page to be shown.

Figure 5-16 Travel Route Details - Link Status Section

CHART R3B3 Detailed Design 5-13 12/23/2008

The Link Status section of the travel route details page (shown above) shows the travel time,

trend, and speed for each link included in the travel route (if any). The Ext ID column is the

identifier for the link in the external system that supplies travel time data for the link (INRIX for

R3B3). The TT column contains the current travel time, Trnd has the current trend, and the

Speed column contains the computed speed for the link based on its travel time and length.

Figure 5-17 Travel Route Details - Link History Section

The Link Travel Time History section of the travel route details page (see above) shows the

recent travel time readings received for each of the travel route’s links (if any). The travel times

are organized into 5 minute increments starting from the current 5 minute period. The travel

time quality is shown in addition to each link’s travel time. The Total row contains the travel

time computed for the travel route. One or more intervals could be empty if data was not

received for a link during that period. If two or more travel time readings are received for a link

within the same interval, the latest will be used.

Figure 5-18 Travel Route Details - Toll Rate History Section

The Toll Rate History section of the travel route details page (shown above) shows the recent

history of toll rate data received from the travel route’s toll rate source (if any). The toll rate data

is organized into 5 minute increments starting with the current 5 minute time period. One or

more intervals could be empty if data is not received during that interval. If two or more toll rate

updates are received for the toll rate source within the same interval, the latest will be shown.

Figure 5-19 Travel Route Details - Link Configuration Section

The Link Configuration section of the travel route details page (see above) shows the

configuration settings for the links included in the travel route (if any). Features exist to allow

the settings for each link to be changed, the order of the links to be changed, or to add/remove

links. Each External Link ID is a browser link that causes the details page for the link to be

shown.

CHART R3B3 Detailed Design 5-14 12/23/2008

Figure 5-20 Travel Route Details - Toll Rate Configuration Section

The Toll Rate Configuration section of the travel route details page shows the currently selected

toll rate source (if any). Links exist to allow a new/different toll rate source to be added and to

allow the currently selected toll rate source to be removed.

Figure 5-21 Travel Route Details - General Settings Section

The General Settings section of the travel route details page (shown above) shows the current

general settings and provides a link to allow the settings to be edited. The preferred destination

name for the travel route and two shorter alternatives are included.

Figure 5-22 Travel Route Details - Location Settings Section

The Location Settings section of the travel route details page shows the location related fields.

The Source field indicates if the location is based on data from the links included in the travel

route (if any), or manually entered by a user. A link exists to allow the location settings to be

edited.

Figure 5-23 Travel Route Details - Travel Time Settings Section

The Travel Time Settings section of the travel route details page (shown above) shows the

current value for each of the travel time related settings. An Edit link provides the ability for

users with proper rights to edit any of the settings. These settings are described in the Adding

Travel Route section 5.1.1.2 above.

CHART R3B3 Detailed Design 5-15 12/23/2008

Figure 5-24 Travel Route Details - Toll Rate Settings Section

The Toll Rate Settings section of the travel route details page (see above) shows the values of

settings related to toll rates. An edit link allows users with proper rights to edit these settings.

5.1.1.8 Link Details

The Link Details page is accessible by clicking the External ID of a link shown on the travel

route details page.

Figure 5-25 Link Details

The current status of the link is shown along with its travel time history. Configuration data for

the link as obtained from the external system is displayed but is not editable by any user.

CHART R3B3 Detailed Design 5-16 12/23/2008

5.1.2 DMS Message Templates

DMS Message Templates are used to define the format and layout of messages used to show

travel times and/or toll rates on DMSs. Message templates target DMSs of a specific size (rows /

columns) to allow layout features such as columnular data and to ensure messages created with

the template match the layout specified by the template designer. Templates may contain both

text and data fields. Data fields will be replaced with actual data from one or more Travel

Routes when a template is used for a DMS message. The format of each type of data field can

be set per message template, and field group numbers are used to indicate that two or more fields

in a message are to obtain their data from the exact same data source. R3B3 provides features to

view existing message templates, add new templates, edit existing templates, and remove

templates. These features are discussed further in the sections below.

5.1.2.1 View DMS Message Templates

The list of DMS Message Templates can be viewed using the View/Edit link on the system

profile page in the Travel Time / Toll Rate Settings section (see below).

Figure 5-26 View / Edit DMS Message Templates Link

After clicking the View/Edit link, the Travel Time / Toll Message Templates page is shown

listing all existing templates.

Figure 5-27 Travel Time / Toll Message Template List

The following columns are shown with data for each template as applicable:

CHART R3B3 Detailed Design 5-17 12/23/2008

• Template – The name of the template assigned by the user.

• Sign Size – The size of the sign for which the template can be used (rows / columns)

• Page 1 – A text representation of the first page of the template.

• Page 2 – A text representation of the second page of the template.

• Example Message – An example of the message layout and format, using place holders

for data fields.

• Actions – Links that allow the template to be edited or removed.

• Travel Time Format – The format used for travel time fields included in the template (if

any)

• Travel Time Range Format – The format used for travel time range fields included in

the template (if any).

• Toll Rate Format– The format used for toll rate fields included in the template (if any).

• Toll Time Format - The format used for toll rate time fields included in the template (if

any)

• Route Length Format – The format used for route length fields included in the template

(if any).

The template list can be sorted on the following columns: template name, sign size, travel time

format, travel time range format, toll rate format, toll time format, and route length format.

The template list can be filtered based on values in the following columns: sign size, travel time

format, travel time range format, toll rate format, toll time format, and route length format.

The template list also supports showing / hiding columns. The Set Columns link can be clicked

to show a list of the columns with a check mark next to each column that is currently displayed.

The user can uncheck columns they wish to hide, or check columns they wish to show and

submit the form. The template list will be refreshed to reflect the user’s settings.

CHART R3B3 Detailed Design 5-18 12/23/2008

Figure 5-28 Template List Column Settings

If the column display settings have been changed from the default, a “Show Default Columns”

link will appear that allows the column settings to be returned to the default. Column settings are

saved on a per user / per machine basis, meaning if the user logs out of CHART and logs back in

the future using the same machine user account, browser, and CHART user account, their prior

column display settings will still be in effect.

The New Template select list at the bottom of the template list allows the user to create a new

template for a sign size they select. See the section below for more information regarding adding

DMS Message Templates.

5.1.2.2 Add DMS Message Template

Message templates are added to the template list using the New Template select list that appears

below the list of templates. To add a template, the user first selects a DMS size (rows x

columns) for which the template will be used.

CHART R3B3 Detailed Design 5-19 12/23/2008

Figure 5-29 Add Message Template - Select Sign Size

After selecting the sign size, the Add Template form will appear, shown below. The user can

add text and/or data fields to any row of the message template. As entries are made in the rows,

the display at the top of the page shows a graphical representation of a message specified by the

current template settings, using “dummy data” for data fields. Data fields are added as “tags”

that represent the type of field and the data source index number. All tags that have the same

index will be replaced with data from the same data source when the template is used to create an

actual message. Data fields in DMS messages that are created using a template will be updated

as the data changes in the data source(s) used for the message.

CHART R3B3 Detailed Design 5-20 12/23/2008

Figure 5-30 Add DMS Message Template

In the example above, Row 2 of the first page has a <DEST1> tag to include the destination from

a travel route, followed by a <TTRANGE1> tag to include the travel time range from that same

data source. (The index “1” in both the DEST1 and TTRANGE1 tags indicate both pieces of

data will be obtained from the same data source.) Adding a tag to the message is done by

clicking the “Tag” link next to the row where the tag will be added. This causes a popup to

appear that provides links used to add any of the available tags to the row (see below).

CHART R3B3 Detailed Design 5-21 12/23/2008

Figure 5-31 DMS Message Templates - Adding Data Fields

The following data fields are available for use in a template:

• Destination – Destination fields will be replaced with the largest of the three destinations

specified for a travel route that fits in the space allotted for the field (preferred, option 1,

or option2). Destination fields use all available space by default. A number can be

entered at the beginning of the field tag (such as <6DEST1>) to make the destination

field use a specific width. This feature can be useful when aligning data in columns.

Destination fields are represented as asterisks in the graphical display when using the

default width, and as X’s when set to use a specific width. When at least 1 destination

tag is used in a template, a Justify Within DEST Tag field will appear on the form to

allow the user to specify if destinations that do not use the entire width of the dest field

will be left, right, or center justified.

• Travel Time – Travel time fields (represented by a tag of the form <TT1> will be

replaced with a travel route’s current travel time. After at least 1 travel time field is

included in the template, a Travel Time Format field will appear on the form to allow the

user to specify the format to be used for all travel time fields in the template. The format

chosen ultimately specifies the width of the field in addition to the time format.

• Travel Time Range – Travel Time Range fields (represented by a tag of the form

<TTRANGE1>) will be replaced by a travel time range rather than the actual travel time.

A travel time range is created by taking the actual travel time from a travel route and

subtracting a few minutes to get a low range, and adding a few minutes to get a high

range, yielding a range such as 11-14 minutes. The number of minutes added/subtracted

are specified in the system profile, and can differ based on amount of the actual travel

time. Like the travel time field, once a travel time range field is used in the message

CHART R3B3 Detailed Design 5-22 12/23/2008

template a format field will appear on the form that allows the user to choose the format

used for all travel time range fields in the template. Each format specifies the width

required for the field in addition to the number of digits for the travel times, whether or

not “Minutes” or some abbreviation of minutes will appear, etc.

• Toll Rate – Toll Rate fields (represented by a tag of the form <TR1>) will be replaced

with the current toll rate for a travel route. After at least one toll rate tag is included in

the template, a Toll Rate Format field will appear on the form to allow the user to choose

the format used for all toll rate fields that appear in the template. Like the other field

formats, each toll rate format also specifies the width of the field.

• Distance – Distance fields (represented by a tag of the form <DISTANCE1>) will be

replaced by the distance specified for a travel route. This distance may be derived from

the links included in the travel route or may have been manually entered by a user. When

at least 1 distance field is used in the template, a Distance Format field will appear on the

form to allow the user to specify the format to use for all distance fields in the template.

Distance formats specify the size of the field in addition to the number of digits, whether

tenths of a mile are included, and whether or not the word “miles” or an abbreviation of

“miles” is included in the field.

• Toll Rate Time - Toll Rate Time Fields (represented by a tag of the form <TRTIME>)

will be replaced by the latest toll rate effective time for a toll rate included in the

template. Note that toll rate time does not contain an index like the other fields – the toll

rate time used is determined by the system. When at least one toll rate time field is

included in the template, the Toll Rate Time Format field will appear to allow the user to

select the format used for all toll rate time fields in the template. The toll rate time

format specifies the time format to use which ultimately specifies the width of the field.

By default, each row of the template will be centered, however the user can also choose to left or

right justify on a row by row basis. The user may choose the Page On Time” to control how

long each page of a two page message will be displayed before blanking the sign and then

displaying the next page. The Page Off Time setting allows the user to choose how long the sign

will remain blank when switching pages.

The If Route Data Missing setting specifies how the template is to be used if data for a field

included in the template is missing for any reason. The user can choose to discard the entire

message, discard the page of the message with missing data, or discard the row with missing

data. The best choice for this setting will depend on the content of the message template. For

example, if the template is set up such that travel times for multiple destinations are listed, it may

be OK to just discard a row if data is missing. If, however, the template has data for a single

route spread across multiple rows of the DMS, it is probably better to discard the entire page or

message.

The user can enter a description of the template which will appear in the template list as well as

the select list used to choose a template for a DMS message.

Normally, the advanced form of the template editor is shown, but it is possible for the user to

show a simpler version of the editor by clicking the “Show Def. Editor” button. The default

CHART R3B3 Detailed Design 5-23 12/23/2008

version of the editor does not allow the user to choose page justification or page on/off times.

Other than that, the default editor works the same way as the advanced editor (see below).

Figure 5-32 DMS Message Templates - Default Editor

In both the advanced and default versions of the editor, a Check Spelling button appears that

allows the user to perform a spelling check on the message.

5.1.2.3 Edit DMS Message Template

Existing templates can be edited by clicking the “Edit” link for a template in the template list.

This will cause a form identical to the form shown above for adding a template to appear pre-

populated with the template’s data. The user can then make any changes to the template and

save their changes.

CHART R3B3 Detailed Design 5-24 12/23/2008

5.1.2.4 Remove DMS Message Template

Existing templates can be removed from the system by clicking the “Remove” link for a template

in the template list. A warning message will confirm the user’s intent before removing the

template from the system.

5.1.3 Travel Time and Toll Rate Messages

Travel time and toll rate messages are created by combining a message template with data from

one or more travel routes. Whether a message will contain travel time(s), toll rate(s), or both

depends on the data fields in the template and the data available for the selected travel route(s).

Travel Time and Toll Rate messages can be configured for any DMS as long as there is a DMS

message template available that matches the size of the DMS. A DMS may have multiple travel

time / toll rate messages configured for use on the DMS, however only one may be enabled at

any given time. A list of travel time / toll rate messages configured for a DMS is shown on each

DMS details page. A user with appropriate rights can add, edit, remove, enable, and disable

travel time messages. See the sections below for details.

5.1.3.1 Travel Time / Toll Rate Message List

The travel time / toll rate message list appears on the details page of each DMS (see below). It

shows the currently configured messages (if any), the status of each message (enabled or not),

and provides links to allow each message to be enabled/disabled, edited, or removed. A link is

also provided to allow a new travel time / toll rate message to be added to the DMS

configuration.

Figure 5-33 Travel Time / Toll Rate Message List on DMS Details Page

The graphical representation of each message shown in this list uses the actual data from the

travel routes specified in the message when available. When actual travel route data is not

available, “dummy data” will be used in the data fields in the message.

5.1.3.2 Add Travel Time / Toll Rate Message

When the user chooses to add a travel time / toll rate message to a DMS, a form is shown to

allow the user to specify the message template to be used for the message and the travel routes to

be used to supply data to the data fields in the template (see below).

CHART R3B3 Detailed Design 5-25 12/23/2008

Figure 5-34 Add Travel Time / Toll Rate Message - Initial Form

The Message Template list will contain all templates that have a size that matches the size of the

DMS. After the user selects a template, the content of the template is shown and a select field

will appear for each different data source specified in the template as shown below.

CHART R3B3 Detailed Design 5-26 12/23/2008

Figure 5-35 Add Travel Time / Toll Rate Message - Template Selected

Each Route selection list corresponds to the data fields in the template with the same index as the

Route list. The user selects the travel route that will be the source of data for those fields. For

example, the list labeled “Route 2” corresponds to all data fields whose tag ends with the number

“2”. In the example above, that would be the <TT2> and <DEST2> fields. The travel route

selected for Route 2 will be used to supply data for those fields.

The user is not required to select a route for each data field index that exists in the template. If a

travel route is not selected for an index that appears in the template, the fields with that index

will be considered to have missing data, and the display of the message will depend on the

template’s missing data setting.

As the user selects routes, the Formatted Message section of the form will show a graphical

display of the message that will result given the current template selection and route selection(s).

The Automatic row positioning feature can be selected to cause the system to use an automatic

vertical layout when all rows of a message page are not filled (either due to the layout of the

template or due to missing data when the “discard row” missing data rule exists in the template).

CHART R3B3 Detailed Design 5-27 12/23/2008

The automatic vertical layout rules cause row 2 of a DMS to be used if the page has only a single

row, and rows 1 and 3 to be used if the message has only 2 rows. This applies to DMSs that

have 3 or 4 rows.

After the user has selected a template and selected routes to be used to supply data to the fields

of the template, the user may click the OK button to save the message. The message will appear

in the DMS’s travel time / toll rate message list and will be disabled until specifically enabled by

the user.

5.1.3.3 Edit Travel Time / Toll Rate Message

A user with sufficient rights can edit an existing travel time / toll rate message by clicking the

“Edit” link next to the message in the message list. An Edit form that is identical to the Add

form shown above will appear pre-populated with the user’s prior selections. The user may then

make changes and click the OK button to save their changes.

5.1.3.4 Remove Travel Time / Toll Rate Message

A user with sufficient rights can remove a travel time / toll rate message. A warning will be

shown to prevent accidental removal. After the user confirms their intention to remove the

message, the message will be disabled (if currently enabled) and will be remove from the DMS’s

travel time / toll rate message list.

5.1.3.5 Enable Travel Time / Toll Rate Message

A user with sufficient rights can enable a travel time / toll rate message by clicking the “Enable”

link for the message in the DMS’s travel time / toll rate message list. When a message is

enabled, any currently enabled message will first be disabled (only one travel time / toll rate

message can be enabled at a time). The travel time / toll rate message will then be placed on the

DMS’s arbitration queue. If the message contains at least 1 toll rate field, the message will be

placed in the arbitration queue “bucket” specified in the DMS configuration for use with toll rate

messages. By default, the “toll rate” bucket is used, however any of the buckets can be set for

toll rate message use in the DMS configuration, including the highest priority bucket “urgent”.

If the message does not contain any toll rate fields, the message will be placed in the arbitration

queue “bucket” specified in the DMS configuration for use with travel time messages. By

default the “travel time” bucket will be used but any other bucket can be set for travel time

message use in the DMS configuration. The decision of which bucket to configure for use with

travel time / toll rate messages depends largely on the purpose of the DMS, and the default

settings will usually be sufficient for DMSs that display traffic event and travel time/toll rate

messages.

CHART R3B3 Detailed Design 5-28 12/23/2008

Figure 5-36 DMS Arbitration Queue With Toll Rate Message

Once placed on the DMS arbitration queue, the actual display of the travel time / toll rate

message on the DMS field device is governed by the arbitration queue as well as several other

factors that apply only to travel time / toll rate messages. The existing arbitration queue

processing which chooses the message to display based on priority and allows single page

messages to be combined (based on combinability configuration settings) applies to travel time /

toll rate messages. Travel time / toll rate messages on the arbitration queue can be moved just

like any other message that exists on the arbitration queue (such as those from traffic events).

Removal of a travel time / toll rate message from the arbitration queue is the same as disabling

the message.

Several factors specific to travel time / toll rate messages can prevent the display of the message

even if the arbitration queue would otherwise display it based on priority and/or message

combination rules, as follows:

• Missing Data – If valid data is not available for one or more of the data fields specified

in the template used by a travel time / toll rate message, the ability to display the message

will be based on the missing data rule specified in the template. If the rule is to discard

the message, the message will not be displayed. If the rule is to discard the page, and no

CHART R3B3 Detailed Design 5-29 12/23/2008

other page without missing data exists, the message will not be displayed. If the rule is to

discard the row, and there are no rows that do not have missing data, the message will not

be displayed. Note that in addition to a broken data feed for a travel route’s links or toll

rate source, several other conditions may cause a travel route’s data to be unavailable.

This includes conditions such as travel time quality below the accepted level, travel time

above the configured threshold for a travel route, disabled travel time or toll rate for a

route, expired data, and others.

• Travel Time Schedule – If a message is considered a travel time message (due to its lack

of any toll rate fields in the message), the message is subject to the travel time message

schedule specified for the DMS. By default, a DMS will be configured to utilize the

system-wide travel time display schedule, however the display schedule may be

overridden for a DMS. The DMS may be set to allow the display of travel time messages

without restriction (24x7) or may specify time periods during the day when travel time

messages may be displayed, regardless of the system-wide schedule. When a travel time

message is not displayed due to the travel time message display schedule, the message

remains enabled and remains on the arbitration queue, ready to be displayed when the

schedule allows.

5.1.3.6 Disable Travel Time / Toll Rate Message

A travel time / toll rate message can be disabled by clicking the “disable” link for the currently

enabled travel time / toll rate message in the DMS’s travel time / toll rate message list. Disabling

the travel time / toll rate message will cause it to be removed from the DMS’s arbitration queue

and the arbitration queue will re-evaluate to determine if it needs to change the DMS display.

5.1.4 DMS Travel Time / Toll Rate Settings

There are several groups of settings within the DMS configuration that apply to travel time / toll

rate messages: arbitration queue level settings for travel time and toll rate messages, travel time

message schedule settings, and associated travel routes. Details are provided in the sections

below.

5.1.4.1 DMS Arbitration Queue Level Settings

Two fields in the DMS basic configuration specify the arbitration queue “buckets” to be used for

travel time and toll rate messages.

CHART R3B3 Detailed Design 5-30 12/23/2008

Figure 5-37 DMS Travel Time / Toll Rate Arb Queue Levels

These settings specify which of the arbitration queue “buckets” a travel time or toll rate message

is placed in when the message is enabled. Once in the arbitration queue the user can move the

message to a different bucket … this setting is the bucket used for initial placement into the

arbitration queue.

5.1.4.2 DMS Travel Time Message Schedule

Each DMS contains settings for its travel time message display schedule. The settings can

specify that the DMS is to use the system-wide travel time display schedule or a custom schedule

for the DMS. The custom schedule can specify that there are no restrictions on displaying travel

time messages on the DMS (allowed 24x7), or the schedule can specify periods during the day

when travel time messages are allowed.

Figure 5-38 DMS Travel Time Message Schedule

The current schedule settings are shown on the DMS details page (shown above). Users with

rights to configure the DMS can use the “Edit” link to edit these settings. When the edit link is

clicked, a form appears allowing the schedule settings to be changed (see below).

CHART R3B3 Detailed Design 5-31 12/23/2008

Figure 5-39 DMS Travel Time Message Schedule Form

If the user chooses Use System Default Schedule, no other settings will appear on this form and

the DMS will use the system-wide travel time message schedule. When Specify Custom

Schedule is chosen (as shown above), the user can choose to enable messages 24x7 (no

restrictions) or choose to enable messages during specific times of the day. When enabling

messages during specific times of day, the user enters one or more start and end times. The

“Add Time Range” link allows more time ranges to be added. Note that the schedule applies to

all days, even weekends and holidays.

5.1.4.3 DMS Associated Travel Routes

The list of travel routes that may be used in travel time / toll rate messages for a DMS may be

specified for each DMS. Only travel routes previously associated with a DMS will be available

for use in travel time / toll rate messages for that DMS. This requirement has two purposes:

• It keeps the route selection list (shown when creating a travel time / toll rate message)

short

• It allows an administrator to specify the travel routes that are applicable to a DMS,

preventing the creation of travel time/toll rate messages that are inappropriate for the

DMS. For example, setting the list of applicable routes properly can prevent a message

for a travel route that does not begin at the DMS from being displayed on the DMS

CHART R3B3 Detailed Design 5-32 12/23/2008

Figure 5-40 DMS Associated Travel Routes - DMS Details Page

The current list of travel routes associated with the DMS (if any) are shown on the DMS details

page (see above). Each travel route name shown is a link to the details page for the travel route.

Users with rights to configure the DMS can click the “Edit” link to edit the list of travel routes

associated with the DMS.

Figure 5-41 DMS Associated Travel Routes - Edit Form

All routes available in the system that are not already associated with the DMS will be shown in

the Available Routes list on the left. The user can select available routes and use the Add button

to associate the routes with the DMS, or choose a previously selected route and click the Remove

button to disassociate them from the DMS. When the list of Selected Routes is set as desired, the

user clicks the Submit button to save their changes.

5.1.5 System Profile Travel Time Settings

There are several groups of settings in the system profile related to travel times. This includes

configuration settings that specify how travel time ranges are created given an actual travel time,

CHART R3B3 Detailed Design 5-33 12/23/2008

the system-wide travel time message display schedule, and miscellaneous travel time settings.

These settings are all accessed via links in the Travel Time / Toll Rate Settings section of the

system profile page as shown below.

Figure 5-42 Travel Time System Profile Settings

Details on each of these groups of settings can be found in the sections below.

5.1.5.1 Travel Time Range Settings

The travel time range settings specify how the system is to create a travel time range given a

single travel time.

CHART R3B3 Detailed Design 5-34 12/23/2008

Figure 5-43 Configure Travel Time Range Settings

Travel time ranges are formed by starting with an actual travel time and subtracting a number

from it to get the low end of the range, and adding a number to it to get the high end of the range.

The system allows the numbers that are added and subtracted from the actual travel time to be

specified differently based on the travel time value. The left hand column specifies the lowest

travel time that uses the add/subtract numbers on that row. The first row always has 1 as the left

hand column. To use a single set of add/subtract values for ALL travel times, only that first row

is needed. All travel times greater than 1 will use the add/subtract numbers in that row. If,

however, different add/subtract numbers are to be used as the travel time becomes larger,

additional rows can be added to specify the thresholds at which the add/subtract numbers change.

In the example above, the range created for all travel times from 1 to 9 will subtract 2 and add 2

to the actual travel time. For travel times from 10 to 29, the add/subtract numbers are both 3, and

for all travel times 30 and above, the add/subtract numbers are both 5.

The user can use the “add more rows” link if more than 3 different sets of add/subtract numbers

are desired. The Examples column shows an example of the travel time range created for a

travel time using the add/subtract numbers on each row. To edit the settings, the user makes

entries in each field for the rows they wish to use, and blanks all fields on rows they wish to

remove, and clicks Submit. The settings take effect immediately and will be applied the next

time a travel time range field is populated in a travel time / toll rate message.

CHART R3B3 Detailed Design 5-35 12/23/2008

5.1.5.2 System-Wide Travel Time Message Schedule

The system-wide travel time message schedule is used for DMSs whose travel time message

schedule is set to use the system default (no custom schedule). It can either specify that there are

no restrictions on the display of travel time messages (24x7), or sets specific time periods when

travel time messages may be displayed.

Figure 5-44 System Wide Travel Time Message Schedule

When entering specific time periods, the user selects a start time and end time for each period

when travel time messages may be displayed. The “Add Time Range” link can be used to add

additional time periods.

5.1.5.3 Miscellaneous Travel Time Settings

Several miscellaneous travel time settings exist in the system profile (see below).

CHART R3B3 Detailed Design 5-36 12/23/2008

Figure 5-45 Miscellaneous Travel Time Settings

The Travel Time Trend Threshold setting specifies the percent change required in the recent

travel times for a travel route for the system to consider the trend up or down. If the change is

less than this percent, the trend is considered flat.

The Travel Time Trend Sample Size setting specifies the number of travel times to average

together when determining the trend. This number of latest recent travel times will be averaged

and compared to the average of the earliest recent travel times for a travel route to determine the

percent change. The Travel Time Trend Threshold will then be used to determine if the trend is

flat or up/down.

The Travel Time Expiration setting specifies the amount of time a travel time is considered to

be valid. A travel time that has not been updated within this timeframe will be considered

expired.

5.1.6 Geographical Settings

Geographical settings include the management of geographical areas and coordinate sanity check

limits. Geographical areas are named polygons that are used in external event import rules as

CHART R3B3 Detailed Design 5-37 12/23/2008

well as external device query rules. They may be used in a future release as the basis for areas of

responsibility. The coordinate sanity check limits are settings that are used to make sure that

user entered latitude and longitude values are reasonable. The geographical settings are available

in the Geographical Settings section of the system profile page as shown below.

Figure 5-46 Geographical Settings

See the sections below for details on the Geographical Settings.

5.1.6.1 Geographical Areas

Geographical areas are used as filter criteria in external event import rules and in queries used to

manage external devices. When accessed via the system profile page, the list of currently

defined geographical areas is shown.

CHART R3B3 Detailed Design 5-38 12/23/2008

Figure 5-47 Geographical Areas – List

The list shows each geographical area’s name and provides links for each area to allow it to be

edited or removed. Links at the top and bottom of the page allow new areas to be added. The

Back To System Profile button navigates back to the user profile page. The sections below

provide more details about managing geographical areas.

5.1.6.1.1 Add Geographical Area

To add a geographical area, the user needs to specify a name for the area and the points that

make up the polygon that defines the area. Rather than (or in addition to) adding points

manually, points can be imported from a KML file, a file format supported by most popular

mapping products.

CHART R3B3 Detailed Design 5-39 12/23/2008

Figure 5-48 Add Geographical Area

To import points from a KML file, the user must first generate the KML file with the mapping

product of their choice and store it on the computer they are using to access CHART. The user

can then use the Browse button to navigate to the file on their computer and select it. After the

file is selected, the user must click the “Import Points From File” button. The points in the KML

file will be used to populate the latitude and longitude fields in the Location Points table, with

rows being added to the table as needed. After points are imported, the user may still choose to

make manual point entries, or they can use the Add Area button to add the area as defined via the

imported points.

When manually entering points, the user can use the Insert Point link to insert fields for a new

point above the row where they click the Insert Point link. They can use the Add Another Point

link to add fields for another point below the current list of points.

After the list of points is complete, the user can click the Add Area button to add the area to the

system. The Geographical Areas list will be shown and the new area will be included in the list.

CHART R3B3 Detailed Design 5-40 12/23/2008

5.1.6.1.2 Edit Geographical Area

The user may edit an existing geographical area using the “Edit” link for the area in the

geographical area list. The same form used to add an area (see above) will be shown; however it

will be populated with the name of the area and the points currently included in the area. The

user can then make any edits necessary and submit the form to save their changes.

5.1.6.1.3 Remove Geographical Area

The user may remove a geographical area using the “Remove” link for the area in the

geographical area list. A warning message will appear to help prevent accidental removal, and if

the user confirms their intention to remove the area the geographical area list will be refreshed

and the removed area will no longer appear in the list.

5.1.6.2 Miscellaneous Geographical Settings

The miscellaneous geographical settings include minimum and maximum latitude and longitude

values used to check user lat/long entries to make sure they are reasonable. These could be set to

the full allowed range of latitude and longitude for the world (-180, 180, -90, 90), or could be set

to a geographical region closer to the area of operation encompassed by the CHART system

(such as the mid-Atlantic states).

Figure 5-49 Miscellaneous Geographical Settings

CHART R3B3 Detailed Design 5-41 12/23/2008

5.1.7 External Events

External events were added to the CHART system in R3B2. This feature is enhanced in R3B3 to

allow rules to be defined to control which events are imported into the system. These rules are

also used to trigger actions related to external events that are imported, such as firing an alert

and/or notification and marking an external event as interesting. The list of existing external

event import rules can be viewed and rules can be added, edited, and removed. See the sections

below for details.

5.1.7.1 View External Event Inclusion Rules

The external event inclusion rules page is accessed via the view / edit link for External Event

Rules in the External System Settings section of the system profile (see below).

Figure 5-50 External Event Rules Link

After clicking the view/edit link, the External Event Inclusion Rules page is shown and all

existing rules are listed. Any external event that meets any of the rules will be imported into the

CHART system. If a rule is matched, other rules are still inspected to see if the import of the

event should trigger an action. The name of each rule is shown along with the rule criteria and

the actions associated with each rule (see below).

CHART R3B3 Detailed Design 5-42 12/23/2008

Links are included in the list to allow each rule to be edited or removed. A link at the top of the

page allows a new rule to be added. The Back To System Profile button can be used to return to

the system profile page.

5.1.7.2 Add External Event Inclusion Rule

When the Add link is clicked on the External Event Inclusion Rules page, the Add External

Event Inclusion Rule page is shown. Each rule must be given a name and one or more criteria.

Rules can optionally specify one or more actions to be taken when an event is imported that

matches the rule.

CHART R3B3 Detailed Design 5-43 12/23/2008

Figure 5-51 Add External Event Inclusion Rule

An external event must meet all criteria specified to match the rule. An event matching the rule

will be imported into the CHART system and will cause any actions specified in the rule to be

performed. The following criteria can be specified:

• Geographical Area(s) – One or more geographical areas (see section 5.1.6.1 above). An

external event whose lat/long falls within any of the specified geographical areas will

satisfy this criterion. A value of “Any” can be selected and will match any location

specified within an external event (including those with no location specified). A special

value of “Empty/Unspecified” may be selected and will match external events without a

location specified.

CHART R3B3 Detailed Design 5-44 12/23/2008

• State(s) – One or more state codes. An external event that has a state code equal to any

of the state codes specified will match this criterion. A value of “Any” can be selected

and will match external events with any state specified (including those with no state

specified). A special value of “Empty/Unspecified” can be selected and will match

external events with no state specified.

• Route Type(s) – One or more route types on which an external event may be located, for

example Interstate, US Route, State, etc. An external event that has a location with a

route type equal to any of the route types specified will match this criterion. A value of

“Any” can be selected and will match any route type included in the external event

(including those with no route type specified). A value of “Empty/Unspecified” can be

selected to match external events that have no route type specified.

• Closed Lanes – The number of lanes closed indicated by the event. An external event

that has at least the specified number of lanes closed will match this criterion. A value of

“Any” can be specified to match external events with any number of lanes closed

(including those without the number of lanes closed specified). A value of

“Empty/Unspecified” can be selected to match external events that don’t have the number

of closed lanes specified.

• Event Types – The event types that will match this rule. If an external traffic event has

an event type that will become any of the selected CHART event types after import, the

external event will be included. If no event types are selected, external events with any

event type will match this criterion.

• Search Text – One or more text strings that can be found in the event’s name,

description, route number, or county. If any of the strings entered are found in any of the

fields listed, the external event will match this criterion. If no text strings are entered, a

text search will not be included when checking to see if an external event matches the

rule.

The following actions can be specified in the rule:

• Send Alert – If this action is specified in the rule, any external event matching the rule

will cause an alert to be sent to a specified operations center. When the action is enabled,

a list box will appear to allow the user to choose the operations center.

• Send Notification – If this action is specified in the rule, any external event matching the

rule will cause a notification to be sent to a specified notification group. When the action

is enabled a list box will appear to allow the user to select the notification group.

• Mark As Interesting – If this action is specified in the rule, any external event matching

the rule will have its “interesting” flag set to true when the event is imported. This will

cause the event to appear on the home page (in the external events tab) of all users.

5.1.7.3 Edit External Event Inclusion Rule

An existing external event inclusion rule can be edited by clicking the “Edit” link for the rule in

the rule list. A form will appear that is nearly identical to the Add External Event Inclusion Rule

form shown above and will be pre-populated with the rule’s current data. The user can make any

CHART R3B3 Detailed Design 5-45 12/23/2008

desired changes and submit the form. Changes to a rule take effect immediately and will be used

the next time external event data is received (or retrieved) from an external system.

5.1.7.4 Remove External Event Inclusion Rule

An external event inclusion rule can be removed from the system by clicking the “Remove” link

for the rule in the rule list. A warning will appear and the rule will be removed if the user

confirms their intent to remove the rule. The rule list will refresh and the removed rule will no

longer appear.

5.1.8 External Devices

R3B3 allows external devices to be imported into the CHART system. Unlike traffic events,

which are imported automatically based on a set of rules, external devices must be explicitly

included in the CHART system by an administrator. External DMS (signs) and TSS (detectors)

are supported in R3B3. Lists of candidate external devices (DMS or TSS) are managed by the

administrator to mark devices for inclusion in CHART. A search feature allows the

administrator to manage small sets of devices at a time, based on geographic location and other

criteria. In addition to allowing devices to be marked as included, the system also allows devices

to be marked as excluded. A device marked as excluded will be removed from CHART if it was

previously included. A device marked neither included nor excluded remains a candidate for

inclusion and is not included in the system. The included flag, excluded flag, or lack of either

flag can be used as search criteria to further assist the administrator in managing the lists of

external device candidates. Once an external device is included in CHART it can be viewed on

the appropriate device list page along with CHART devices of the same type. Filters on the list

pages allow external devices to be shown or hidden, and also allow the external devices to be

filtered by agency. See the sections below for more details.

5.1.8.1 Managing External Devices

External device management screens are accessed from the system profile in the External System

Settings section (see below). The administrator can click the view/edit link for the type of

external devices they wish to manage (DMS or TSS).

CHART R3B3 Detailed Design 5-46 12/23/2008

Figure 5-52 External Device Management Links

Aside from the device type being managed, management of external TSS and DMS devices is

identical. Management of DMSs is shown in the examples below.

After clicking the device management view/edit link for the device type to be managed, a query

screen appears (shown below) to allow the administrator to specify the group of devices they

wish to manage.

CHART R3B3 Detailed Design 5-47 12/23/2008

Figure 5-53 Manage External DMSs - Query Page

The following search criteria may be entered.

• Agency – One or more agencies. Devices that are owned by any of the selected agencies

will match this search criterion. A value of “Any” may be selected to match devices

from any agency (including those without an agency specified). A value of

“Empty/Unspecified” can be used to match devices without an agency specified.

• Geographical Area – One or more geographical areas. Devices that are located within

any of the specified areas will match this search criterion. A value of “Any” may be

selected to match devices in any location. A value of “Empty/Unspecified” can be

selected to match devices that don’t have location data specified.

• Search Text – A text string to search for in the device name/description, location

description, county, or route. If specified, only devices with the given text in at least one

of these fields will match this criterion. If no text is entered, search text will not be

included in the search.

• CHART Applicability – Flags used to select devices based on their previously set

CHART applicability (included, excluded, or neither). At least one flag must be selected.

All flags should be selected if the desire is to see all devices that match the other search

CHART R3B3 Detailed Design 5-48 12/23/2008

criteria. Only devices whose included/excluded flag settings match the selected

applicability settings will match this criterion.

To view all external devices, the Agency and Geographical Area criteria should be set to Any,

the search text should be left blank, and all CHART applicability flags should be selected. If this

is done, the list of devices could be very large and therefore it is usually better to enter other

search criteria.

After the criteria are entered, the administrator can click the “Show DMS’s” button to see the

devices that match the specified criteria.

Figure 5-54 Manage External DMSs - Search Results

The devices are shown along with their current included/excluded setting. The list can be sorted

by Description, Location, Agency, Included Flag, or Excluded Flag, and can be filtered by

Agency. The list can also be filtered using check boxes at the top to show or hide devices based

on their current settings for the CHART applicability flags. The user can place check marks in

the included or excluded box for each device, or both boxes can be left unchecked. The Include

All and Exclude All buttons can be used to select all boxes in a column rather than having to

select each individual box. When finished making their selections, the user must click the Save

button to save their settings and cause the system to import newly included devices and remove

CHART R3B3 Detailed Design 5-49 12/23/2008

previously included devices that are no longer marked as included. The devices that are

imported can be viewed in the appropriate device list.

5.1.8.2 Viewing External DMSs

External DMSs that have been marked as included and imported into the system can be viewed

on the DMS List page along with CHART (internal) DMSs. The DMS List is accessed via the

Message Signs link in the navigation area of the home page in the Device Management section.

Figure 5-55 Message Signs Link on Home Page

After clicking the Message Signs link, the list of DMSs is shown. Initially, only CHART DMSs

will appear. To view the external DMSs, the user must check the External DMSs box.

Figure 5-56 DMS List with External DMSs

The external DMSs are shown with a different background color to allow them to be

distinguished from CHART DMSs. It is also possible to hide CHART DMSs to show only

external DMSs by unchecking the CHART DMSs box. When external DMSs are shown,

checkboxes for each agency for which one or more DMS is included in the CHART system

appear. The user can check a box to show devices from an agency or uncheck a box to hide

devices from an agency.

CHART R3B3 Detailed Design 5-50 12/23/2008

5.1.8.3 Viewing External TSSs

External TSSs that have been marked as included and imported into the system can be viewed on

the TSS List page along with CHART (internal) TSSs. The TSS List is accessed via the

Detectors link in the navigation area of the home page in the Device Management section.

Figure 5-57 Detectors Link on Home Page

After clicking the Detectors link, the list of TSSs is shown. Initially, only CHART TSSs will

appear. To view the external TSSs, the user must check the External Detectors box.

Figure 5-58 TSS List with External TSSs

The external TSSs are shown with a different background color to allow them to be distinguished

from CHART TSSs. It is also possible to hide CHART TSSs to show only external TSSs by

unchecking the CHART Detectors box. When external TSSs are shown, checkboxes for each

agency for which one or more TSS is included in the CHART system appear. The user can

check a box to show devices from an agency or uncheck a box to hide devices from an agency.

CHART R3B3 Detailed Design 5-51 12/23/2008

5.1.9 External System Related Settings

Several groups of settings related to external systems (in addition to the external event rules and

external device inclusion settings discussed above) are available in the system profile.

5.1.9.1 External System Connection Alert / Notification Rules

The External System Connection Alert / Notification Rules are configuration values for each

external connection that specify if alerts and/or notifications are enabled for a connection. When

alerts are enabled for a connection, the settings require the op center that is to be alerted to be

specified. When notifications are enabled for a connection, the notification group to be notified

must be specified. When alerts or notifications are enabled for a connection, a setting allows the

user to specify if warning conditions (in addition to failure conditions) should trigger alerts

and/or notifications.

Figure 5-59 External System Alert and Notification Settings

The Edit link for each external system connection allows the alert and notification settings to be

edited. When an Edit link is clicked, a form is shown that allows the user to set the failure time

threshold, select an op center to be alerted (or none), and to select a notification group to be

notified (or none). If the alert op center or notification group are set to a value other than

“None”, the user can choose to be alerted/notified when a warning condition is detected in

addition to failure conditions.

CHART R3B3 Detailed Design 5-52 12/23/2008

Figure 5-60 External System Alert and Notification Settings - Edit

5.1.9.2 External Agency / Organization Mapping

The External Agency to Organization Mapping configuration defines the CHART organization

to be assigned to external events and devices when they are imported into CHART. The

organization to use is based on the identification of the external system and the system’s agency

designation present in the external object’s data.

CHART R3B3 Detailed Design 5-53 12/23/2008

Figure 5-61 External Agency / Organization Mapping

5.1.9.3 External Client Management

CHART R3B3 allows external systems to connect to CHART to access its data. CHART R3B3

also allows one system (Vector) to connect to CHART to provide data (toll rates). The External

Client Management feature is used to manage the credentials of these systems to ensure that only

approved external systems can connect to CHART. The current list of approved external clients

can be viewed, settings for existing clients can be edited, and clients can be removed. See the

sections below for details.

5.1.9.3.1 View External Clients

The list of currently defined external clients is available using the view/edit link for External

Client Management in the External System Settings section of the system profile (see below).

Figure 5-62 External Client Management - view/edit Link

CHART R3B3 Detailed Design 5-54 12/23/2008

After clicking the link the list of external clients is shown. For each client, the following

information is shown:

• Client ID –The ID the client passes to CHART when it accesses the system. CHART

uses the ID to find the client’s public key to verify an electronic signature required for all

data transmissions to CHART. The ID is also used apply the proper user rights to the

client with respect to providing access to data.

• Client Name – The name of the client.

• Description – The description of the client.

• Access – The type of access the client requires. A supplier provides data to CHART and

is not subject to user rights. Consumers read data from CHART and are required to have

one or more CHART Roles assigned that determine the user rights used to determine

which data the external client can and cannot access.

• Contact Info – Contact information for the person responsible for the external system’s

connection to CHART.

Figure 5-63 External Client List

The Actions column provides links to allow an existing client’s settings to be edited and to allow

an existing client to be removed (thereby revoking their access to the CHART system). The Add

Client links at the top and bottom of the page allow an external client to be added. These actions

are described further in the sections that follow.

CHART R3B3 Detailed Design 5-55 12/23/2008

5.1.9.3.2 Add External System Client

An external client must be added to the external client list before the client can gain access to the

CHART system. The Add External System Client form is accessed using the Add Client link on

the External System Client Management page.

Figure 5-64 Add External System Client

The Add External System Client form allows the administrator to assign an ID to the external

client which must be used by the client each time it accesses the CHART system. A name and

description can also be assigned to further identify the client. Contact information including the

contact’s name, e-mail, phone, and fax may also be entered.

When the Add External System Client form is displayed, a public/private key pair is

automatically generated. The public key is shown to the user and a button exists to allow the

CHART R3B3 Detailed Design 5-56 12/23/2008

private key to be downloaded. The private key is to be provided to the owner of the external

system and must be used by the external system to electronically sign all data packets sent to the

CHART system. This private key must be carefully guarded and securely provided to the

external system owner. There is no need to store the private key within the CHART

organization; a new public/private key pair can be generated should the external system owner

lose the currently provided private key. CHART will utilize the public key shown to verify

signatures created using the private key. Only the public key is stored in the CHART system.

The Access checkboxes allow the administrator to specify the type of access required by the

external client. A supplier of data connects to CHART to provide data to CHART, such as toll

rate data. A consumer connects to CHART to access CHART data. A client can be a supplier,

consumer, or both. When the consumer checkbox is checked, a list appears to allow the

administrator to assign a role to the external client.

Figure 5-65 Set External Client Role(s)

After a role is chosen, another list will appear to allow another role to be added. An external

client that is a consumer of CHART data can have 1 or more roles. A union of the user rights

from all assigned roles will be used to determine the CHART data the external client is permitted

to access.

5.1.9.3.3 Edit External Client

An external client can be edited using the Edit link for the client on the External System Client

Management page. Clicking the Edit link causes the Edit External System Client page to appear,

pre-populated with data for the external client. The Edit External System Client page differs

slightly from the Add page with regard to the public/private keys. While the public key is shown

as is the case on the Add form, the Download Private Key button is disabled, as CHART does

not store the private key that is provided to the external system owner. If the external system

owner requires a new private key (or the administrator forgot to download the private key

generated while adding the external client), the admin may use the Generate New Keys button.

CHART R3B3 Detailed Design 5-57 12/23/2008

Figure 5-66 Edit External System Client

The Generate New Keys button, when pressed, will cause the public key text area to show a new

public key, and the Download Private Key button will be enabled to allow the associated private

key to be downloaded and provided to the external system owner. The Edit Client button must

be clicked when finished making any changes to the external client information, including

generating new keys.

5.1.9.3.4 Remove External Client

An external client can be removed using the Remove link for the client on the External System

Client Management page. Removing a client immediately revokes the client’s access to the

CHART R3B3 Detailed Design 5-58 12/23/2008

CHART system. A warning message is used to confirm an administrator’s intent to remove an

external client.

5.1.10 External System Connection Status

A page showing the status of each external system connection is available for users with

appropriate rights. This status page is accessible using the External Connections link in the

Administration section of the home page navigation links (shown below).

Figure 5-67 External System Connection Status – Link

After clicking the External Connections link, the External Connection Status page is shown.

This page contains a row for each connection CHART makes to external systems, as well as

potential connections that can be made from external systems to CHART. The potential

incoming connections are based on external clients that have been configured to access the

CHART system. The screen shot below depicts an example of the external connections that may

appear on this status page.

Figure 5-68 External System Connection Status

CHART R3B3 Detailed Design 5-59 12/23/2008

The current status of each connection is shown in addition to the time the status transitioned to

the current state. The Status Confirmed time shows when the system last verified the current

status.

5.1.11 Alerts

Four new alert types are added in R3B3: External Connection Alert, External Event Alert,

Travel Time Alert, and Toll Rate Alert. All functionality regarding managing these new alert

types is identical to the Alert functionality that exists in CHART R3B2 except as described in

this section.

5.1.11.1 Alerts on the Home Page

Like other alerts, the alerts added in R3B3 appear on the home page of users in the operations

center that receives the alert. Alerts for other centers can be viewed by users that have the proper

rights and select the “All” alert filter on their home page.

Figure 5-69 R3B3 Alerts on the Home Page

Each of the alerts new to R3B3 appears in the image above. The icons used to represent each

new alert type are as follows:

• This icon: is used for external connection alerts. This type of alert is fired when

the system detects an error related to an external connection. Warnings related to

external connections may also generate alerts depending on the system configuration.

See the section above on External System Connection Alert / Notification Rules for

details.

• This icon: is used for external event alerts. This type of alert is fired when an

external event imported into CHART matches a rule that has the Send Alert action

enabled. See section 5.1.7.2 above for details.

CHART R3B3 Detailed Design 5-60 12/23/2008

• This icon: is used for toll rate alerts. The EZ is representative of EZPass, the

electronic tolling system used in Maryland. This type of alert is fired when error

conditions related to toll rates are detected, such as the toll rate for a travel route missing

from the toll rate data feed.

• This icon: is used for travel time alerts. This type of alert is fired when the travel

time for a travel route exceeds an “alert travel time” for the route and travel time alerts

are enabled for the route. See section 5.1.1.2 above for details.

All actions available on the home page for alert types that exist in R3B2 apply to these alert

types added in R3B3.

5.1.11.2 Alert Details

The alert details page for an alert is accessible by clicking the icon for the alert in the Actions

column of the alert list. Each details page contains fields specific to the alert type in addition to

elements common to all alert types. Only the fields specific to the new R3B3 alert types are

discussed below.

5.1.11.2.1 External Connection Alert Details

The fields on the external connection alert details page that are specific to external connection

alerts are shown below:

Figure 5-70 External Connection Alert Details - Type Specific Fields

These fields show the current status of the connection in addition to the status of the connection

at the time the alert was issued. The status change time is the time the status of the connection

transitioned to its current state. The status confirmed time is the time the system last detected the

reported status.

5.1.11.2.2 External Event Alert Details

The fields on the external event alert details page that are specific to external event alerts are

shown below:

CHART R3B3 Detailed Design 5-61 12/23/2008

Figure 5-71 External Event Alert Details - Type Specific Fields

The External Event field shows the external event that triggered the alert and provides a link to

the details page for the external event. The Matching Rule field shows the criteria in the rule that

the event matched which caused the alert to be fired.

5.1.11.2.3 Toll Rate Alert Details

The field on the toll rate alert details page that is specific to toll rate alerts is shown below:

Figure 5-72 Toll Rate Alert Details - Type Specific Fields

The Route field shows the travel route for which a toll rate alert was fired and provides a link to

the details page for the route.

5.1.11.2.4 Travel Time Alert Details

The fields on the travel time alert details page that are specific to travel time alerts are shown

below:

Figure 5-73 Travel Time Alert Details - Type Specific Fields

The Route field shows the travel route whose travel time exceeded the Alert Travel Time

specified for the travel route. The Most Recent Travel Time field shows the current travel time

for the travel route, and the Alerted Travel Time field shows the travel route’s travel time at the

time the alert was fired. The Travel Time Alert Limit field shows the Alert Travel Time that was

configured for the travel route at the time the alert was fired.

5.1.11.3 Resolve Alert

The resolve action for an alert is performed by clicking the Resolve link on the alert’s details

page, or by clicking the icon for the alert in the home page alert list. Following are the

resolve actions for each of the alert types added in R3B3:

• External Connection Alert – The External System Connections Status page is shown

• External Event Alert – The details page for the external event is shown

CHART R3B3 Detailed Design 5-62 12/23/2008

• Toll Rate Alert – The details page for the travel route for which the alert was generated

is shown

• Travel Time Alert – The details page for the travel route whose travel time exceeded the

Alert Travel Time is shown.

CHART R3B3 Detailed Design 5-63 12/23/2008

5.1.11.4 Alert Audio Cue Settings

The Alert Audio Cue settings page which exists in R3B2 is updated in R3B3 for the alert types

added in R3B3. This page shows the current audio cue configured for each alert type (if any)

and provides links to allow an audio cue to be added or for an existing audio cue to be edited or

removed.

Figure 5-74 Configure Alert Audio Cues

CHART R3B3 Detailed Design 5-64 12/23/2008

5.1.11.5 Alert Timeouts and Policy Settings

The Alert Timeouts and Policy Settings page that exists in R3B2 is updated in R3B3 for the alert

types added in R3B3. The page is very long due to the number of alert types – a portion of the

page is shown below.

Figure 5-75 Alert Timeout and Policy Settings

This page has the following settings for each alert type:

• Enable/Disable the alert type – Allows the alert type to be enabled or disabled, system-

wide. When disabled, alerts of this type will not be generated. Alerts of this type that

already exist in the system will not be affected.

CHART R3B3 Detailed Design 5-65 12/23/2008

• Enable/Disable automatic escalation – Allows automatic escalation for the alert type to

be enabled and disabled. When enabled, the visibility for an alert in the “new” state will

automatically increase to include all currently alerted center’s backup centers after the

alert has been in the “new” state for the specified escalation timeout.

• Default accept timeout – The default amount of time an alert of this type will stay in the

accepted state before automatically being moved back to the “new” state.

• Maximum accept timeout – The maximum accept timeout that is allowed for the alert

type.

• Default delay timeout – The default amount of time an alert of this type will stay in the

delayed state before automatically being moved back to the “new” state.

• Maximum delay timeout – The maximum delay timeout that is allowed for an alert

type.

• Escalation timeout – The amount of time an alert of this type must stay in the “new”

state before the alert is automatically escalated when automatic escalation is enabled.

5.1.12 Device Locations

Prior to R3B3, the only location data for field devices in the CHART system was a textual

location description. In R3B3, detailed location fields are added to each field device. These

location fields are a subset of the location fields that exist for traffic events. This subset includes

the following location fields: State, County, Route Type, Route, Direction, Proximity,

Intersecting Feature, Location Description, and Lat/Long. The intersecting feature includes

roads and state milepost.

The field device types for which these detailed location fields are supported are DMS, Camera,

HAR, Detector (TSS), and SHAZAM. (Monitors are not considered field devices). The location

fields for a device can be set while adding the device to the system or as an edit operation from

the device’s details page. The setting and viewing of device location fields is identical for each

field device type – DMS is used as an example in the screen shots used in the detailed sections

below.

A feature related to device locations that is also added in R3B3 is the ability to view devices that

are close to a traffic event. This feature is made possible due to the addition of the lat/long fields

for devices. Details on this feature in addition to viewing and setting device locations can be

found in the sections that follow.

5.1.12.1 Setting Device Location Fields

Device location fields can be set when adding a device to the system or via an Edit link on the

device’s details page. In either case, the form displayed will appear the same, however when

performing an edit the location fields will be pre-populated with the current values for the

device.

CHART R3B3 Detailed Design 5-66 12/23/2008

Figure 5-76 Location Settings Form

This form operates the same way as the location fields on the traffic event creation form. As the

user selects fields, the select lists for the other fields update to include applicable entries. For

example, when a county is selected, the list of routes is updated to include only routes of the

selected type that exist in that county. This dynamic list population is only possible when the

selected state is MD. Otherwise the select lists change to text entry fields and the data must be

entered free-form.

The form creates a location description automatically as location fields are selected/entered;

however the user can override the description text. All fields on the form are optional except for

the location description. After making selections / entries, the user may hit the submit button to

save their changes, or cancel to abandon their changes.

5.1.12.2 Viewing Device Location Fields in a Device List

The device lists for each field device type (excludes monitors) are updated in R3B3 to contain

several location related columns (Route, Direction, Mile Post, and County). These columns

include the ability to sort and filter. Additionally, each device list (including the list of monitors)

CHART R3B3 Detailed Design 5-67 12/23/2008

is enhanced to allow the user to choose the columns that are to be displayed or hidden. The

addition of the location columns to the device lists greatly increased the width of these pages; the

show/hide columns feature allows users to hide these new columns if they wish or hide other

columns to control the width of the page and reduce or eliminate the need for horizontal

scrolling.

Figure 5-77 Device List with Location Columns

To set the column visibility, the user can click the Set Columns link to display the list of

available columns with their current display status and can check/uncheck columns as desired to

set their show/hide setting.

Figure 5-78 Device List - Set Column Visibility

CHART R3B3 Detailed Design 5-68 12/23/2008

After submitting custom column display settings, the user can return to the default display by

clicking the Show Default Columns link on the device list page.

Several other columns are added to the device lists such as Port Managers (if applicable),

Network Connection Site, and Owning Organization. Additionally, columns have been added to

the DMS list to show if the DMS has overridden the system-wide travel time display schedule,

and whether or not the DMS is using standard arbitration queue priorities (buckets) for its travel

time and toll rate messages.

5.1.12.3 Viewing Device Location Fields on a Details Page

The details page for each field device contains a section where location fields are displayed. The

location description, which used to be shown in the Basic Settings section, has been moved to

this new location section in R3B3.

Figure 5-79 Location Fields on Device Details Page

An Edit link appears for users with appropriate rights to allow them to edit the location fields.

5.1.12.4 Viewing Devices Close to a Traffic Event

A new section is added to the traffic event details page in R3B3 to show devices that are located

within a specified radius of the event. This new “close devices” section is initially collapsed to

save vertical space on the page and can be expanded by the user to see a summary for each

device type listed. The sub-sections for each device type can also be expanded to show actual

devices. The close devices section of the traffic event details page is shown below with all sub-

sections fully expanded.

CHART R3B3 Detailed Design 5-69 12/23/2008

Figure 5-80 Devices Close to Traffic Event

The user may change the radius setting to expand or shrink the geographical circle around the

event that is used to determine which devices are “close”. The system will save the user’s radius

setting for the traffic event and will return to that setting if the page is refreshed or if the user

navigates away from the page and returns.

External detectors and DMSs are included in the close device list and are shown with a shaded

background color to differentiate them from internal CHART devices. While the user cannot

control external devices, the user can see the current state of the device (such as the current speed

of a detector or the current message of a DMS), and could contact the owning agency if device

control is needed. Each DMS and HAR listed (with the exception of external DMSs) can be

added to the response plan of the traffic event with an empty message using the Add To

Response button that appears for these devices.

5.1.13 Miscellaneous Device Enhancements

R3B3 includes enhancements to allow TCP/IP communications for DMS and TSS devices, and

to allow the default font to be set for NTCIP DMSs. The TSS details page is enhanced to show

traffic parameters for individual zones within a zone group. See the sections below for details.

5.1.13.1 TCP/IP Device Communications

R3B3 includes support for TCP/IP communications for DMS and TSS devices. The form used

to set the communication settings for these devices is updated to provide TCP/IP as a

communication option for the device.

CHART R3B3 Detailed Design 5-70 12/23/2008

Figure 5-81 Field Comm Settings - TCP/IP

When TCP/IP communications is selected, the user must enter the IP address and port used to

communicate with the device. (Port managers do not apply to TCP/IP communications). After

submitting the form, this data will appear on the details page for the device in the Comm Settings

section (not shown) if the user has rights to view sensitive data for that device.

5.1.13.2 NTCIP DMS Font Settings

NTCIP DMS devices contain default font and default line spacing settings that are used when

these settings are not specified within a message that is to be displayed on the device. CHART

messages do not currently include font markup, which means the default font and line spacing

settings configured on the device are used for all messages. On many of these signs, the default

font and line spacing settings are not desirable and have been manually changed (as a setting for

these defaults did not exist in CHART), however when power is cycled on the sign it reverts

back to its original settings. A maintenance action is then required to reset the default font and

line spacing settings for the sign. Until then messages are displayed in the undesirable (usually

small) font.

In R3B3, settings are added for NTCIP DMSs that allow the desired settings for the sign’s

default font and line spacing to be stored in CHART. Each time CHART sets a message on the

CHART R3B3 Detailed Design 5-71 12/23/2008

sign it will set the sign’s default font and line spacing to the values previously stored to ensure

the settings are set correctly. CHART then displays the message as normal, and the desired font

and line spacing will be used.

These new settings appear on the edit form used to edit the basic settings (shown below) and in

the Basic Settings section of the DMS details page. They also appear on the form used to add an

NTCIP DMS to the system in the General DMS Information section of that form.

Figure 5-82 NTCIP DMS Font and Line Spacing Settings

CHART R3B3 Detailed Design 5-72 12/23/2008

5.1.13.3 TSS Lane Level Detector Data

The detector details page, which previously showed traffic parameters only for zone groups, is

enhanced in R3B3 to show the traffic parameters for each zone within a group, which usually

equates to a single lane of traffic.

Figure 5-83 Lane Level Detector Data

The Traffic Parameters section of the details page (shown above) will include a row for each

zone of a zone group underneath a highlighted row for the zone group.

5.1.14 Public / Private Data Sharing

Most CHART user rights focus on the ability for users to perform certain actions, or to view

whole classes of data (DMS data for example). R3B3 adds several fine grained user rights that

are used to determine whether certain data elements can be viewed by users and in some cases

how the data will be shown. The user interface screens where these new rights will be enforced

are on the Traffic Events List, Traffic Event Details page, the Detector List, and Detector Details

page. There is also a new/enhanced group of settings that control access to sensitive device

configuration data, such as phone numbers and access codes. Details on user interface screens

affected by these new data access user rights are discussed in the sections below.

5.1.14.1 Traffic Event List

A new user right will control the ability for the user to know if a collision includes a fatality.

Figure 5-84 Incident Name with Fatality

Users that do not possess this new user right will not see the word “Fatality” within the CHART

System.

5.1.14.2 Traffic Event Details Page

The user right that determines the user’s ability to see if an incident is a fatality also applies to

the traffic event details page. The event name will not contain the word Fatality if the user

doesn’t have right to view sensitive incident data, and the incident type section of the form

(shown below) will not show that the incident type is fatality.

CHART R3B3 Detailed Design 5-73 12/23/2008

Figure 5-85 Incident Details with Fatality

Another user right, View Traffic Event History, is used to control access to the traffic event

history that is accessed via the traffic event details page. This right can be granted for all

organizations, or for individual organizations. If the traffic event is not owned by an

organization for which this user right has been granted, the user will not have access to the traffic

event history link on the traffic event details page.

Figure 5-86 Event History Link

5.1.14.3 Detector List

Two new user rights will be used to determine if a user can view the speed data for a detector

and if so, whether they can see a summary or the actual speed. Both of these new rights can be

granted for all organizations or just for specific organizations. Users without either right for the

owning organization of a detector will not see any speed data for that detector in the list. Users

with the right to view summary data for the detector’s owning organization will see a speed

range for the detector, and users with the right to view detailed data for the detector’s owning

organization will see the actual speed reading.

Figure 5-87 Summary and Detailed Speed Data

5.1.14.4 Detector Details Page

The detector details page will enforce the same rights as discussed in the section above, however

they will also control access to the zone group and zone level data. A user without either of the

rights that allow detector data to be viewed will not see any speed, volume, or occupancy on the

details page. Users that have the right to view summary data for the detector’s owning

organization will be able to see speed ranges for zone groups and zones, but no volume or

occupancy. Users that have the right to view detailed data for the detector’s owning organization

will be able to see actual volume, speed, and occupancy data for the detector.

CHART R3B3 Detailed Design 5-74 12/23/2008

Figure 5-88 Traffic Parameters showing Detailed Data

5.1.14.5 Sensitive Device Configuration Data

Prior to R3B3, several user rights existed that could be granted to allow users to view

configuration data for various devices. These rights were inconsistent across device types, and

for at least one device type non-existent, allowing any user that can view the list of devices to see

the configuration details for the device. R3B3 adds new user rights that will be required to view

the sensitive configuration data for a device. There is one new “view sensitive config” right for

each device type. These new user rights are enforced on the details page for the associated

device. Users that do not possess the right for the device type and the device’s owning

organization will not be permitted to view sensitive configuration information such as phone

numbers and access codes. The image below shows a sample of sensitive device configuration

information that requires a special right to view in R3B3.

Figure 5-89 Sensitive Device Configuration Data

5.2 Alert Module

5.2.1 Classes

CHART R3B3 Detailed Design 5-75 12/23/2008

5.2.1.1 AlertModule (Class Diagram)

This class diagram defined the classes in the AlertModule package. These classes define

the AlertModule server. It utilizes generated IDL classes as wells as other Chart2 utility

classes.

CHART R3B3 Detailed Design 5-76 12/23/2008

ExternalConnectionAlert

«interfac e»

TollRateAlert

«in terfac e»

ExternalConnectionAlertImpl

«im plem entati onClas s »

TollRateAlertImpl

«im plem entati onClas s»

ExternalConnectionAlertData

«s truc t»

TollRateAlertData

«s truc t»

1

1

1

1

1

1

*

DuplicateEventAlertImpl

«im plem entationClas s »

1

ArchiveTimerTask

1

1

AlertFactory

«interfac e»

EventStillOpenAlertIm pl

«im plem entati onClas s »

1

ExecuteScheduledActionsAlertImpl

1

1

1

1

1

1

1

ExternalEventAlert

«in terfac e»

TravelTimeAlert

«in terfac e»

ExternalEventAlertIm pl

«im plem entati onClas s»

TravelTimeAlertIm pl

«im plem entati onClas s »

ExternalEventAlertData

«s truc t»

TravelTimeAlertData

«s truc t»

1

1

1

1

1

1

ExecuteScheduledActionsAlert

«in terfac e»

1

*

1

1

1

AlertM oduleProperties

DBConnectionM anager

ServiceApplication

«in terfac e»

1

EscalateTimerTask

1

GenericAlert

«interfac e»

EventStillOpenAlert

«in terfac e»

java.util.Properties

DataM odel
1

1
See
Prox yAlertClas s es
Clas s Diagram for
deta i ls .

1

11

1

1

ProxyAlert

1

ObjectCache

DeviceFailureAlertData

«s truc t»

DuplicateEventAlertData

«s truc t»

EventStillOpenAlertData

«s truc t»

1

1

1

1

1

*

1

1

1

1

1

1

1

1

1

1

1

UnhandledResourcesAlertData

«data ty pe»

AlertData

«data type»

1

1

UniquelyIdentifiable

«in terfac e»

1

1

1

1

1
1

UnhandledResourcesAlertImpl

«im plem entati onClas s »

UnhandledResourcesAlert

«in terfac e»

GenericAlertImpl

«im plem entati onClas s»

DeviceFailureAlertImpl

«im plem entati onClas s»

DeviceFailureAlert

«interfac e»

AlertDB

AlertFactoryIm pl

«im plem entationClas s »

AcceptDelayTim erTask

1

java.util.Timer

1

1

1

1

AlertM odule

«im plem entationClass »

java.util.TimerTask

1

1

ExecuteScheduledActionsAlertData

1

AlertPrivateData

ServiceApplicationM odule

«interfac e»

1

*

PushEventConsumer

1

1

DuplicateEventAlert

«interfac e»

PushEventSupplier

AlertIm pl

«im plem entati onClas s »

Alert

«in terface»

NEW FOR
R3B3.

NEW FOR R3B3.

NEW FOR R3B3.

1

1

a lertFac tory Im pl(fac tory Id : Identi f ie r, s v c App : Serv i c eAppl ic a tion,
 db : AlertDB, a lertPus hEv entSuppl ie r : Pus hEv entSuppl ie r,
 props : AlertM oduleProperties) : c tor
+c hec k AlertM anageabil i ty (ty pe: AlertTy pe, v i s ib i l i i ty : AM G[]) : boo lean
+dis c ov erOpCenters () : v o id
+d is c ov erRem oteAlerts () : v o i d
+es c a la teTim edOutAlerts () : v oi d
+findOpCenterConfi g(opCenterId : Identi f ie r) : OpCenterConfigura tion
+getBac k upAM Gs For(c urrentVis : AlertM anagem entGroup[]) :AlertM anagem entGroup[]
+getOpCenterConfigs From Trader() : v oi d
+m ark Tim edOutAlerts ForArc h i v i ng() : v o id
+reNewTim edOutAlerts () :v o id
+s hutdown() : v o id
-addAlertTy pes ToTrader() : v o id
-log(flags : s tri ng, m ethod : s tring , tx t : s tri ng) : v o id
-logProd(m ethod : s tri ng, tx t : s tri ng) :v o id
-pus hAlertAdded(theAlert : Al ert, ex tAlertData : Ex tendedAlertData) :boo lean
-pus hAlertDele ted(a lertId : Identi f ie r) : v o i d
-v eri fy Unique(ex tAlertData : Ex tendedAlertData) : v o id
-v eri fy UniqueLoca l ly (ex tAlertData : Ex tendedAlertData) : vo i d
-v eri fy UniqueRem ote(ex tAlertData : Ex tendedAlertData) : vo i d

Pus hEventCons um er(c hannel, pus hConsum er)

m _ev ent_c hannel : Ev entChannel
m _pus hConsum er : Cos Ev ent.PushCons um er

getEs c a la teTim erStartupDelay () : in t
getEs c a la teTim erIn terva l () : i nt
getAc c eptDelay Tim erStartupDelay () : i n t
getAc c eptDelay Tim erInterv a l () : in t
getArc h i veTim erIn terv al () : i n t

getAlerts () : AlertIm pl []
getAlert() : Ex tendedAlertData
s etAlert(c onnM gr:DBConnec ti onM anager, a lert:Ex tendedAlertData,
 p riv AlertPriv a teData) : v o id
s etAlertOffl i ne(i d : Identi fi e r) : v o id

+getConnec ti on() : jav a.s q l .Connec tion
+getCurrentOpenCurs ors () : in t
+re leas eConnec ti on() : v o id
+s hutdown() : v o id
+v eri fy DBIn i ti a l iz ed() : boo lean

+AlertIm pl(id : Identi fi er,
 ex tData : Ex tendedAlertData,
 fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r,
 sv c App : Serv i c eAppl ic a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl o ther) : boo lean
#getTy peSpec ifi c Data() : Ex tendedAlertData

+AlertIm pl(id : Identi fi er, data : AlertData , fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r, s v c App : Serv ic eAppli c a ti on,
 db AlertDB) : c tor
+equals (AlertIm pl o ther) : boolean
#c hangeState(AlertSta te newState) : boo lean
#c om pare(AlertIm pl o ther) : boo lean
#es c a la teIfNec es s ary () : boo lean
-esc a la te IfNec es s ary (opCtrID:Identi fie r, c om m ent:String, us er:Stri ng)
#getTy peSpec ifi c Data() : Ex tendedAlertData
#m ark Offl ine IfNec es s ary () : boo lean
#pers i s tAndPushAlert() : v o id
#pers i s tAlert() : v o i d
#perform Es c alation() : boo lean
#pus hAlertAdded(theAlert : Alert, ex tAlertData : Ex tendedAlertData) :boo lean
#reNewIfNec es sary () : boo lean
#log(fl ags : s tring , m ethod : s tri ng , tx t : s tring) : v oi d
logProd(m ethod : s tring , tx t : s tring) :v o id
logLoc k Done(loc k : s tri ng) : v o i d
logLoc k Rc v d(loc k : s tri ng) : v o i d
logLoc k Rqs t(loc k : s tring) : v o id

in it ia l iz e(Serv ic eAppli ca tion app):boo lean
getVers i on() : Com ponentVers ion
traderGroupUpdated() : v o id
s hutdown(Serv i ceAppl ic a ti on app):boo lean

Serv ic eAppli c a tion m _s v c App;
Defau ltServ ic eAppli c a tionProperti es m _props ;

s c hedule() : v o id
c ance l () : v o id

bas eAlertData : AlertData
sc hedule Id : Identi fi er
sc hedAc ti ons : Ac tionData[]

AlertM odule() : c tor
-c reateEv entChannel (nam e) : Pus hEv entSuppl ie r
-c reateAlertFac tory () : boo lean
- addAlertFac tory Ty pes ToTrader() : v o id

run()

+AlertIm pl(id : Identi fie r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r,
 s v c App : Serv i c eAppl ic a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl other) : boo lean
#getTy peSpec i fi c Data() : Ex tendedAlertData

Pus hEventSuppl ie r(Ev entChannelFac tory fac tory , String c hannelNam e, Pus hSuppl ie r s upp l i e r)
getChannel():Ev entChannel;
getM axRec onnec tInterv a l (v o id):i nt;
s e tM axRec onnec tInterv a l (in t s ec onds):vo id ;
pus h(Any data):v o id;
d is c onnec tPus hCons um er(v o id):vo id ;

+AlertIm pl(id : Identi fi e r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r,
 sv c App : Serv ic eApplic a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl o ther) : boo lean
#getTy peSpec ific Data() : Ex tendedAlertData

bas eAlertData : AlertData
ex tEv entId : Identi fi e r
fi rs tAlertRu leM etId : Identi f ie r

+AlertIm pl(i d : Identi f ie r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl,
 pus hEv entSuppl ie r : Pus hEv entSuppl ie r,
 s v c App : Serv i ceAppl ic a ti on,
 db AlertDB) : c tor
#c om pare(AlertIm pl o ther) : boolean
#getTy peSpec i fi cData() : Ex tendedAlertData

prevEs c a lationRes etTim e : Tim es tam p
is Offl ine : boo lean

baseAlertData : AlertData
ex tConnId : Identi fi e r
is Warn ing: boo lean
alertSta tusChangeTim eSec s : long
a lertSta tusConfirm Tim eSec s : long

+AlertIm pl(id : Identi fie r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r,
 s v c App : Serv i c eAppl ic a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl other) : boo lean
#getTy peSpec i fi c Data() : Ex tendedAlertData

bas eAlertData : AlertData
trav e lRoute Id : Identi fi e r
a l ertedTrav elTim eSec s : in t
a l ertedTrav elTim eEffSec s : long
trav e lTim eAlertL im itSec s : i n t

+AlertIm pl (i d : Identi fi e r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl,
 pus hEv entSuppl ie r : Pus hEv entSuppl ie r,
 s v c App : Serv ic eAppli c a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl o ther) : boo lean
#getTypeSpec ific Data() : Ex tendedAlertData

bas eAlertData: AlertData
Trav e lRoute Id: Identi f ie r

+AlertIm pl(id : Identi fie r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r,
 s v c App : Serv i c eAppl ic a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl other) : boo lean
#getTy peSpec i fi c Data() : Ex tendedAlertData

bas eAlertDate : AlertData
newerEvent: Identi f ie r
o lderEv ent: Identi fi e r

+AlertIm pl (i d : Identi fi e r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl,
 pus hEv entSuppl ie r : Pus hEv entSuppl ie r,
 s v c App : Serv ic eAppli c a tion,
 db AlertDB) : c tor

bas eAlertData : AlertData
ev entId: Identi fe r
ty peOfFai ledDev ic e: Dev i c eFai lu reDev i c eTy pe
fa i lu reTy pe: Dev ic eFail u reTy pe

alertId : Identi fi e r
des c ri ption: s tri ng
ty pe: AlertType
des c ri ption: s tri ng
s ta te : AlertSta te
res pons ib l eUs er: s tri ng
res pons ib l eCenterInfo : OpCenterInfo
a lertCreationTim e: date tim e
alertCurrentVis i b i l i ty : AlertM anagem entGroup[]
a lertNex tVi s ib i l i ty : AlertM anagem entGroup[]
nex tAc ti onTim eM s ec : uns igned long
a lertLas tSta teChangeTim e: uns igned long
a lertHi s tory : AlertHis tory []

+AlertIm pl(id : Identi fi e r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r,
 sv c App : Serv ic eApplic a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl o ther) : boo lean
#getTy peSpec ific Data() : Ex tendedAlertData

bas eAlertData : AlertData
ev entId : Identi fe r

+AlertIm pl(id : Identi fi e r,
 ex tData : Ex tendedAlertData ,
 fac tory : AlertFac tory Im pl ,
 pus hEv entSuppli e r : Pus hEv entSuppli e r,
 sv c App : Serv ic eApplic a tion,
 db AlertDB) : c tor
#c om pare(AlertIm pl o ther) : boo lean
#getTy peSpec ific Data() : Ex tendedAlertData

baseAlertData : AlertData
opCenterId: Identi fi e r

Figure 5-90 AlertModule (Class Diagram)

5.2.1.1.1 AcceptDelayTimerTask (Class)

This class implements the alert accept-and-delay timer task. It periodically inspects alerts

in the accept state for those that have taken too long completion in the accept state. This

accept timeout limit is established in the system profile for each alert. Similarly it

CHART R3B3 Detailed Design 5-77 12/23/2008

periodically reviews the alerts in the delay state for those whose delay period has expired.

As with the accept state timeout, the delay timeout period is established in the system

profile for each alert type. When either the accept timeout or the delay timeout expires, this

task calls into the AlertImpl to escalate the alert.

5.2.1.1.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and

provides operations used to manage an alert.

5.2.1.1.3 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.2.1.1.4 AlertDB (Class)

This class provides a database interface for the AlertModule. It includes methods needed to

store and retrieve Alert related information.

5.2.1.1.5 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory

is responsible for creating alerts and storing alert information on the alerts that it created.

5.2.1.1.6 AlertFactoryImpl (Class)

This AlertFactoryImpl class implements the IDL AlertFactory interface and is responsible

for creating and managing the objects created to represent alerts (AlertImpls) in the Chart2

system.

5.2.1.1.7 AlertImpl (Class)

The AlertImpl class implements the IDL Alert interface. The AlertImpl class contains the

base class functionality for all other alert types in the Chart2 system. Each instance of one

of the AlertImpls derived types represents a specific alert.

5.2.1.1.8 AlertModule (Class)

This class provides the resources and support functionality necessary to serve alert related

objects in a service application. It implements the ServiceApplicationModule interface

which allows it to be served from any ServiceApplication.

5.2.1.1.9 AlertModuleProperties (Class)

This class provides operations for getting values in the service's java properties file.

5.2.1.1.10 AlertPrivateData (Class)

This class contains base alert data which is private to the AlertImpl class, Among the data

stored in AlertPrivateData is the time of the previous escalation or reset time, and the

CHART R3B3 Detailed Design 5-78 12/23/2008

isOffline flag to indicate the alert is ready for archiving.

5.2.1.1.11 ArchiveTimerTask (Class)

This class implements the alert archive timer task. It periodically sweeps through the

closed alerts in the system for those alerts deemed old enough to be archived. If an alert is

found that has aged beyond the system defined archive timer limit, it will set a flag on the

alert to mark it for removal. At some later time a separate database task will run to remove

and off-load these alerts to an archive file.

5.2.1.1.12 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

5.2.1.1.13 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.2.1.1.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is

implemented by classes representing DeviceFailureAlerts in the Chart2 System.

5.2.1.1.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event

causing the alert. Also included is information on the device failure type.

5.2.1.1.16 DeviceFailureAlertImpl (Class)

The DeviceFailureAlertImpl class is derived from the AlertImpl class and implements the

IDL DeviceFailureAlert interface. Type specific functionality is provided by this class for

CHART R3B3 Detailed Design 5-79 12/23/2008

Device Failure alerts.

5.2.1.1.17 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is

implemented by classes representing DuplicateEventAlertsDevice in the Chart2 System.

5.2.1.1.18 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate

traffic events.

5.2.1.1.19 DuplicateEventAlertImpl (Class)

The DuplicateEventAlertImpl class is derived from the AlertImpl class and implements the

IDL DuplcateEventAlert interface. Type specific functionality is provided by this class for

Duplicate Event alerts.

5.2.1.1.20 EscalateTimerTask (Class)

This class implements the alert escalate timer task. It periodically checks the new alerts in

the system for those that have not been accepted, delayed, or closed within the escalation

timeout period. This timeout period is established in the system profile for each alert type.

If an alert is found that has exceeded the escalation timer limit, a call into AlertImpl will be

made to escalate the alert.

5.2.1.1.21 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is

implemented by classes representing EventStillOpenAlerts in the Chart2 System.

5.2.1.1.22 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to

an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.2.1.1.23 EventStillOpenAlertImpl (Class)

The EventStillOpenAlertImpl class is derived from the AlertImpl class and implements the

IDL EventStillOpenAlert interface. Type specific functionality is provided by this class for

Event Still Open alerts.

5.2.1.1.24 ExecuteScheduledActionsAlert (Class)

This IDL interface contains operations specific to aExecute Scheduled Actions alert. This

interface is implemented by classes representing ExecuteScheduledActionsAlert in the

Chart2 System.

CHART R3B3 Detailed Design 5-80 12/23/2008

5.2.1.1.25 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

to an ExecuteScheduledActionsAlert.

5.2.1.1.26 ExecuteScheduledActionsAlertImpl (Class)

The ExecuteScheduledEventAlertImpl class is derived from the AlertImpl class and

implements the IDL ExecuteScheduledEventAlert interface. Type specific functionality is

provided by this class for scheduled event alerts.

5.2.1.1.27 ExternalConnectionAlert (Class)

This IDL interface contains operations specific to an External Connection Alert, which

indicates trouble with a connection between CHART and an external system.

5.2.1.1.28 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the

interface which is having trouble and a flag indicating whether the connection is in failure

or warning status, the timestamp it transitioned. (The GUI displays additional data which is

best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a

textual description and alert management data.)

5.2.1.1.29 ExternalConnectionAlertImpl (Class)

This is the implementation of the External Connection Alert, which alerts users to trouble

with an external connection. This can be a failure or a warning status. (Users can specify

whether to receive failures and warnings, or just failures).

5.2.1.1.30 ExternalEventAlert (Class)

This IDL interface contains operations specific to an External Event Alert, which indicates

an event has arrived from an external system which satisfies criteria a CHART

administrator has defined to flag an external event as significant enough to warrant this

alert.

5.2.1.1.31 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the

event and the ID of the first rule found that requested an alert be sent. (Text in the base

AlertData structure provides a textual description and alert management data.)

5.2.1.1.32 ExternalEventAlertImpl (Class)

This is the implementation of the External Event Alert, triggered by receipt of events with

match the external event alert settings in the event import module, as defined by a CHART

administrator.

CHART R3B3 Detailed Design 5-81 12/23/2008

5.2.1.1.33 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is

implemented by classes representing GenericAlerts in the Chart2 System.

5.2.1.1.34 GenericAlertImpl (Class)

The GenericAlertImpl class is derived from the AlertImpl class and implements the IDL

GenericAlert interface. Any type specific functionality that may be implemented in the

future would be provided by this class for Generic alerts.

5.2.1.1.35 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

property list is searched if the property key is not found in the original property list.

5.2.1.1.36 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.2.1.1.37 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.2.1.1.38 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.2.1.1.39 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including

the local service). The complete set of data for each alert is stored in the ProxyAlert, along

with its ID and a reference to the Alert object it represents. These proxy alerts allow every

alert module service in the system to have some knowledge of every alert in the entire

system, for the quickly determining whether a proposed new alert already exists elsewhere

in the alert system (and therefore does not need to be redundantly entered into the system

again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can

generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert

class is the super class for derived classes for each specialized type of alert in the system, so

that type specific data can be stored and accessed for each alert type, and can be queried for

comparison for the Duplicatable isDuplicateOf() method.

CHART R3B3 Detailed Design 5-82 12/23/2008

5.2.1.1.40 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer

implementation to an event channel, and maintaining that connection. When the

verifyConnection method is called, this object will determine if the channel has been lost

and will attempt to re-connect to the channel if it has.

5.2.1.1.41 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.2.1.1.42 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.2.1.1.43 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.2.1.1.44 TollRateAlert (Class)

This IDL interface contains operations specific to an Toll Rate Alert, which indicates a

travel route which had a currently active toll rate no longer does in a more recently received

toll rate update document from a toll rate provider. (This alert is not sent if a toll rate

expires due to an absence of any current toll rate document -- such an event would have

triggered one external connection alert and does not need to also trigger a multitude of

individual toll rate alerts as well.)

5.2.1.1.45 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no

longer has data for its toll rate. (Text in the base AlertData structure provides a textual

description and alert management data.)

CHART R3B3 Detailed Design 5-83 12/23/2008

5.2.1.1.46 TollRateAlertImpl (Class)

This is the implementation of the Toll Rate Alert, which is sent when a toll rate document is

received from the toll rate supplier which is missing a toll rate which had been present in

the prior document.

5.2.1.1.47 TravelTimeAlert (Class)

This IDL interface contains operations specific to an Travel Time Alert, which indicates the

travel time associated with a travel route is high enough to warrant this alert.

5.2.1.1.48 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit

and the travel time which exceeded the limit. (Text in the base AlertData structure provides

a textual description and alert management data.)

5.2.1.1.49 TravelTimeAlertImpl (Class)

This is the implementation of the Travel Time Alert, which is sent when the travel time

calculated for a Travel Route exceeds the alert threshold configured for the Travel Route by

a CHART Administrator.

5.2.1.1.50 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to a Unhandled Resources alert. This

interface is implemented by classes representing UnhandledResourceAlerts in the Chart2

System.

5.2.1.1.51 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

to an UnhandledResourcesAlert.

5.2.1.1.52 UnhandledResourcesAlertImpl (Class)

The UnhandledResourceAlertImpl class is derived from the AlertImpl class and implements

the IDL UnhandledResourceAlert interface. Type specific functionality is provided by this

class for Unhandled Resource alerts.

5.2.1.1.53 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-84 12/23/2008

5.2.1.2 ProxyAlertClasses (Class Diagram)

This class diagram shows all classes related to the storage of proxy alerts in the object

cache. The ProxyAlert class, and its subclasses, provide access to all alerts known to be in

the system, so that an alert factory can quickly determine whether a requested new alert

already exists elsewhere in the alert system (and therefore does not need to be redundantly

entered into the system again).

ProxyTravel t i meAl ert

Travel Ti meAl ert Dat a
«st r uct »

Tol l Rat eAl ert Dat a
«st r uct »

ProxyExt er nal Connect i onAl ert ProxyTol l Rat eAl ert

Ext ernal Connect i onAl ert Dat a
«st r uct »

1

1

ProxyEvent St i l l O penAl ert

Event St i l l O penAl ert Dat a
«st r uct »

1

1

1

Dupl i cat abl e
«int er f ace»

1

1

1

1

ProxyDupl i cat eEvent Al er t

Devi ceFai l ureAl ert Dat a
«st r uct »

1

1

Dat aM odel

1

Execut eSchedul edAct i onsAl ert Dat a

ProxyExecut eSchedul edAct i onsAl ert

Al ert
«int er f ace»

R3B3: New classes

R3B3: New classes

1

1

1

11

Ext ernal Event Al er t Dat a
«st r uct »

*

1

O bj ect Cache
ProxyAl er t

Al ert Dat a
«dat at ype»

1

ProxyG eneri cAl ert Pr oxyUnhandedResourcesAl er t

Dupl i cat eEvent Al ert Dat a
«st r uct »

Unhandl edResourcesAl ert Dat a
«dat at ype»

1 1 1

11

ProxyDevi ceFai l ureAl ert

ProxyExt ernal Event Al ert

1

+get DeviceFailur eAler t Dat a() : DeviceFailur eAler t Dat a
+set DeviceFailur eAler t Dat a(dat a : DeviceFailur eAler t Dat a) : void
+isDuplicat eO f (ot her : Pr oxyDeviceFailur eAler t) : boolean

m _deviceFailur eAler t Dat a : DeviceFailur eAler t Dat a

isDuplicat eO f (t ype : Class, ot her : Duplicat able) : boolean

+get Duplicat eEvent Aler t Dat a() : Duplicat eEvent Aler t Dat a
+set Duplicat eEvent Aler t Dat a(dat a : Duplicat eEvent Aler t Dat a) : void
+isDuplicat eO f (ot her : Pr oxyDuplicat eEvent Aler t) : boolean

m _duplicat eEvent Aler t Dat a : Duplicat eEvent Aler t Dat a

+get Ref () : Aler t
+get Aler t Dat a() : Aler t Dat a
+set Aler t Dat a(dat a : Aler t Dat a) : void
+get Ext endedAler t Dat a() : Ext endedAler t Dat a
+isDuplicat eO f (ot her : Pr oxyAler t) : boolean

m _r ef : Aler t
m _aler t Dat a : Aler t Dat a

+get Event St illO penAler t Dat a() : Event St illO penAler t Dat a
+set Event St illO penAler t Dat a(dat a : Event St illO penAler t Dat a) : void
+isDuplicat eO f (ot her : Pr oxyEvent St illO penAler t) : boolean

m _event St illO penAler t Dat a : Event St illO penAler t Dat a

+get Ext er nalConnect ionAler t Dat a()
+set Ext er nalConnect ionAler t Dat a(dat a:
 Ext er nalConnect ionAler t Dat a) : void
+isDuplicat eO f (ot her : Pr oxyExt er nalConnect ionAler t)
 : boolean

m _ext er nalConnect ionDat a:
 Ext er nalConnect ionAler t Dat a

+isDuplicat eO f (ot her : Pr oxyG ener icAler t) : boolean

+get TollRat eAler t Dat a()
+set TollRat eAler t Dat a(dat a:
 TollRat eAler t Dat a) : void
+isDuplicat eO f (ot her : Pr oxyTollRat eAler t)
 : boolean

m _t ollRat eAler t Dat a:
 TollRat eAler t Dat a

+get UnhandledResour cesAler t Dat a() : UnhandledResour cesAler t Dat a
+set UnhandledResour cesAler t Dat a(dat a : UnhandledResour cesAler t Dat a) : void
+isDuplicat eO f (ot her : Pr oxyUnhandledResour cesAler t) : boolean

m _unhandledResour cesAler t Dat a : UnhandledResour cesAler t Dat a

+get Tr avelTim eAler t Dat a()
+set Tr avelTim eAler t Dat a(dat a:
 Tr avelTim eAler t Dat a) : void
+isDuplicat eO f (ot her : Pr oxyTr avelTim eAler t) :
 boolean

m _t r avelt im eAler t Dat a:
 Tr avelTim eAler t Dat a

+get Execut eScheduledAct ionsAler t Dat a() :
Execut eScheduledAct ionsAler t Dat a
+set Execut eScheduledAct ionsAler t Dat a(
dat a : Execut eScheduledAct ionsAler t Dat a) : void
+isDuplicat eO f (
ot her : Pr oxyExecut eScheduledAct ionsAler t) : boolean

m _pr oxyExecut eScheduledAct ionsAler t Dat a:
Execut eScheduledAct ionsAler t Dat a

+get Ext er nalEvent Aler t Dat a()
+set Ext er nalEvent Aler t Dat a(dat a:
 Ext er nalEvent Aler t Dat a) : void
+isDuplicat eO f ot her Pr oxyExt er nalEvent Aler t
 () boolean()

m _ext er nalEvent Aler t Dat a:
 Ext er nalEvent Aler t Dat a

Figure 5-91 ProxyAlertClasses (Class Diagram)

5.2.1.2.1 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and

provides operations used to manage an alert.

5.2.1.2.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.2.1.2.3 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

CHART R3B3 Detailed Design 5-85 12/23/2008

5.2.1.2.4 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event

causing the alert. Also included is information on the device failure type.

5.2.1.2.5 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated"

within the CHART system. This allows the ObjectCache to search for duplicates of any

Duplicatable object. This is different from "equals()" or "compareTo()". To cite two

examples: Alerts within CHART are duplicates if they refer to the same objects within

CHART (but do not have the same Alert ID, which is more closely associated with

"equals()"). Traffic Events within CHART are duplicates if they have the same location

(but do not have the same Traffic Event ID).

5.2.1.2.6 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate

traffic events.

5.2.1.2.7 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to

an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.2.1.2.8 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

to an ExecuteScheduledActionsAlert.

5.2.1.2.9 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the

interface which is having trouble and a flag indicating whether the connection is in failure

or warning status, the timestamp it transitioned. (The GUI displays additional data which is

best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a

textual description and alert management data.)

5.2.1.2.10 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the

event and the ID of the first rule found that requested an alert be sent. (Text in the base

AlertData structure provides a textual description and alert management data.)

5.2.1.2.11 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

CHART R3B3 Detailed Design 5-86 12/23/2008

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.2.1.2.12 ProxyAlert (Class)

This class is used as a proxy for alerts existing in all alert modules in the system (including

the local service). The complete set of data for each alert is stored in the ProxyAlert, along

with its ID and a reference to the Alert object it represents. These proxy alerts allow every

alert module service in the system to have some knowledge of every alert in the entire

system, for the quickly determining whether a proposed new alert already exists elsewhere

in the alert system (and therefore does not need to be redundantly entered into the system

again). ProxyAlert implements the Duplicatable interface, so that the ObjectCache can

generically be queried to check for duplicates of any other ProxyAlert. This ProxyAlert

class is the super class for derived classes for each specialized type of alert in the system, so

that type specific data can be stored and accessed for each alert type, and can be queried for

comparison for the Duplicatable isDuplicateOf() method.

5.2.1.2.13 ProxyDeviceFailureAlert (Class)

his subclass of ProxyAlert is used to cache DeviceFailureAlert types of alerts. It holds and

provides access to data specific to the DeviceFailureAlert, and provides an isDuplicateOf()

implementation specialized for comparing two alerts of this type.

5.2.1.2.14 ProxyDuplicateEventAlert (Class)

This subclass of ProxyAlert is used to cache DuplicateEventAlert types of alerts. It holds

and provides access to data specific to the DuplicateEventAlert, and provides an

isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.15 ProxyEventStillOpenAlert (Class)

This subclass of ProxyAlert is used to cache EventStillOpenAlert types of alerts. It holds

and provides access to data specific to the EventStillOpenAlert, and provides an

isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.16 ProxyExecuteScheduledActionsAlert (Class)

This subclass of ProxyAlert is used to cache ExecuteScheduledActionsAlert types of alerts.

It holds and provides access to data specific to the ExecuteScheduledActionsAlert, and

provides an isDuplicateOf() implementation specialized for comparing two alerts of this

type.

5.2.1.2.17 ProxyExternalConnectionAlert (Class)

This class is used to carry data about an external connection alert which has been received

by the ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert

Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

CHART R3B3 Detailed Design 5-87 12/23/2008

5.2.1.2.18 ProxyExternalEventAlert (Class)

This class is used to carry data about an external event alert which has been received by the

ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert

Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.19 ProxyGenericAlert (Class)

This subclass of ProxyAlert is used to cache GenericAlert types of alerts. It holds and

provides access to data specific to the GenericAlert, and provides an isDuplicateOf()

implementation specialized for comparing two alerts of this type.

5.2.1.2.20 ProxyTollRateAlert (Class)

This class is used to carry data about a toll rate alert which has been received by the

ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert

Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.21 ProxyTraveltimeAlert (Class)

This class is used to carry data about a travel time alert which has been received by the

ObjectCache from an AlertModule. Proxy alerts are collected and used by all Alert

Modules to aid in de-duping alerts which could be created via multiple Alert Modules.

5.2.1.2.22 ProxyUnhandedResourcesAlert (Class)

This subclass of ProxyAlert is used to cache UnhandledResourcesAlert types of alerts. It

holds and provides access to data specific to the UnhandledResourcesAlert, and provides an

isDuplicateOf() implementation specialized for comparing two alerts of this type.

5.2.1.2.23 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no

longer has data for its toll rate. (Text in the base AlertData structure provides a textual

description and alert management data.)

5.2.1.2.24 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit

and the travel time which exceeded the limit. (Text in the base AlertData structure provides

a textual description and alert management data.)

5.2.1.2.25 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

CHART R3B3 Detailed Design 5-88 12/23/2008

to an UnhandledResourcesAlert.

5.3 Camera Control Module

5.3.1 Classes

5.3.1.1 VideoHighLevel (Class Diagram)

This diagram shows the High Level CHART II CORBA interfaces. This diagram does not

show all VideoService IDL elements, but shows the highest level elements and their

interrelationships. For further details, see VideoHighLevel-VideoSource, VideoHighLevel-

VideoSink, and VideoHighLevel-VideoTransmission diagrams. The collection of these last

three diagrams show all planned CORBA/IDL interface objects for the CHART II Video

Service. In all four of these diagrams, some boxes are shown indicating objects planned to

be implemented for later releases. These objects have been considered for future planning

purposes, to ensure than the current design is well-thought out enough to be able to

accommodate future planned enhancements.

This diagram shows cameras and related information generally on the left side, monitors

and related information generally on the right side, and video transmission and routing

capabilities in the central part of the diagram. The VideoProvider interface is the top of the

interface set which contains the VideoCamera interface. VideoSource includes video

sources including fixed cameras, image generators, etc. Likewise on the right side,

VideoCollector is at the top, opposite VideoProvider, with VideoSink and Monitor lower

down. In addition to VideoSource and VideoSink objects, BridgeCircuit objects will also

be VideoProviders and VideoCollectors, since any bridge circuit both collects video from

some other VideoProvider and provides video to the next VideoCollector in line. Multiple

bridge circuits may be present between the ultimate VideoProvider (i.e., the VideoSource,

that is, the camera, the true source of the image) and the ultimate VideoCollector (i.e., the

VideoSink, that is, the monitor, the final sink of the image).

CHART R3B3 Detailed Design 5-89 12/23/2008

CommandPr ocessor

FUTURE (beyond R2B2) : r esendPr eset () .

For R2B2, m ove displayI m age()
f r om VideoCollect or t o VideoSink
(sam e signat ur e) . Added
connect ReceivingToSendingDeivce()
t o VideoCollect or t o r eplace
VideoCollect or 's displayI m age() .

connect RecevingToSendingDevice()
added t o I DL (was im plement ed as a
VideoSinkI m pl pr ivat e met hod) . M ove
t o VideoCollect or I m pl and add
VideoSour ceI D f or populat ing new
m_sour ceI D value of Collect or St at us.

Tau UML does not pr ovide st er ot ypes f or
dist inguishing st r uct and valuet ype classes.
So t hese st er eot ypes ar e used f or all R2B1
Class Diagr am s:

<<dat at ype>> - Def ined in I DL as a sim ple dat a
 t ype, i. e. , a st r uct .
<<power t ype>> - Def ined in I DL as t he (m or e
 com plicat ed) valuet ype.
At t his point no valuet ypes ar e def ined f or
R2B1 or R2B2.

Vi deoTourFact ory
«int er f ace»

1

1

Vi deoTourSt at e

Vi deoTour
«int er f ace»

Vi deoTourConf i g
«dat at ype»

Vi deoPr ovi der
«int er f ace»

Cont rol l i ngI nf o
«dat at ype»

FUTURE:
m _t empor ar y - -
how t o det ect when
t emp t our can be
delet ed?

Vi deoSi nkI nf o
«dat at ype»

adjXxxx() m et hods - - For
pan, t ilt , zoom , f ocus, ir is - -
any posit ive value means
r ight , up, in, f ar , open;
any negat ive value m eans
lef t , down, out , near , close;
zer o m eans st op.

m _pr eset Number of zer o m eans none
(don't m ove t o any pr eset) .

Vi deoTour Ent ry
«dat at ype»

SharedResour ce
«int er f ace»

Pr eset Enabl ed
«int er f ace»

Vi deoTour St at us
«dat at ype»

Uni quel yI dent i f i abl e
«int er f ace»

Vi conSVFTPgmCmd
«enumer at ion»

Vi deoTransmi ssi onDevi ce
«int er f ace»

Vi deoSendi ngDevi ce
«int er f ace»

Camer aCont r ol Devi ce
«int er f ace»

CommEnabl ed
«int er f ace»

NTCI PCamera

Vi conSVFTCamera
«int er f ace»

Di agonal l yMovabl e
«int er f ace»

Vi deoSource
«int er f ace»

CameraCont rol ComPort

Vi deoSw i t chConf i g
«dat at ype»

Sw i t chPort
«int er f ace»

Sw i t chI nput Por t
«int er f ace»

Vi deoSw i t ch
«int er f ace»

CO HU3955Camera
«int er f ace»

NoVi deoAvai l abl eSource
«int er f ace»

Vi deoFabri c
«int er f ace»

Codec
«int er f ace»

Encoder
«int er f ace»

NO TE: disconnect () is a bookkeeping
exer cise only (updat e dat abase/ st at us) .
V1500 does not suppor t a disconnect
f unct ion.

Vi deoCamera
«int er f ace»

Vi deoRout e
«int er f ace»

Vi deoFabri cConf i g
«dat at ype»

Bri dgeCi r cui t Conf i g
«dat at ype»

Cont r ol l abl eVi deoCamer a
«int er f ace»

Vi deoRecei vi ngDevi ce
«int er f ace»

Bri dgeCi rcui t
«int er f ace»

Decoder
«int er f ace»

Transf er abl eSharedResource
«int er f ace»

G eoLocat abl e
«int er f ace»

New f or R2B2:
set Locat ionDesc()
addLocat ionPr of ile() ,
delet eLocat ionPr of ile() .

*

1

0. . 1

*

includes

1

1

1

*

is car r ying

*

*

1

r out es using

*

is displayed on

*

FUTURE

FUTURE (beyond R2B2) .

1

1

Sw i t chO ut put Port
«int er f ace»

Vi deoCol l ect or
«int er f ace»

Vi deoRout eManager
«int er f ace»

Vi deoSi nk
«int er f ace»

SWM oni t or

cont r ols
cam er a
using

1

1

is in includes

1

1

is car r ying

1

r out es video
t o and f r om

1

uses

1

is r unning on

*

*

is par t of

uses

1

1

1

1

1is in

1

*

is managed by

1

is displaying

*

*

FUTURE: schedulDisplayI m age()

1

FUTURE: set Posit ion()

Moni t or
«int er f ace»

1

*

1

1

*

*

1

is
r unning

1

*

1

1

+cr eat eTour (t oken, t our)
+get Tour s(t oken) : Tour []
+get Monit or sWit hAct iveTour s()

ACTI VE
I NACTI VE
SUSPENDED

+get St at us() : VideoTour St at us
+get Conf igur at ion(t oken) : VideoTour Conf ig
+set Conf igur at ion(t oken, Tour Conf ig)
+r em ove(t oken)

+m _nam e
+m _t our Ent r ies: Tour Ent r y[]
+m _t em por ar y: boolean
+m _dwellTimeSecs: int

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+set Pr ovider Conf ig(t oken, VideoPr ovider Conf ig)
+r emovePr ovider (t oken)
+addDisplay(t oken, displayI nf o: M onit or DisplayI nf o)
+r emoveDisplay(t oken, displayI D)

+m_opCent er I nf o: O pCent er I nf o
+m_user I nf o: Cont r ollingUser I nf o

+m_sinkNam e: st r ing
+m_sink: VideoSink

+m _videoSour ceNam e: st r ing
+m _videoSour ce: VideoSour ce
+m _pr eset Number : int

get Cont r ollingO pCent er () : O pCent er I nf o
get O wner O r gI D() : I dent if ier

+m oveToPr eset (t oken, pr eset : int , onTour : boolean)
+savePr eset (t oken, pr eset : int , t it le, cm dSt at : Com mandSt at us)

get I D()
get Name()

+get DeviceSt at us() : VideoTr ansmissionDeviceSt at us
+get DeviceConf ig(t oken) : VideoTr ansm issionDeviceConf ig

+m _act iveSt at e: VideoTour St at e
+m _sinkI nf o: VideoSinkI nf o[]
+m _t em por ar y: boolean

CM D_UP
CM D_DO WN
CM D_LEFT
CM D_RI G HT
CM D_SELECT
CM D_CANCEL
CM D_AUX1
CM D_AUX2

+get SendingDeviceSt at us() :
 VideoSendingDeviceSt at us

+init ialize()
+shut down()
+connect ()
+disconnect ()
+send(messageByt e)
+r eceive(dat a, lengt h)

+set Aut oFocus(t oken, boolean)
+r esendPr eset (t oken, pr eset Num: int)
+set Pr ogr am Mode(t oken)
+exit Pr ogr am Mode(t oken)
+pr ogr am Com m and(VFTPgmCmd, count : int)
+set Color G ainSet upM ode(t oken, boolean)
+exit Adjust Color M ode(t oken)
+ent er BlueColor G ainM enu(t oken)
+ent er RedColor G ainM enut oken()
+adjBlue(t oken, boolean)
+adjRed(t oken, boolean)
+get ViconSVFTCam er aSt at us(t oken)
+set ViconSVFTCam er aConf ig()
+t oggleColor G ainM ode(t oken)
+changeLensSpeed(t oken)
+abor t (t oken)

+adjPanTilt (t oken, panDir , t ilt Dir)

+get Sour ceSt at us() : VideoSour ceSt at us
+get Sour ceConf ig(t oken) : VideoSour ceConf ig
+set Sour ceConf ig(t oken, VideoSour ceConf ig)
+set User DisplaySt at us(t oken, boolean)
+isNoVideoAvailable() : boolean
+isDisplayable(t oken, inf o: VideoCollect or I nf o, r eason: st r ing, sour ceFabr icI D) : bool
+isRemoveable(inf o: VideoCollect or I nf o, m onit or G r oupI Ds: I dent if ier [] , r eason: st r ing) : bool
+blockToPublic(t oken, Ext endedCom m andSt at us)
+unblockToPublic(t oken)
+r evokeDisplay(t oken, r evokedO r gI Ds: I dent if ier List , Ext endedComm andSt at us)
+unr evokeDisplay(t oken, unr evokedO r gI Ds: I dent if ier List)
+isRevokedFor (or gI d: I dent if ier)

+m _nam e: st r ing
+m _m odel: VideoSwit chM odel
+m _swit chFabr icI D: I dent if ier
+m _inPor t s: shor t []
+m _out Por t s: shor t []

+get St at us() : VideoSwit chSt at us
+get Conf igur at ion(t oken) : V1500Cwit chConf ig
+set Conf igur at ion(t oken, V1500Swit chConf ig)
+r em ove(t oken)
+connect (t oken, sr c: Swit chI nput Por t , dest : Swit chO ut put Por t)
+disconnect (t oken, dest : Swit chO ut put Por t)
+r eloadSwit chConnect ions(t oken)

+get CO HU3955Camer aSt at us(t oken) : CO HU3955Cam er aSt at us
+get CO HU3955Camer aConf ig(t oken) : CO HU3955Cam er aConf ig
+set CO HU3955Camer aConf ig(t oken, CO HU3955Cam er aConf ig)
+adjRed(t oken, dir ect ion: int)
+adjBlue(t oken, dir ect ion: int)
+set Aut oFocus(t oken, boolean)
+set Aut oColor (t oken, boolean)
+set LensFast (t oken, boolean)
+set Power O n(t oken, boolean)

+get Conf igur at ion(t oken) : VideoFabr icConf ig
+set Conf igur at ion((t oken, videoFabr icConf ig)
+set Swit chI D(t oken, I dent if ier)
+r em ove(t oken)

get I PAddr ess() : I PAddr ess

+get Conf igur at ion() : VideoRout eConf ig
+get St at us() : VideoRout eSt at us

+get Cam er aSt at us() : VideoCamer aSt at us
+get Cam er aConf igur at ion(t oken) : VideoCam er aConf ig
+set Cam er aConf igur at ion(t oken, VideoCamer aConf ig)
+isCont r ollable() : boolean
+set Locat ion(t oken: AccessToken, locat ion: O bject Locat ion)
 : void

+m_nam e: st r ing
+m_swit chI D: I dent if ier

+get ReceivingDeviceSt at us() : VideoReceivingDeviceSt at us
+connect Fr om (t oken, VideoTr ansmissionDeviceConf ig,
 VideoSour ceI D: I dent if ier) : boolean
+disconnect Fr om(t oken, VideoTr ansm issionDeviceConf ig) : boolean
+disconnect (t oken) : boolean

+m _name: st r ing
+m _owningO r gI D: I dent if ier
+m _net wor kConnect ionSit e: st r ing
+m _owningO r gI D: I dent if ier
+m _net wor kConnect ionSit e: st r ing
+m _st ar t Pr ovider Conf ig: VideoPr ovider Conf ig
+m _endCollect or Conf ig: VideoCollect or Conf ig

t akeO f f line()
put O nline()
put I nM aint enanceMode()
get Com mM ode()

+r equest Cont r ol(t oken, over r ideRequest ed: boolean,
 inf o: Cont r ollingI nf o, cm dSt at : Com m andSt at us)
+t er m inat eCont r ol(t oken, cmdSt at : Com mandSt at us)
+isCont r olled() : boolean
+inhibit Cont r ol(t oken, hier ar chyLevel: int)
+adjpan(t oken, dir ect ion: int)
+adjTilt (t oken, dir ect ion: int)
+adjZoom(t oken, dir ect ion: int)
+adjFocus(t oken, wher e: int)
+adjI r is(t oken, dir ect ion: int)
+set Aut oI r is(t oken, boolean)
+set Act iveTit le(t oken, t it le, lineNum : int , cmdSt at : Comm andSt at us)
+r eset Cam er a(t oken)
+pollCam er a(t oken, r ef r eshMonit or List : boolean)

+get Conf igur at ion(t oken) : Br idgeCir cuit Conf ig
+set Conf igur at ion(t oken, Br idgeCir cuit Conf ig)

get Locat ionDesc() : St r ing
set Locat ionDesc(t oken, St r ing) : void
get Locat ionPr of iles() : Locat ionPr of ileList
addLocat ionPr of ile(Locat ionPr of ile) : void
delet eLocat ionPr of ile(t oken, Locat ionPr of ile) : void

+get Collect or St at us() : VideoCollect or St at us
+get Collect or Conf ig(t oken) : VideoCollect or Conf ig
+set Collect or Conf ig(t oken, VideoCollect or Conf ig)
+r em oveCollect or (t oken)
+connect ReceivingToSendingDevice(t oken, VideoPr ovider I nf o,
 VideoSour ceI D, over r ideRequest ed, t est O nly, Comm andSt at us) : void
+disconnect ReceivingFr omSendingDevice(oken, VideoPr ovider I nf o,
 Com m andSt at us) : void

+connect (t oken, VideoPr ovider I nf o, VideoPr ovider Conf ig,
 VideoCollect or I nf o, VideoCollect or Conf ig,
 over r ideRequest ed, t est O nly, r eason: st r ing, cmdSt at)
+disconnect (t oken, VideoPr ovider I nf o, VideoCollect or I nf o)
+r einit ialize(t oken)

set Cont r ollingO pCent er (t oken, opCt r I nf o: O pCent er I nf o)

+get SinkSt at us() : VideoSinkSt at us
+get SinkConf ig(t oken) : VideoSinkConf ig
+set SinkConf ig(t oken, conf ig: VideoSinkConf ig)
+displayI mage(t oken, over r ideRequest ed, m onit or G r oupI d,
 VideoPr ovider I nf o, f or Tour : boolean,
 cmdSt at : Com mandSt at us) : void
+st ar t Tour (t oken, m onit or G r oupI D, t our I D, cmdSt at)
+st opTour (t oken, monit or G r oupI D, t our I D, cm dSt at)
+suspendTour (t oken, monit or G r oupI D, t our I D, cm dSt at)
+r esum eTour (t oken, monit or G r oupI D, t our I D, cm dSt at)
+t our Conf igChanged(t oken, t our I D: I dent if ier , t our Conf ig:
 VideoTour Conf ig)
+t our Delet ed(t oken, t our I D: I dent if ier)
+displayNoVideoAvailable(t oken, sour ceI dToReplace,
 m onit or G r oupI d: I dent if ier , cm dSt at : Comm andSt at us)
+cam er aUnavailable(t oken, sour ceI d: I dent if ier)
+scheduleDisplayI mage(t oken, ScheduledSour ce)

+set Posit ion(t oken, xPos, yPos, xSize, ySize)
+get Monit or St at us() : M onit or St at us
+get Monit or Conf ig(t oken) : M onit or Conf ig
+set Monit or Conf ig(t oken, m onit or Conf ig: M onit or Conf ig)

Figure 5-92 VideoHighLevel (Class Diagram)

5.3.1.1.1 BridgeCircuit (Class)

The BridgeCircuit interface is implemented by a objects which serve to bridge disparate

switch fabrics within video routes. These switch fabrics would include the switch fabrics

based around a V1500 switch and also the "null" switch fabric consisting of no switch and

codec VideoTransmissionDevice objects. The BridgeCircuit interface includes both the

VideoCollector interface (meaning the BridgeCircuit receives video from another

VideoProvider, ultimately the VideoSource) and the VideoProvider interface (meaning the

BridgeCircuit provides video to another VideoCollector, ultimately to one or more

VideoSink objects).

5.3.1.1.2 BridgeCircuitConfig (Class)

This represents configuration information for a bridge circuit. This is the status of a

BridgeCircuit object. It consists primarily of configuration of the VideoProvider side (input

to the bridge circuit) and of the VideoCollector side (output of the bridge circuit).

CHART R3B3 Detailed Design 5-90 12/23/2008

5.3.1.1.3 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port

with direct connection to the control port of a video camera. It is used to send video camera

control commands and return responses to a camera control process.

5.3.1.1.4 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides

communications for access to control functions for a video camera. This includes encoders

and direct COM ports.

5.3.1.1.5 Codec (Class)

The Codec interface is implemented by objects representing codec devices (that is, encoders

and decoders). It defines generic methods to be implemented by both encoders and

decoders.

5.3.1.1.6 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by objects representing COHU model

3055 video cameras. It extends the ControllableVideoCamera interface by adding methods

unique to the COHU 3955 cameras (unique within the universe of camera types planned for

implementation within CHART II).

5.3.1.1.7 CommandProcessor (Class)

The CommandProcessor class provides an implementation of the CommandProccesor

interface and is derived from the CameraControDevice class. The CommanProcessor

manages the control of multiple cameras attached to one or more COM ports. The

CommandProcessor may or may not be local to the camera that is being controlled.

5.3.1.1.8 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications

turned on or off. This interface also supports a maintenance mode (although any given

implementation may choose to implement putInMaintenanceMode() by throwing a

CHART2Exception, if maintenance mode is not supported by that particular

implementation). This interface is typically implemented only for field devices.

5.3.1.1.9 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to an uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU 3955

camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces

defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the two known types

CHART R3B3 Detailed Design 5-91 12/23/2008

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

5.3.1.1.10 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

5.3.1.1.11 Decoder (Class)

The Decoder interface is implemented by classes representing any type of video decoder.

The Decoder interface includes both the Codec and the VideoReceivingDevice interfaces.

5.3.1.1.12 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by VideoCamera-enabled classes which

can be moved diagonally in addition to standard orthogonal pan and tilt commands. A

particular implementation may support 45-degree movements only, in which case the

panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may

support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the

parameters indicate the percent of movement proportionally in the pan/tilt directions. This

interface is expected to be implemented beyond R2B2.

5.3.1.1.13 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder.

The Encoder interface includes both the Codec and the VideoSendingDevice interfaces,

which means in addition to providing forwarding of video, it also is used to send video

camera control commands and return responses to a camera control process.

5.3.1.1.14 Monitor (Class)

he Monitor interface is implemented by objects which represent a video monitor, e.g., a

real, physical "television set" on which a video image can be displayed. This is the most

common type of VideoSink (the other being a SWMonitor, part of a future requirement to

stream video directly to user's workstations (or potentially other nearby computers).

5.3.1.1.15 NoVideoAvailableSource (Class)

The FixedVideoSource interface is implemented by objects which represent a video source

other than a video camera, such as the "No Image Available" image generators. This

interface could also represent a VCR or any other video source that is not a camera. The

FixedVideoSource does not include the GeoLocatable interface because the location (e.g.

lat/long) of a fixed video source is irrelevant in CHART II processing (unlike for a

CHART R3B3 Detailed Design 5-92 12/23/2008

VideoCamera, for which the location (lat/long) of a camera could someday be used for

automatic identification of cameras near traffic events, automatic pointing of cameras to

traffic events, etc.)

5.3.1.1.16 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard

for CCTV cameras. As this is a future requirement for cameras not currently fielded by

MDSHA, this interface is left to be defined at a later time.

5.3.1.1.17 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can

store and move to presets. The savePreset() method saves the current camera position as

the preset position. This interface is expected to be implemented in R2B2.

5.3.1.1.18 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an

operations center responsible for the disposition of the resource while the resource is in use.

5.3.1.1.19 SwitchInputPort (Class)

This is the interface for a switch input port. A switch input port is a type of switch port and

is also a type of VideoSendingDevice, meaning it can send a video signal on behalf of the

VideoProvider attached to it to any one or more VideoReceivingDevices (and

corresponding VideoCollectors).

5.3.1.1.20 SwitchOutputPort (Class)

This is the interface for a switch output port. A switch output port is a type of switch port

and is also a type of VideoReceivingDevice (meaning it receives a video signal on behalf of

the VideoCollector attached to it). As VideoReceivingDevice, a SwitchOutputPort is

capable of being connected to any VideoSendingDevice.

5.3.1.1.21 SwitchPort (Class)

The is a generic SwitchPort interface. It is a CommEnabled interface, meaning a

SwitchPort can be online or offline. (A SwitchPort cannot be in maintenance mode).

5.3.1.1.22 SWMonitor (Class)

The SWMonitor interface is implemented by objects which represent a software monitor

capable of receiving and displaying video (i.e., a streaming video MPEG software decoder

running on a PC). This interface supports a future requirement to display video directly to

user's workstations.

CHART R3B3 Detailed Design 5-93 12/23/2008

5.3.1.1.23 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always

have an operations center responsible for the disposition of the resource while the resource

is in use but may also be allowed to transfer control of that resource to another operations

center.

5.3.1.1.24 UniquelyIdentifiable (Class)

The UniquelyIdentifiable interface is implemented by classes whose instances have a

unique identifier that is guaranteed not to match the identifier of any other uniquely

identifiable objects in the system. It provides access to the unique ID, and the name (which

does not have to be unique).

5.3.1.1.25 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon

Surveyor VFT model video camera. (As there are no other Vicon brand cameras used

within CHART II, there is no base ViconCamera interface representing all Vicon-brand

cameras. For one thing, there would be no known basis for allocating methods to the base

interface and the VFT interface.)

5.3.1.1.26 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enueration defines the values that can be used in the

programCommand() method of the ViconSVFTCamera interface.

5.3.1.1.27 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within

the CHART II system. Classes implementing this interface (and nothing below this

interface would be fixed (non-controllable) video cameras. The VideoCamera interface

includes the GeoLocatable interface, to someday allow for advanced features such as

automatic identification of cameras near traffic events, automatic pointing of cameras to

traffic events, etc.

5.3.1.1.28 VideoCollector (Class)

The VideoCollector interface is a generic abstract interface including VideoSink objects

(e.g. video monitors) and BridgeCircuit objects. Both VideoSink and BridgeCircuit objects

collect video from a VideoProvider, but only VideoSink objects are true destination

endpoints for video feeds which a typical user would have direct interaction with.

BridgeCircuit VideoCollector objects are merely an intermediate step in a VideoRoute

which eventually provides video ultimately to the VideoSink object(s) at the end of the

route(s).

5.3.1.1.29 VideoFabric (Class)

The VideoFabric is implemented by a class which represents a "video fabric", that is a

CHART R3B3 Detailed Design 5-94 12/23/2008

collection of VideoTransmissionDevice objects on a common "fabric" across which video

can be created directly. This includes any collection of switch input ports and switch output

ports on a single video switch. (Note that a collection of encoder and decoder types of

VideoTransmissionDevice objects represents a different video fabric, across which video

can be routed directly. The IP encoder/decoder fabric therefore is different from other

fabrics in that it has no associated video switch.

5.3.1.1.30 VideoFabricConfig (Class)

The VideoFabricConfig structure is used to store and transmit configuration information

about a VideoFabric object.

5.3.1.1.31 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

5.3.1.1.32 VideoReceivingDevice (Class)

The VideoReceivingDevice interface is implemented by objects which can be used to

receive video from a corresponding VideoSendingDevice. A VideoReceivingDevice may

be an MPEG decoder or may be an output port on a video switch.

5.3.1.1.33 VideoRoute (Class)

This interface defines a route through CHART II video distribution system. A given

implementation of a VideoRoute may or may not be actively in use at any given time.

Routes are defined by the combinations of all bridge circuits between all pairs of switch

fabrics within the CHART II video distribution system. Routes cannot be added or deleted

or enabled or disabled by users explicitly: the routes and their status are defined implicity

by the configuration and status of bridge circuits defined in the system at any given time.

5.3.1.1.34 VideoRouteManager (Class)

The VideoRouteManager interface is implemented by a class which provides video routing

capabilities within CHART II. This router does not need to be used (in fact, cannot be

used) when the VideoSource and VideoSink are on the same switch fabric -- it is used only

to make video routes across switch fabrics. The implementation will use a set a rules to

arbitrate among requested video displays when a set of bridge circuits between one or more

pairs of switch fabrics is fully utilized. Based on the override rules implemented, a new

incoming routing request may or may not be able to be fulfilled depending upon priority,

routing guarantees, number of images viewed, ongoing camera control sessions, etc. If an

override can be granted, the overridden route(s) will be dropped in favor of the new route.

CHART R3B3 Detailed Design 5-95 12/23/2008

5.3.1.1.35 VideoSendingDevice (Class)

The VideoSendingDevice interface is implemented by objects which can be used to send

video to a corresponding VideoReceivingDevice. A VideoSendingDevice may be an

MPEG encoder or may be an input port on a video switch.

5.3.1.1.36 VideoSink (Class)

The VideoSink interface is implemented by objects which serve as final endpoints for video

signals, such as video monitors and streaming video receivers directly on user workstations.

Within the user interface, the VideoSink interface represents all objects on which a video

source can be placed for viewing by users.

5.3.1.1.37 VideoSinkInfo (Class)

VideoSinkInfo represent information about a VideoSink that is used by a VideoTour.

5.3.1.1.38 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

5.3.1.1.39 VideoSwitch (Class)

The V1500Switch interface is implemented by a class representing any V1500 Video

Switch in the CHART system. This interface provides access to configuration and status

information for the siwtch, and provides connect and disconnect functions for making and

breaking video connections.

5.3.1.1.40 VideoSwitchConfig (Class)

This represents the configuration information for a V1500 switch.

5.3.1.1.41 VideoTour (Class)

The Tour interface is implemented by a class which maintains the configuration and status

of a single tour defined within the CHART II system.

5.3.1.1.42 VideoTourConfig (Class)

The TourConfig structure is used to hold and transmit configuration information about a

given camera tour.

CHART R3B3 Detailed Design 5-96 12/23/2008

5.3.1.1.43 VideoTourEntry (Class)

The TourEntry structure is used to hold and transmit configuration information about a

single entry in a camera tour.

5.3.1.1.44 VideoTourFactory (Class)

The TourManager interface is implemented by a class which tracks tours defined in the

CHART II video system. It tracks the existence and configuration of tours and also tracks

the status of all tours, whether they are active or not.

5.3.1.1.45 VideoTourState (Class)

The VideoTourState enumeration defines the values that can be used to indicate the status

of a VideoTour.

5.3.1.1.46 VideoTourStatus (Class)

The TourStatus structure is used to hold and transmit status information about a given

camera tour (e.g., what VideoSink objects the Tour is currently running on.

5.3.1.1.47 VideoTransmissionDevice (Class)

The VideoTransmissionDevice interface is implemented by objects representing devices

which can be used for sending and receiving video. This interface provides CHART-

standard methods for accessing status and configuration information. Specific interfaces

supporting sending and receiving inherit from this abstract base interface.

5.3.1.2 VideoHighLevel-VideoSource (Class Diagram)

This diagram shows the VideoSource side of the VideoHighLevel diagram in more detail,

adding Factories, Configuration and Status structures, exceptions, and other supporting

interface elements. In general each of the major interface objects, VideoProvider,

VideoSource, VideoCamera, and ControllableVideoCamera have a factory and

configuration and status structures used to store and transmit configuration and status

information to clients and interested server objects.

CHART R3B3 Detailed Design 5-97 12/23/2008

R3B3: Added
set Locat ion.
set Cam er aConf igur at ion
 t o ignor e
locat ion changes.

1

SharedResourceM anager
«int er f ace»

1

1

*1

1
1

*

1

1

Preset Undef i nedExcept i on
«except ion»

EnM asseSet Resul t
«dat at ype»

Vi deoProvi derConf i g
«dat at ype»

FUTURE. This
m et hod m ay be
incor por at ed int o t he
Cont r ollableCam er a
int er f ace dir ect ly.

Vi deoSourceConf i g
«dat at ype»

Vi deoProvi derFact ory
«int er f ace»

Vi deoSour ceFact ory
«int er f ace»

Vi deoCamer aFact ory
«int er f ace»

Vi deoPr ovi der
«int er f ace»

af t er def ault Tit le ar e ext r a at t r ibut es
t hat I lef t in, m aybe used f or R2B2.

NTCI PCamer a

Transf erabl eSharedResource
«int er f ace»

Vi deoSour ce
«int er f ace»

m _m oit or I nf o - what m onit or (s) / sit e(s) t his cam er a
is on, and f or each m onit or , if t he cam er a on t his
m onit or as par t of a t our (and which t our) .
Each ent r y is a M onit or DisplayI nf o which pr ovides
t his inf o.

Vi conSVFTPgm Cmd
«enum er at ion»

Vi deoCam era
«int er f ace»

Cont rol l abl eVi deoCamera
«int er f ace»

M oni t orDi spl ayI nf o
«dat at ype»

Vi deoCam eraSt at us

Vi deoDi spl ayRevokedO r g
«dat at ype»

FUTURE:
inhibit Cont r ol (inhibit
cont r ol at sit es lower
t han t his level)

FUTURE:
m _cont r olI nhibit Level
m _at Pr eset

Camer aAct i onSt at e
«enum er at ion» Cam eraI sCont rol l edExcept i on

«except ion»

CameraNot Cont rol l edExcept i on
«except ion»

CameraBusyExcept i on
«except ion»

1

1

*

1

1

1

1
Cont rol l i ngI nf o

«dat at ype»

1

1

1

*

1

1

1

1

1

1

1

For R2B1 all cr eat e / add,
set Conf igur at ion, and r em ove
m et hods and ot her sim ilar ly
nam ed oper at ions will not
be im plem ent ed except f or in
Tour s.

FUTURE

EnM asseSet Resul t Li st
«dat at ype»

Vi deoSour ceType
«enum er at ion»

How t o det ect when
t em p pr eset can be
delet ed?

FUTURE:
set Aut oI r is()
set Aut oFocus()
set Aut oColor ()
(Not e: t hese 3 will set
f or all cam er as under
t his f act or y but obviously
only f or cam er a t ypes
t hat suppor t t he
cor r esponding f unct ion.)

Cam eraPreset
«dat at ype»

FUTURE:
m _skedM oveToDef ault Pr eset Tim e
m _m axCont r olI dleTim eM ins

Pr eset Enabl ed
«int er f ace»

Vi deoCam eraConf i g
«dat at ype»

M ight have t o cr eat e dif f er ent
subclasses of Cam er aPr eset
if t her e is no single way t o st or e
pr eset posit ion univer sally.

Shar edResource
«int er f ace»

Cont rol l abl eVi deoCam eraConf i g

r esendPr eset () - -
pr eset Num =0 m eans
r esend all st or ed pr eset s.

FUTURE. This
m et hod m ay be
incor por at ed int o
3955 and SVFT
cam er a t ypes
dir ect ly.

CO HU3955CameraSt at us
«dat at ype»

Cont rol l i ngUserI nf o
«dat at ype»

m _cont r ollingI nf o is f or cur r ent ly cont r olling oper at or
m _wouldBeAllowed - -
t r ue: O ver r ide would have been alowed
but wasn't r equest ed.
f alse: O ver r ide was r equest ed but user does not
 have suf icient pr ivilege

I f r equest t o m ove or ot her wise cont r ol
cam er a com es in while cam er a cannot
be cont r olled.

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

Vi deoProvi derSt at us
«dat at ype»

FUTURE

Vi conSVFTCam era
«int er f ace»

Di agonal l yM ovabl e
«int er f ace»

panDir pos r ight , neg lef t
t ilt Dir pos = up, neg = down.
panDir 0 st op panning (but m aybe
cont inue t ilt ing based on t ilt Dir) ,
and vice ver sa f or t ilt Dir 0.
(adjPanTilt (t oken, 0, 1) is not equiv
t o adjTilt (t oken, 1) because t he
lat t er does not im ply com m anding
t he cam er a t o st op panning.)

Vi deoSourceSt at us
«dat at ype»

Cont rol l abl eVi deoCam eraSt at us

CO HU3955Cam era
«int er f ace»

*

R3B3
m _deviceLocat ion is new

+m _cam er a: VideoCam er a- old
+m _cam er aNam e: st r ing
+m _f ailur eCode: int
+m _f ailur eText : st r ing

+m _f ailedCam er aDat a: EnM asseSet Result []

+m _nam e: st r ing
+m _com ponent Type: VideoCom ponent Type
+m _pr ovider Type: VideoPr ovider Type
+m _owningO r gI D: I dent if ier
+m _net wor kConnect ionSit e: st r ing
+m _sendingDeviceI D: I dent if ier
+m _sendingDeviceConf ig: VideoTr ansm issionDeviceConf ig

SO URCE_TYPE_FI XED
SO URCE_TYPE_CO HU_M PC
SO URCE_TYPE_CO HU_3955
SO URCE_TYPE_VI CO N_SVFT

+m _r eason: st r ing

+m _pr ovider Conf ig: VideoPr ovider Conf ig
+m _isNoVideoAvailable: boolean

+cr eat eVideoPr ovider (t oken, VideoPr ovider Conf ig)
+get Pr ovider I nf oList () : VideoPr ovider I nf o[]

+m _pr eset Num ber
+m _pr eset Nam e
+m _pr eset Tit le
+m _panPosit ion
+m _t ilt Post ion
+m _zoom Posit ion
+m _aut oFocus: boolean
+m _f ocusPosit ion
+m _t em por ar y: boolean

+cr eat eVideoSour ce(t okenVideoSour ceConf ig)
+get Sour ceI nf oList () : VideoSour ceI nf o[]
+get NoVideoAvailableSour ce() : VideoSour ceI nf o[]
+get NoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour ces() : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]

get Resour ces() : Shar edResour ce[]
get Cont r olledResour ces(O pCent er I D) : Shar edResour ce[]
hasCont r olledResour ces(O pCent er I D) : boolean

+m oveToPr eset (t oken, pr eset : int , onTour : boolean)
+savePr eset (t oken, pr eset : int , t it le, cm dSt at : Com m andSt at us)

+cr eat eVideoCam er a(t oken, VideoCam er aConf ig)
+get Cam er aI nf oList () : VideoCam er aI nf o[]
+get ValidRegionList () : st r ing[]
+set Aut oI r is(t oken, cam er as: VideoCam er a[] , st at e: boolean) : EnM asseSet Result List
+set Aut oFocus(t oken, cam er as: VideoCam er a[] , st at e: boolean) : EnM asseSet Result List
+set Aut oColor (t oken, cam er as: VideoCam er a[] , st at e: boolean) : EnM asseSet Result List

+m _sour ceConf ig: VideoSour ceConf ig
+m _cam er aNum ber : int
+m _deviceLocat ion: O bject Locat ion
+m _r egions: st r ing[]
+m _t m ddDeviceNam e: st r ing
+m _t m ddCCTVI m age: Tm ddCct vI m ageType
+m _t m ddCont r olType: Tm ddCam er aCont r olType
+m _t m ddLocnExt Hor izDat um : LRM SHor izont alDat um Type
+m _t m ddLocnExt LRM SLat it ude: int
+m _t m ddLocnExt LRM SLongit ude: int
+m _t m ddLocnExt Ver t Dat um : LRM SVer t icalDat um Type
+m _t m ddLocnExt LRM SHeight : int
+m _t m ddLocnExt Ver t Level: int
+m _t m ddRequest Com m ands: int

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+set Pr ovider Conf ig(t oken, VideoPr ovider Conf ig)
+r em ovePr ovider (t oken)
+addDisplay(t oken, displayI nf o: M onit or DisplayI nf o)
+r em oveDisplay(t oken, displayI D)

get Cont r ollingO pCent er () : O pCent er I nf o
get O wner O r gI D() : I dent if ier

+m _cam er aConf ig: VideoCam er aConf ig
+m _cont r olDeviceConf ig: VideoCont r olDeviceConf ig
+m _t em por ar ilyUncont r ollable: boolean
+m _pollEnabled: boolean
+m _pollI nt er valCont r olledSecs: int
+m _pollI nt er valUncont r olledSecs: int
+m _enableDeviceLogging: boolean
+m _def ault Tit le
+m _m axNum Pr eset s: int
+m _pr eset s: Cam er aPr eset []
+m _def ault Pr eset Num : int t
+m _skedM oveToDef ault Pr eset Tim e: long
+m _lockO nM anualI Focus: boolean
+m _lockO nM anualI r is: boolean
+m _lockO nM anualColor : boolean
+m _lowest Cont r olHier ar chyLevel: int
+m _m axCont r olI ledTim eM ins

set Cont r ollingO pCent er (t oken, opCt r I nf o: O pCent er I nf o)

+get Sour ceSt at us() : VideoSour ceSt at us
+get Sour ceConf ig(t oken) : VideoSour ceConf ig
+set Sour ceConf ig(t oken, VideoSour ceConf ig)
+set User DisplaySt at us(t oken, boolean)
+isNoVideoAvailable() : boolean
+isDisplayable(t oken, inf o: VideoCollect or I nf o, r eason: st r ing, sour ceFabr icI D) : bool
+isRem oveable(inf o: VideoCollect or I nf o, m onit or G r oupI Ds: I dent if ier [] , r eason: st r ing) : bool
+blockToPublic(t oken, Ext endedCom m andSt at us)
+unblockToPublic(t oken)
+r evokeDisplay(t oken, r evokedO r gI Ds: I dent if ier List , Ext endedCom m andSt at us)
+unr evokeDisplay(t oken, unr evokedO r gI Ds: I dent if ier List)
+isRevokedFor (or gI d: I dent if ier)

+m _com m M ode: Com m unicat ionM ode
+m _opSt at us: O per at ionalSt at us
+m _cont r ollingO pCent er : O per at ingCent er
+m _m onit or I nf o: M onit or DisplayI nf o[]
+m _deviceSt at usChangeTim eSecs: int
+m _m onit or St at usChangeTim eSecs: int

CM D_UP
CM D_DO WN
CM D_LEFT
CM D_RI G HT
CM D_SELECT
CM D_CANCEL
CM D_AUX1
CM D_AUX2

+get Cam er aSt at us() : VideoCam er aSt at us
+get Cam er aConf igur at ion(t oken) : VideoCam er aConf ig
+set Cam er aConf igur at ion(t oken, VideoCam er aConf ig)
+isCont r ollable() : boolean
+set Locat ion(t oken: AccessToken, locat ion: O bject Locat ion)
 : void

+set Aut oFocus(t oken, boolean)
+r esendPr eset (t oken, pr eset Num : int)
+set Pr ogr am M ode(t oken)
+exit Pr ogr am M ode(t oken)
+pr ogr am Com m and(VFTPgm Cm d, count : int)
+set Color G ainSet upM ode(t oken, boolean)
+exit Adjust Color M ode(t oken)
+ent er BlueColor G ainM enu(t oken)
+ent er RedColor G ainM enut oken()
+adjBlue(t oken, boolean)
+adjRed(t oken, boolean)
+get ViconSVFTCam er aSt at us(t oken)
+set ViconSVFTCam er aConf ig()
+t oggleColor G ainM ode(t oken)
+changeLensSpeed(t oken)
+abor t (t oken)

+r equest Cont r ol(t oken, over r ideRequest ed: boolean,
 inf o: Cont r ollingI nf o, cm dSt at : Com m andSt at us)
+t er m inat eCont r ol(t oken, cm dSt at : Com m andSt at us)
+isCont r olled() : boolean
+inhibit Cont r ol(t oken, hier ar chyLevel: int)
+adjpan(t oken, dir ect ion: int)
+adjTilt (t oken, dir ect ion: int)
+adjZoom (t oken, dir ect ion: int)
+adjFocus(t oken, wher e: int)
+adjI r is(t oken, dir ect ion: int)
+set Aut oI r is(t oken, boolean)
+set Act iveTit le(t oken, t it le, lineNum : int , cm dSt at : Com m andSt at us)
+r eset Cam er a(t oken)
+pollCam er a(t oken, r ef r eshM onit or List : boolean)

+adjPanTilt (t oken, panDir , t ilt Dir)

+m _sinkI D: I dent if ier
+m _t our I D: I dent if ier
+m _t our Suspended: boolean

+m _pr ovider St at us: VideoPr ovider St at us
+m _m aint M odeUser Nam e
+m _blockedToPublic
+m _user DisplaySt at us: boolean
+m _r evokedDisplayO r gs: VideoDisplayRevokedO r g[]

+m _or gI d: I dent if ier
+m _or ganizat ion: O r ganizat ion

+m _cam er aSt at us: VideoCam er aSt at us
+m _cont r olled: boolean
+m _cont r ollingUser I nf o: Cont r ollingUser I nf o
+m _act ionSt at e: Cam er aAct ionSt at e
+m _inAut oFocusM ode: boolean
+m _inAut oI r isM ode: boolean
+m _cur r ent Tit le: st r ing
+m _last Cont r olCm dTim eSecs: long
+m _user Cont r olSt at us: boolean
+m _at Pr eset : Cam er aPr eset
+m _cont r olI nhibit Level: int

+m _sour ceSt at us: VideoSour ceSt at us

+get CO HU3955Cam er aSt at us(t oken) : CO HU3955Cam er aSt at us
+get CO HU3955Cam er aConf ig(t oken) : CO HU3955Cam er aConf ig
+set CO HU3955Cam er aConf ig(t oken, CO HU3955Cam er aConf ig)
+adjRed(t oken, dir ect ion: int)
+adjBlue(t oken, dir ect ion: int)
+set Aut oFocus(t oken, boolean)
+set Aut oColor (t oken, boolean)
+set LensFast (t oken, boolean)
+set Power O n(t oken, boolean)

NO _ACTI O N
PAN_LEFT
PAN_RI G HT
TI LT_UP
TI LT_DO WN
ZO O M _I N
ZO O M _O UT
FO CUS_FAR
FO CUS_NEAR
I RI S_O PEN
I RI S_CLO SE
SET_TI TLE
RED_PLUS
RED_M I NUS
BLUE_PLUS
BLUE_M I NUS

+m _cont r ollableSt at us: Cont r ollableVideoCam er aSt at us
+m _power O n: boolean
+m _inAut oColor M ode: boolean
+m _lensSpeedFast : boolean
+m _cur r ent Tit le2: st r ing

+m _opCent er I nf o: O pCent er I nf o
+m _user I nf o: Cont r ollingUser I nf o

+m _cont r ollingI nf o: Cont r ollingI nf o
+m _wouldBeAllowed: boolean

+m _m onit or G r oupI D: I dent if ier
+m _user Nam e: st r ing

+m _r eason: Cam er aNot Cont r olledReason
+m _act ionSt at e: Cam er aAct ionSt at e
+m _cont r ollingI nf o: Cont r ollingI nf o

+m _r eason: st r ing
+m _act ionSt at e: Cam er aAct ionSt at e

Figure 5-93 VideoHighLevel-VideoSource (Class Diagram)

5.3.1.2.1 CameraActionState (Class)

This enumeration identifies what action the camera is currently performing (if any).

5.3.1.2.2 CameraBusyException (Class)

This exception is thrown if an atttempt to issue an immediate mode camera control

command (such as pan, tilt, etc.) is issued while the camera is performing a long-running

command (such as a moveToPresetCommand or a setTitleCommand). This indicates to the

operator that the camera is momentarily busy, and the operator should try the action again

in a few seconds, or when the camera image on the monitor shows that the long-running

request has completed.

5.3.1.2.3 CameraIsControlledException (Class)

This exception is thrown if a request to control a camera is denied because the camera is

already controlled, perhaps because a race condition where another operator has established

control just before the request.

CHART R3B3 Detailed Design 5-98 12/23/2008

5.3.1.2.4 CameraNotControlledException (Class)

This is an exception thrown if an attempt to issue a camera control command is issued when

the camera is not currently controlled by the requester. This is most likely to occur

immediately after a control override, in cases where the client has not received or processed

the override event yet.

5.3.1.2.5 CameraPreset (Class)

This structure stores information about a preset configured for a camera.

5.3.1.2.6 COHU3955Camera (Class)

The COHU3955Camera interface is implemented by objects representing COHU model

3055 video cameras. It extends the ControllableVideoCamera interface by adding methods

unique to the COHU 3955 cameras (unique within the universe of camera types planned for

implementation within CHART II).

5.3.1.2.7 COHU3955CameraStatus (Class)

The COHUCameraStatus structure is used to hold status information about COHUCamera

objects at the COHUCamera level.

5.3.1.2.8 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to an uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU 3955

camera, Vicon SVFT camera, and NTCIP-compliant camera, and there are interfaces

defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the two known types

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera.

5.3.1.2.9 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration

information about ControllableVideoCamera objects at the ControllableVideoCamera level.

5.3.1.2.10 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about

ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

CHART R3B3 Detailed Design 5-99 12/23/2008

5.3.1.2.11 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

5.3.1.2.12 ControllingUserInfo (Class)

The ControllingUserInfo structure contains information about the monitor group and user

of the entity controlling (or requesting to control) a VideoCamera.

5.3.1.2.13 DiagonallyMovable (Class)

The DiagonallyMovable interface is implemented by VideoCamera-enabled classes which

can be moved diagonally in addition to standard orthogonal pan and tilt commands. A

particular implementation may support 45-degree movements only, in which case the

panDir and tiltDir parameters are +/- 1 to indicate direction only, or an implementation may

support 360 degrees of motion, in which case, in addition to signs, the relative ratios of the

parameters indicate the percent of movement proportionally in the pan/tilt directions. This

interface is expected to be implemented beyond R2B2.

5.3.1.2.14 EnMasseSetResult (Class)

This structure will be used to communicate failures in setting a number of cameras to auto

iris, auto focus, or auto color balance. It specifies results for one camera which failed.

5.3.1.2.15 EnMasseSetResultList (Class)

This structure will be used to communicate failures in setting a number of cameras to auto

iris, auto focus, or auto color balance. It specifies results for all cameras which failed.

(Cameras which succeeded are not included in this list.)

5.3.1.2.16 MonitorDisplayInfo (Class)

This structure holds details about each monitor on which the VideoProvider is currently

being displayed.

5.3.1.2.17 NTCIPCamera (Class)

The NTCIPCamera interface is implemented by objects which support the NTCIP standard

for CCTV cameras. As this is a future requirement for cameras not currently fielded by

MDSHA, this interface is left to be defined at a later time.

5.3.1.2.18 PresetEnabled (Class)

The PresetEnabled interface is implemented by VideoCamera-enabled classes which can

store and move to presets. The savePreset() method saves the current camera position as

the preset position. This interface is expected to be implemented in R2B2.

CHART R3B3 Detailed Design 5-100 12/23/2008

5.3.1.2.19 PresetUndefinedException (Class)

This exception is thrown when an attempt is made to move to an undefined preset.

5.3.1.2.20 SharedResource (Class)

The SharedResource interface is implemented by any object that must always have an

operations center responsible for the disposition of the resource while the resource is in use.

5.3.1.2.21 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center.

5.3.1.2.22 TransferableSharedResource (Class)

The TransferrableSharedResource interface is implemented by any object that must always

have an operations center responsible for the disposition of the resource while the resource

is in use but may also be allowed to transfer control of that resource to another operations

center.

5.3.1.2.23 ViconSVFTCamera (Class)

The ViconSVFTCamera interface is implemented by a class representing the Vicon

Surveyor VFT model video camera. (As there are no other Vicon brand cameras used

within CHART II, there is no base ViconCamera interface representing all Vicon-brand

cameras. For one thing, there would be no known basis for allocating methods to the base

interface and the VFT interface.)

5.3.1.2.24 ViconSVFTPgmCmd (Class)

The ViconSVFTPgmCmd enueration defines the values that can be used in the

programCommand() method of the ViconSVFTCamera interface.

5.3.1.2.25 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing video cameras within

the CHART II system. Classes implementing this interface (and nothing below this

interface would be fixed (non-controllable) video cameras. The VideoCamera interface

includes the GeoLocatable interface, to someday allow for advanced features such as

automatic identification of cameras near traffic events, automatic pointing of cameras to

traffic events, etc.

5.3.1.2.26 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about

VideoCamera objects at the VideoCamera level. Further details about lower-level

CHART R3B3 Detailed Design 5-101 12/23/2008

VideoCamera subclasses are provided by subclasses of VideoCameraConfig. Device

Location member has been modified for R3B3. Now it contains a detailed location

information.

5.3.1.2.27 VideoCameraFactory (Class)

The GenericVideoCameraFactory interface is implemented by factory classes responsible

for creating, maintaining, and controlling a collection of GenericVideoCamera objects.

5.3.1.2.28 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera

objects at the VideoCamera level. Further details about lower-level VideoCamera

subclasses are provided by subclasses of VideoCameraStatus.

5.3.1.2.29 VideoDisplayRevokedOrg (Class)

This structure is used to store information about an organization for which display of the

associated camera has been revoked.

5.3.1.2.30 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

5.3.1.2.31 VideoProviderConfig (Class)

The VideoProviderConfig structureis used to hold configuration information about

VideoProvider objects at the VideoProvider level. Further details about lower-level

VideoProvider subclasses are provided by subclasses of VideoProviderConfig.

5.3.1.2.32 VideoProviderFactory (Class)

The VideoProviderFactory interface is implemented by factory classes responsible for

creating and maintaining a collection of VideoProvider objects.

5.3.1.2.33 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold status information about VideoProvider

objects at the VideoProvider level. Further details about lower-level VideoProvider

subclasses are provided by subclasses of VideoProviderStatus.

5.3.1.2.34 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

CHART R3B3 Detailed Design 5-102 12/23/2008

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

5.3.1.2.35 VideoSourceConfig (Class)

The VideoSourceConfig structure is used to hold configuration information about

VideoSource objects at the VideoSource level. Further details about lower-level

VideoSource subclasses are provided by subclasses of VideoSourceConfig.

5.3.1.2.36 VideoSourceFactory (Class)

The VideoSourceFactory interface is implemented by factory classes responsible for

creating, maintaining, and controlling a collection of VideoSource objects.

5.3.1.2.37 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold status information about VideoSource

objects at the VideoSource level. Further details about lower-level VideoSource subclasses

are provided by subclasses of VideoSourceStatus.

5.3.1.2.38 VideoSourceType (Class)

This enumeration identifies the various types of cameras which can exist in the system.

The fixed type is for all non-controllable cameras.

5.3.1.3 CameraControlModule (Class Diagram)

This diagram shows the classes with comprise the CameraControlModule. The

CameraControlModule is an installable module that serves the camera-type objects and

factories to the rest of the CHART II system. This diagram shows how the implementation

of these CORBA interfaces rely on other supporting classes to perform their functions. The

CameraControlModule is responsible for serving all VideoSource objects including

controllable cameras, fixed cameras, No Video Available sources, and potentially any other

image generators, etc. The COHU3955CameraImpl and the viconSVFTCameraImpl are

the primary classes operating in this module. These objects provide all access to the camera

status and configuration. The CameraControlModule also includes factory implementations

responsible for providing lists of cameras and other such objects to interested clients.

CHART R3B3 Detailed Design 5-103 12/23/2008

R3B3: Added set Locat ion()

1

Pol l Camer aTask
CameraCont rol Modul e

CO HU3955CameraI mpl

1

1

RevokeDi spl ayCmd

1

Bl ockToPubl i cCmd

RevokeCont rol Cmd

1

1

1

1

CO HU3955CameraSt at us

Vi conSVFTCameraI mp

Uni quel yI dent i f i abl e
«int er f ace»

Put CameraO nl i neCmd

11

1 1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1

Camer aCommand

Request CameraO verr i deCmd

TakeCamer aO f f l i neCmd

Ter mi nat eCont r ol Cmd

Vi deoProvi derSt at us
«dat at ype»

1

1

Cont rol l abl eVi deoCameraSt at us

Vi deoCameraSt at us

1

1

1

1

1

1

1

Camer aPr ot ocol Hdl r

CO HUPr ot ocol Hdl r

Camer aCont r ol ComPor t

1

1

11

M oveToPreset Cmd

FullTour St at usUpdat eFlag - says whet her t o push st at us
updat es f or cam er a st at us updat es f or changes t o t he
act ive m onit or list per t aining t o t our s only. Pr obably
def ault t o t r ue unless t hat causes t oo m uch t r af f ic.

FullTour O psLoggingFlag - sam e except f or wr it ing t o O ps
Log. Pr obably def ault t o f alse unless we need it f or
t r oubleshoot ing a pr oblem , as t his would be a lot of excess
O ps Log ent r ies.

CameraCont rol Devi ce
«int er f ace»

Vi deoCameraI mpl

Vi deoCamera
«int er f ace»

Vi deoSour ce
«int er f ace»

Vi deoProvi der
«int er f ace»

CommEnabl ed
«int er f ace»

Vi deoSourceSt at us

get s m odule pr ops using

cr eat es1
1

cr eat es1

CommandQ ueue

Q ueueabl eCommand
«int er f ace»

Request CameraCont rol Cmd

Di spl ayI mageCmd

Cont rol l i ngI nf o
«dat at ype»

1

1

Ser vi ceAppl i cat i onModul e
«int er f ace»

Servi ceAppl i cat i on
«int er f ace»1

CommandProcessor

1

Vi conSVFTPr ot ocol Hdl r

1

1

1

Cont rol l abl eVi deoCameraConf i g

CO HU3955Camera
«int er f ace»

Vi deoCamer aConf i g
«dat at ype»

1

1

DBConnect i onM anager

1

j ava. ut i l . Ti mer

*

Camer aCont r ol DB

1

1

1

1

1

PushEvent Suppl i er

1

CheckFor AbandonedCamer aTask
1

Encoder

j ava. ut i l . Ti merTask

Camer aCont r ol M odul eProper t i es

1

1

1

Cont r ol l abl eVi deoCameraI mpl

1

Vi conSVFTCameraSt at us

1

Cont rol l abl eVi deoCamera
«int er f ace»

*

Cont r ol l abl eCameraFact oryI mpl

1

Vi deoCamer aFact ory
«int er f ace»

get I D()
get Nam e()

t akeO f f line(AccessToken, Comm andSt at us) : void
put O nline(AccessToken, Com mandSt at us) : void
put I nMaint enanceM ode(AccessToken, Com m andSt at us) : void
get Comm M ode() : Comm unicat ionM ode

+get Cam er aI nf oList () : VideoCamer aI nf o[]
+get ValidRegionList () : St r ing[]

+cr eat eCamer a(byt e[] , VideoPr ovider Conf ig) : void
+get Pr ovider I nf oList () : VideoPr ovider I nf o[]
+get Sour ceI nf oList () : VideoSour ceI nf o[]
+get NoVideoAvailableSour ces() : VideoSour ce[]
+get NoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour ces() : VideoSour ceI nf o[]
+get O nlineNoVideoAvailableSour cesFor Fabr ic(swit chFabr icI D) : VideoSour ceI nf o[]
+get Camer aI nf oList () : VideoCam er aI nf o[]
+get ValidRegionList () : St r ing[]
+get Cont r ollableCamer aI nf oList () : Cont r ollableVideoCam er aI nf o[]
+get I D() : I dent if ier
+get Name() : St r ing
+get Resour ces() : Shar edResour ce[]
+get Cont r olledResour ces(opCt r I D) : Shar edResour ce[]
+hasCont r olledResour ces(opCt r I D) : boolean
checkFor AbandonedCam er aO bject s()
+checkFor Cam er aTim eout ()
f indO pCent er Nam e(opCt r I D) : St r ing
- get O pCent er NamesFr om Tr ader ()
#get AllowSim ulat ion() : boolean
get LogFlags() : boolean[]
get Host Name() : St r ing
get Cam er aPushEvent Supplier () : PushEvent Supplier
get Pr oper t ies() : Cam er aCont r olModulePr oper t ies
pollCam er aO bject s()
shut down() : boolean
- addCamer aTypesToTr ader ()
- alar m I f NoLoggedI nUser s(I dent if ier , St r ing)
- get Cont r ollingO pCent er s() : Hasht able
+doG et NoVideoAvailableSour ces(swit chFabr icI D, boolean) : VideoSour ceI nf o[]
- logPr od(St r ing, St r ing)
#logSt ackPr od(St r ing, St r ing, Except ion)
- log(St r ing, St r ing, St r ing)
#logLockDone(St r ing)
#logLockRcvd(St r ing)
#logLockRqst (St r ing)
- opLog(t oken, St r ing, int , St r ing, St r ing)
#set Sim ulat ionFlag(St r ing, St r ing) : boolean
- cr eat eDumm yCam er a()
f indVideoSink(I dent if ier) : VideoSink
f indMonit or G r oup(I dent if ier) : M onit or G r oup
- get VideoSinkRef sFr omTr ader ()
- get M onit or G r oupRef sFr omTr ader ()

- m _allowSim ulat ion : boolean
- m _pr ovider I mplVect : Vect or
- m _camer aI mplVect : Vect or
- m _cont r ollableI m plVect : Vect or
- m _db : Cam er aCont r olDB
- m _camer aPushEvent Supplier : PushEvent Supplier
- m _camer aSt at usLogFile : LogFile
- m _host Nam e : St r ing
- m _idO bj : I dent if ier
- m _lockFact or y : O bject []
- m _logFlags : boolean[]
- m _name : St r ing
m _opCent er Nam es : Hasht able
- m _r esM gm t PushEvent Supplier : PushEvent Supplier
- m _shar edResM onI nt : int
- m _shut down : boolean
- m _svcApp : Ser viceApplicat ion
- m _t im eDownSecs : int
- m _pr ops : Cam er aCont r olM odulePr oper t ies
- m _validRegions : St r ing[]
m _videoSinkRef s : Hasht able
m _monit or G r oupRef s : Hasht able

+get Pr ovider St at us() : VideoPr ovider St at us
+get Pr ovider Conf ig(t oken) : VideoPr ovider Conf ig
+set Pr ovider Conf ig(t oken, VideoPr ovider Conf ig)
+r em ovePr ovider (t oken)
+AddDisplay(t oken, Monit or DisplayI nf o) : void
+r em oveDisplay(t oken, displayI D)

+blockToPublic(t oken, block: boolean)
+inhibit Display(t oken, hier ar chyLevel: int)
+r evokeDisplay(t oken, or gs: VideoDisplayRevokedO r g[])
+isRevokedFor (or gI d: I dent if ier)
+get Sour ceSt at us() : VideoSour ceSt at us
+get Sour ceConf ig(I dent if ier) : VideoSour ceConf ig
+set Sour ceConf ig(I dent if ier , VideoSour ceConf ig)
+set User DisplaySt at us(I dent if ier , boolean)
+isNoVideoAvailable() : boolean
+isDisplayable(I dent if ier , VideoCollect or I nf o, r eason: st r ing) : boolean
+isRemovable(VideoCollect or I nf o, m onit or G r oupI D[] , r eason: st r ing) : boolean

init ialize(Ser viceApplicat ion app) : boolean
get Ver sion() : Com ponent Ver sion
t r ader G r oupUpdat ed() : void
shut down(Ser viceApplicat ion app) : boolean

Ser viceApplicat ion m _svcApp;
Def ault Ser viceApplicat ionPr oper t ies m _pr ops;

+m_sour ceConf ig: VideoSour ceConf ig
+m_cam er aNumber : int
+m_deviceLocat ion: O bject Locat ion
+m_r egions: st r ing[]
+m_t m ddDeviceName: st r ing
+m_t m ddCCTVI m age: Tm ddCct vI m ageType
+m_t m ddCont r olType: Tm ddCam er aCont r olType
+m_t m ddLocnExt Hor izDat um : LRM SHor izont alDat umType
+m_t m ddLocnExt LRM SLat it ude: int
+m_t m ddLocnExt LRM SLongit ude: int
+m_t m ddLocnExt Ver t Dat um : LRM SVer t icalDat um Type
+m_t m ddLocnExt LRM SHeight : int
+m_t m ddLocnExt Ver t Level: int
+m_t m ddRequest Com m ands: int

+get AllowSim ulat ion() : boolean
+get Sim ulat edCom msSuccessRat e() : int
+get LogFlags() : St r ing
+get PollTimer DelayM illis() : int
+get Recover yTimer DelaySecs() : int
+get Shar edResMonI nt () : int
+get Cam er aCont r olResponseTim eO ut M illi() : int
+get Cam er aCont r olSessionTim eO ut Secs() : int
+get Last NSt at eChangeM ar ginalDenominat or () : int
+get Last NSt at eChangeM ar ginalNum er at or () : int
+get Recent St at eChangeCount () : int
+get Recent St at eChangeTimeSecs() : int
+get CO HU3955ValidTit leChar act er s() : St r ing

- m_pr ops : Pr oper t ies
- m_def ault s : Pr oper t ies

schedule() : void
cancel() : void

+isCont r ollable() : boolean
+get Cam er aSt at us() : VideoCamer aSt at us
+get Cam er aConf ig(t oken) : VideoCam er aConf ig
+set Cam er aConf ig(t oken, VideoCamer aConf ig)

+init ialize(Ser viceApplicat ion) : boolean
+shut down(Ser viceApplicat ion) : boolean
- cr eat eEvent Channel(St r ing) : PushEvent Supplier
- cr eat eCam er aFact or y(int) : boolean
- addCam er aFact or yTypesToTr ader () : void
+get Ver sion() : Com ponent Ver sion

- m_svcApp : Ser viceApplicat ion
- m_db : Cam er aCont r olDB
- m_cam er aEvent Supplier : PushEvent Supplier
- m_r esMgmt Event Supplier : PushEvent Supplier
- m_cam er aFact or y : Cam er aFact or yI m pl
- m_pr ops : Cam er aCont r olModulePr oper t ies
- m_t im er : Timer

+r equest Cont r ol(t oken, inf o: Cont r ollingI nf o, cm dSt at : Com m andSt at us)
+r equest O ver r ide(t oken, inf o: Cont r ollingI nf o, cm dSt at : Com mandSt at us)
+t er m inat eCont r ol(t oken)
+isCont r olled() : boolean
+inhibit Cont r ol(t oken, hier ar chyLevel: int)
+adjpan(t oken, dir ect ion: int)
+adjTilt (t oken, dir ect ion: int)
+adjZoom (t oken, dir ect ion: int)
+adjFocus(t oken, wher e: int)
+adjI r is(t oken, dir ect ion: int)
+set Aut oI r is(t oken, boolean)
+set Act iveTit le(t oken, t it le, lineNum : in, cm dSt at : Comm andSt at ust)
+r eset Cam er a(t oken)
+poll(t oken)

+CheckFor AbandonedCamer aTask
 (Cont r ollableCamer aFact or yI m pl)
+r un()

- m _cont r ollableCam er aFact :
 Cont r ollableCam er aFact or yI m pl

r un()

+delet eCam er a(I dent if ier) : void
+delet eCam er aWit hConnect ion(I dent if ier , Connect ion) : boolean
- get Cam er aConf ig(I dent if ier) : Cam er aConf ig;
- get Cam er aList () : VideoPr ovider I m pl[] ;
- get Cam er aSt at us(I dent if ier) : Camer aSt at us;
- get CO HU3955Cam er aConf ig(I dent if ier) : CO HU3955Cam er aConf ig;
- get CO HU3955Cam er aSt at us(I dent if ier) : CO HU3955Cam er aSt at us;
- get Cont r ollableCam er aConf ig(I dent if ier) : Cont r ollableVideoCam er aConf ig;
- get Cont r ollableCam er aPr eset (I dent if ier , int) : Cont r ollableVideoCamer aPr eset
- get Cont r ollableCam er aPr eset List (I dent if ier) : Camer aPr eset [] ;
- get Cont r ollableCam er aSt at us(I dent if ier) : Cont r ollableVideoCamer aSt at us;
- get DeviceConf ig(I dent if ier) VideoTr ansm issionDeviceConf ig; ()
- get DeviceSt at us(I dent if ier) : VideoTr ansm issionDeviceSt at us;
- get Pr ovider Conf ig(I dent if ier) : VideoPr ovider Conf ig;
- get Pr ovider St at us(I dent if ier) : VideoPr ovider St at us;
- get RegionList () : St r ing[] ;
- get Sour ceConf ig(I dent if ier) : VideoSour ceConf ig;
- get Sour ceSt at us(I dent if ier) : CideoSour ceSt at us;
- get ViconSVFTCam er aConf ig(I dent if ier) : ViconSVFTCamer aConf ig;
+inser t Cohu3955Camer a(I dent if ier , CO HU3955Cam er aConf ig) :
 CO HU3955Cam er aI m pl;
+inser t ViconSVFTCamer a(I dent if ier , ViconSVFTCam er aConf ig) :
 ViconSVFTCam er aI m pl;
+inser t VideoCam er a(I dent if ier , VideoCamer aConf ig) : VideoCam er aI m pl;
+inser t VideoSour ceCam er a(I dent if ier , VideoSour ceConf ig) : VideoCam er aI m pl;
set Cam er aDat a (I dent if ier , Camer aDat a) void; ()
set Cam er aSt at us(I dent if ier , VideoCam er aSt at us) void; ()
set CO HU3955Cam er aConf ig(I dent if ier , CO HU3955Camer aConf ig) void; ()
set CO HU3955Cam er aConf igWit hConnect ion(I dent if ier ,
 CO HU3955Camer aConf ig, Connect ion) void; ()
set CO HU3955Cam er aSt at us(I dent if ier , CO HU3955Camer aSt at us) void; ()
set Cont r ollableCam er aConf ig(I dent if ier , Cont r ollableVideoCamer aConf ig) void; ()
set Cont r ollableCam er aConf igWit hConnect ion(I dent if ier ,
 Cont r ollableVideoCam er aConf ig, Connect ion) void; ()
set Cont r ollableCam er aPr eset (I dent if ier , Cont r ollableVideoCam er aPr eset) void; ()
set Cont r ollableCam er aSt at us(I dent if ier , Cont r ollableVideoCam er aSt at us) void; ()
set Fact or yI m pl(Cont r ollableCam er aFact or yI m pl) void; ()
set Revoke(I dent if ier , VideoSour ceSt at us) void; ()
set RevokeWit hConnect ion(I dent if ier , VideoSour ceSt at us, Connect ion) void; ()
set Sour ceSt at us(I dent if ier , VideoSour ceSt at us) void; ()
set ViconSVFTCamer aConf ig(I dent if ier , ViconSVFTCam er aConf ig) void; ()
set ViconSVFTCamer aConf igWit hConnect ion(I dent if ier ,
 ViconSVFTCam er aConf ig, Connect ion) void; ()
set ViconSVFTCamer aSt at us(I dent if ier , ViconSVFTCam er aSt at us) void; ()
set VideoCam er aConf ig(I dent if ier , VideoCam er aConf ig) void; ()
set VideoCam er aConf igWit hConnect ion(I dent if ier , VideoCam er aConf ig,
 Connect ion) void; ()
set VideoPr ovider Conf ig(I dent if ier , VideoPr ovider Conf ig) void; ()
set VideoPr ovider Conf igWit hConnect ion(I dent if ier , VideoPr ovider Conf ig,
 Connect ion) void; ()
set VideoPr ovider St at us(I dent if ier , VideoPr ovider St at us) void; ()
set VideoSour ceConf ig(I dent if ier , VideoSour ceConf ig) void; ()
set VideoSour ceConf igWit hConnect ion(I dent if ier , VideoSour ceConf ig,
 Connect ion) void; ()

- m_dbConnMgr : DBConnect ionManager 2
- m_cam er aFact or yI mpl : Cont r ollableCam er aFact or yI m pl
- m_cam er aPushEvent Supplier : PushEvent Supplier
- m_net wor kConnect ionSit e : St r ing
- m_svcApp : Ser viceApplicat ion

+get Connect ion() : java. sql. Connect ion
+get Cur r ent O penCur sor s() : int
+r eleaseConnect ion() : void
+shut down() : void
+ver if yDBI nit ialized() : boolean

+blockToPublic(byt e[] , Ext endedCom mandSt at us) : void
+blockToPublicI m pl(
 Ext endedComm andSt at us) : I m ageRem ovalResult
+clear Tim er s() : void
+get Cam er aConf ig(t oken) : VideoCam er aConf ig
+get Cam er aSt at us() : VideoCamer aSt at us
+get Cont r ollingO pCent er () : O pCent er I nf o
+get Locat ionDesc() : st r ing
+get Locat ionPr of iles() : Locat ionPr of iles[]
+get O wningO r gI D() : I dent if ier
+get Sour ceConf ig(I dent if ier) : VideoSour ceConf ig
+get Sour ceSt at us() : VideoSour ceSt at us
+isCont r ollable() : boolean
+isDisplayable(t oken, VideoCollect or I nf o, st r ing) : boolean
+isNoVideoAvailable() : boolean
+isRem ovable(VideoCollect or I nf o, m onit or G r oupI D[] , st r ing)
#pushSt at us(desc, war nTxt) : boolean
#per sist Dat a(desc, war nTxt) : boolean
#per sist St at us(desc, war nTxt) : boolean
+r evokeDisplayI m pl(byt e[] [] ,
 Ext endedCom mandSt at us) : I m ageRemovalResult
+set Cam er aConf ig(t oken, VideoCamer aConf ig)
+set Locat ion(t oken: byt e[] , locat ion: O bject Locat ion) : void
+set Cont r ollingO pCent er (t oken, O pCent er I nf o)
+set RevokeDisplayO r gs(byt e[] , byt e[] [] ,
 Ext endedCom mandSt at us) : void
+set Sour ceConf ig(t oken, VideoSour ceConf ig)
+set User DisplaySt at us(t oken, boolean)
+r em ove(t oken)
+unblockToPublic(byt e[]) : void
- checkCont r ollingO pCent er Nam e()
+clear DeviceFor O f f lineM ode(t oken, Com mandSt at us)
cr eat ePO ATie() : Ser vant
debugPr int Conf ig(St r ing, St r ing, VideoSour ceConf ig)
debugPr int Conf ig(St r ing, St r ing, VideoCam er aConf ig)
debugPr int Dat a(St r ing, St r ing, Cam er aDat a)
debugPr int St at us(St r ing, St r ing, VideoSour ceSt at us)
debugPr int St at us(St r ing, St r ing, VideoCam er aSt at us)
get Ser viceTypeNam e() : St r ing
get Pr ovider Type() : VideoPr ovider Type
#init Def ault Camer aDat a() : Cam er aDat a
#init Def ault Camer aSt at us() : VideoCam er aSt at us
#init Def ault Sour ceSt at us() : VideoSour ceSt at us
isNoVideoAvailableSour ce() : boolean

#m _sour ceConf ig: VideoSour ceConf ig
#m _cam er aConf ig: VideoCamer aConf ig
#m _sour ceSt at us: VideoSour ceSt at us
#m _cam er aSt at us: VideoCam er aSt at us
#m _cam er aDat a: Cam er aDat a
m _displayTim er : Tim er
m _displayTim er Running: boolean
- m _isVideoSour ceO nly: boolean
m _publicTimer : Timer
m _publicTimer Running: boolean
m _r evokeDisplayTask: RevokeDisplayTask
m _r evokePublicTask: RevokePublicTask

+m _camer aConf ig: VideoCam er aConf ig
+m _m axNumPr eset s: int
+m _pr eset s: Cam er aPr eset []
+m _def ault Pr eset Num : int t
+m _skedM oveToDef ault Pr eset Time: long
+m _m axCont r olI dleTim eM ins
+m _pollEnabled: boolean
+m _pollI nt er valCont r olledSecs
+m _pollI nt er valUncont r olledSecs
+m _lockO nManualI Focus: boolean
+m _lockO nManualI r is: boolean
+m _lockO nManualColor : boolean
+m _lowest Cont r olHier ar chyLevel: int
+m _def ault Cam er aTit le

+r un()
+PollCam er aTask(Cont r ollableCam er aFact or yI m pl)

- m _cont r ollableCamer aFact : Cont r ollableCam er aFact or yI m pl

#pushSt at us(St r ing, St r ingBuf f er)
#per sist St at us(St r ing, St r ingBuf f er)
+adjFocus(byt e[] , int)
+adjI r is(t oken, int)
+adjPan(t oken, int)
+adjTilt (t oken, int)
+adjZoom (t oken, int)
+clear Tim er s() : void
+get Cont r ollableCam er aConf ig(t oken) : Cont r ollableVideoCamer aConf ig
+get Cont r ollableCam er aSt at us() : Cont r ollableVideoCam er aSt at us
+isCont r ollable() : boolean
+m oveToPr eset (t oken, shor t , boolean)
+pollCamer a(t oken, boolean) : boolean
+r em ove(t oken)
+r equest Cont r ol(t oken, boolean, Cont r ollingI nf o, Com mandSt at us)
+r eset Camer a(t oken)
+r evokeCont r olm pl(byt e[] [] , Com m andSt at us) : boolean
+savePr eset (t oken, shor t , St r ing)
+set Act iveTit le(t oken, St r ing, shor t , Comm andSt at us)
+set Aut oI r is(t oken, boolean)
+set Cont r ollableCam er aConf ig(t oken, Cont r ollableVideoCamer aConf ig)
+set RevokeCont r olO r gs(byt e[] , byt e[] [] , Comm andSt at us) : void
+set User Cont r olSt at us(t oken, boolean)
+t er m inat eCont r ol(t oken, Comm andSt at us)
+clear DeviceFor O f f lineM ode(t oken, Com mandSt at us)
+isRem ovable(VideoCollect or I nf o, m onit or G r oupI D[] , St r ingHolder) : boolean
+isCont r olled() : boolean
#isCont r olledBy(t oken)
#t er m inat eCont r olI mpl(t oken, Com m andSt at us)
debugPr int Conf ig(St r ing, St r ing, Cont r ollableVideoCamer aConf ig)
debugPr int St at us(St r ing, St r ing, Cont r ollableVideoCamer aSt at us)
#get Cont r ollableCam er aConf ig() : Cont r ollableVideoCam er aConf ig
#ver if yCont r oller (byt e[] , Com mandSt at us)
+r equest Cam er aCont r olI m pl(t oken, Com mandSt at us, Cont r ollingI nf o)
#isDisplayedLocally(Cont r ollingI nf o, t oken) : int
#checkCont r ollable(t oken, Com mandSt at us int)
#hasCom mandRunning()
+r equest Cam er aO ver r ideI m pl(byt e[] , Com m andSt at us, Cont r ollingI nf o)
#st opCam er aI f Necessar y(St r ing)
pollI f Necessar y()
#ver if yComm M odeNot O f f line(St r ing, Comm andSt at us)
- set PollI nPr ogr ess(boolean)
#updat eCam er aTit le(int , St r ing)
- updat eLast At t em pt edPollTim e()
- updat eLast Com m andTim e()
#updat eLast Cont act Tim e()
- updat eLast Successf ulPollTime()
#handleO pSt at us(O per at ionalSt at us, boolean, Comm andSt at us,
 St r ing, boolean, boolean) : boolean
#updat eCmdTim eSecs()
#conver t ToO per at ionalSt at us(Cam er aO per at ionalSt at us) : O per at ionalSt at us
#r ef r eshMonit or List ()
+populat eValidTit leChar act er s(St r ing)
+isTit leValid(St r ing) : boolean
+get ValidTit leChar s() : St r ing

#m _cont r ollableConf ig: Cont r ollableVideoCam er aConf ig
#m _cont r ollableSt at us: Cont r ollableVideoCam er aSt at us
#m _m axTit leLengt h: int
#m _m axTit leLineNum : int
#m _pr ot ocolHandler : Camer aPr ot ocolHdlr
#m _lockO per at ion: O bject []
m _cont r olTim er : Tim er
m _cont r olTim er Running: boolean
m _last Har dO pSt at us: O per at ionalSt at us
- m _last NPossibleSt at eChanges : LinkedList
m _numAct ualSt at eChanges: int
m _numPossibleSt at eChanges: int
m _sim ulat edCom m sSuccessRat e: int
- m _r ecent St at eChanges: LinkedList
m _r ecent St at eChangeCnt : int
m _r ecent St at eChangeTim eSecs: int
m _r evokeCont r olTask: RevokeCont r olTask
- m _pollI nPr ogr ess: boolean
#m _validCO HU3955Char act er s: Hasht able

+m_header : byt e []
+m_header Response: byt e[]
+m_com m and: byt e[]
+m_com m andResponse: byt e[]
+m_expect edLengt h: int
+m_com m andType: int

+init ialize() : boolean
+connect () : boolean
+disconnect () : boolean
+shut down() : boolean
+send(byt eMessage: byt e []) : byt e []
+send(m essages: Ar r ayList , id: t oken) : boolean
+r eceive(byt e [] , int) : void
+r eceive(dat a: Ar r ayList , lengt h: Ar r ayList , id: t oken)
+get Act ualByt esRead() : int
+set Conf igur at ion(CO HU3955Cam er aConf ig)
 : boolean

+m _comm M ode: Comm unicat ionM ode
+m _opSt at us: O per at ionalSt at us
+m _cont r ollingO pCent er : O pCent er I nf o
+m _m onit or I nf o: M onit or DisplayI nf o
+m _deviceSt at usChangeTim eSecs: int
+m _m onit or St at usChangeTimeSecs: int

+m _pr ovider St at us: VideoPr ovider St at us
+m _m aint ModeUser Nam e: st r ing
+m _blockedToPublic: boolean
+m _user DisplaySt at us: boolean
+m _r evokedDisplayO r gI D[]

+init ialize() : boolean
+connect () : boolean
+disconnect () : boolean
+shut down() : boolean
+set Camer aI d() : void
+set Camer aNam e() : void
+get I nit ialCom mands()

m _cam er aI d: int
m _cam er aName: St r ing

+m _sour ceSt at us: VideoSour ceSt at us

+m_cam er aSt at us: VideoCam er aSt at us
+m_cont r olled: boolean
+m_cont r ollingUser I nf o: Cont r ollingUser I nf o
+m_act ionSt at e: Cam er aAct ionSt at e
+m_inAut oFocusM ode: boolean
+m_inAut oI r isM ode: boolean
+m_cur r ent Tit le: st r ing
+m_last Cont r olCm dTim eSecs: long
+m_user Cont r olSt at us: boolean
+m_at Pr eset : Cam er aPr eset
+m_cont r olI nhibit Level: int

+adjPan(dir ect ion: int) : Cam er aO per at ionalSt at us
+adjTilt (dir ect ion: int) : Camer aO per at ionalSt at us
+adjZoom (dir ect ion: int) : Camer aO per at ionalSt at us
+adjFocus(wher e: int) : Cam er aO per at ionalSt at us
+adjI r is(boolean) : Camer aO per at ionalSt at us
+adjBlue(dir ect ion: int) : Cam er aO per at ionalSt at us
+adjRead(dir ect ion: int) : Cam er aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+set Aut oFocus(boolean) : Cam er aO per at ionalSt at us
+set Aut oColor (boolean) : Camer aO per at ionalSt at us
+set LensFast (boolean) : Camer aO per at ionalSt at us
+r eset Camer a() : Cam er aO per at ionalSt at us
+set Act iveTit le(t it le, lineNum) : Cam er aO per at ionalSt at us
+poll() : Camer aO per at ionalSt at us
#buildCom mand() : byt e[]
#get Ret ur nedSt at us(byt e[] : cam er aSt at us)
+m iscCom m and(st r ing, int) : Cam er aO per at ionalSt at us
- r eceiveACKor NAKSt at us() : Camer aO per at ionalSt at us
#sendACK(byt e)
- sendCom m andFor Dat a() : Camer aO per at ionalSt at us
#sendMessage(byt e[]) : Cam er aO per at ionalSt at us
+set Tit leEnabled(boolean) : Cam er aO per at ionalSt at us
+set Tit leToTop(boolean) : Camer aO per at ionalSt at us
+shut down() : boolean

+adjRed(t oken, dir ect ion: int)
+adjBlue(t oken, dir ect ion: int)
+set Aut oColor (t oken, boolean)
+set LensFast (t oken, boolean)
+set Power O n(t oken, boolean)
+adjPan(t oken, dir ect ion: int)
+set Aut oFocus(t oken, boolean)
+get CO HU3955Cam er aSt at us()
 : CO HU3955Cam er aSt at us
+get CO HU3955Cam er aConf ig(I dent if ier)
 : CO HU3955Cam er aConf ig
+set CO HU3955Cam er aConf ig(I dent if ier ,
 CO HU3955Cam er aConf ig)

+addCom m and(Comm andTr ansact ion)
+dequeue()
+execut eComm and()
+r eceive(I dent if ier)
+r eceiveResponse(byt e[])
+r un()
+sendComm andToCom Por t (Cam er aComm and)
+st opThr ead()

m _com mands : List
m _com por t : Camer aCont r olCom Por t
m _com por t Name : St r ing
m _enableDeviceLogging : boolean
m _lock : O bject
m _r esponseLock : O bject
m _r esponses : Hasht able
m _simulat ed : boolean
m _st opThr ead : boolean

- m _cohu3955Conf ig: CO HU3955Cam er aConf ig
- m _cohu3955St at us: CO HU3955Camer aSt at us

execut e()
int er r upt ed()

+adjPan(dir ect ion: int) : Cam er aO per at ionalSt at us
+adjTilt (dir ect ion: int) : Camer aO per at ionalSt at us
+adjZoom (dir ect ion: int) : Camer aO per at ionalSt at us
+adjFocus(wher e: int) : Cam er aO per at ionalSt at us
+adjI r is(boolean) : Camer aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+set Act iveTit le(st r ing t it le, int lineNum) : Cam er aO per at ionalSt at us
+poll() : Camer aO per at ionalSt at us
+set Aut oFocus(boolean) : Cam er aO per at ionalSt at us
+set Aut oColor (boolean) : Camer aO per at ionalSt at us
+set LensFast (boolean) : Camer aO per at ionalSt at us
+set Aut oI r is(boolean) : Cam er aO per at ionalSt at us
+r eset Camer a() : Cam er aO per at ionalSt at us
+set Posit ion(Com m and, Value) : int
+get Posit ion() : Posit ion
+m oveToPosit ion(Pr eset) : int
+savePr eset (number) : int

+execut e()
+int er r upt ed()

- m _cVideoSinkI mpl : VideoSinkI m pl
- m _cm dSt at : Com mandSt at us
- m _videoPr ovider I nf oSr c : VideoPr ovider I nf o
- m _bTour : boolean
- m _t oken : t oken

- m_r equest er Token: Token
- m_cm dSt at : Com m andSt at us
- m_sour ce: VideoCam er aI m pl
- m_pr eset Num : int

+m_sit eNam e: st r ing
+m_sit e: Sit e
+m_sit eHier ar chyLevel: int
+m_wor kst at ionNam e: st r ing
+m_wor kst at ion: Wor kst at ion
+m_user Name: st r ing

+execut e()
+int er r upt ed()

- m_cam er a : Cont r ollableVideoCamer aI mpl
- m_cm dSt at : Comm andSt at us
- m_t oken : t oken
- m_inf o : Cont r ollingI nf o

+m _cont r ollableSt at us: Cont r ollableVideoCam er aSt at us
+m _inAut oColor M ode: boolean
+m _power O n: boolean
+m _lensSpeedFast : boolean
+m _cur r ent Tit le2: st r ing

+execut e()
+int er r upt ed()

- m _cam er a : Cont r ollableVideoCam er aI m pl
- m _cmdSt at : Comm andSt at us
- m _t oken : t oken
- m _inf o : Cont r ollingI nf o

+adjBlue(byt e[] , int) : void
+adjMenuHor izont ally(byt e[] , int) : void
+adjMenuVer t ically(byt e[] , int) : void
+adjRed(byt e[] , int) : void
+get ValidTit leChar s() : St r ing
+get ViconSVFTCam er aConf ig(byt e[]) : ViconSVFTCamer aConf ig
+get ViconSVFTCam er aSt at us() : ViconSVFTCam er aSt at us
#per sist St at us(St r ing, St r ingBuf f er) : boolean
#pushSt at us(St r ing, St r ingBuf f er) : boolean
+r emove(byt e[]) : void
+set Aut oColor (byt e[] , boolean) : void
+set Aux(byt e[] , shor t) : void
+set LensSpeed(byt e[] , shor t) ; void()
+set Pr ogr am mingM ode(byt e[] , boolean) : void
+set ViconSVFTCam er aConf ig(byt e, ViconSVFTCam er Conf ig) : void
updat eCam er aTit le(int , St r ing) : void
- ver if yCom m Mode(Com m unicat ionM ode, St r ing, Com m andSt at us, boolean) : void

+execut e()
+int er r upt ed()

- m _cam er a: Cont r ollableVideoCamer aI mpl
- m _cmdSt at : Comm andSt at us
- m _t oken: Token

+execut e()
+int er r upt ed()

- m _pr ovider : VideoPr ovider I m pl
- m _cmdSt at : Com m andSt at us
- m _t oken : t oken

+execut e()
+int er r upt ed()

- m_cam er a : Cont r ollableVideoCamer aI mpl
- m_cm dSt at : Com mandSt at us
- m_t oken : t oken

+execut e()
+int er r upt ed()

- m _camer a : VideoCam er aI m pl
- m _cm dSt at : Com mandSt at us
- m _t oken : t oken
- m _or gI D : r evokedO r gI D

+execut e()
+int er r upt ed()

- m _camer a : Cont r ollableVideoCam er aI m pl
- m _cm dSt at : Com mandSt at us
- m _t oken : t oken
- m _or gI D : r evokedO r gI D

+execut e()
+int er r upt ed()

- m_cam er a : VideoCamer aI mpl
- m_cm dSt at : Comm andSt at us
- m_t oken : t oken

Figure 5-94 CameraControlModule (Class Diagram)

5.3.1.3.1 BlockToPublicCmd (Class)

This class represents the information needed to create a block camera to public command to

be added on the CommandQueue.

5.3.1.3.2 CameraCommand (Class)

CameraCommand contains information about the commands sent to, and responses

received from, the camera.

5.3.1.3.3 CameraControlComPort (Class)

The CameraControlComPort interface is implemented by a class representing a COM port

with direct connection to the control port of a video camera. It is used to send video camera

control commands and return responses to a camera control process.

CHART R3B3 Detailed Design 5-104 12/23/2008

5.3.1.3.4 CameraControlDB (Class)

The CameraControlDB class provides an interface between the Camera service and the

database used to persist and depersist the Camera objects and their configuration and status

in the database. It contains a collection of methods that perform database operations on

tables pertinent to Camera Control. The class is constructed with a DBConnectionManager

object, which manages database connections. Methods exist to insert and delete Camera

objects from the database, and to get and set their configuration and status information.

5.3.1.3.5 CameraControlDevice (Class)

The CameraControlDevice interface is implemented by classes which provides

communications for access to control functions for a video camera. This includes encoders,

command processors, and direct COM ports.

5.3.1.3.6 CameraControlModule (Class)

The CameraControlModule class is the service module for the Camera devices and a

Camera factory. It implements the ServiceApplicationModule interface. It creates and

serves a single CameraFactoryImpl object, which in turn serves zero or more CameraImpl

objects. It also creates CameraControlDB, CameraControlModuleProperties, and

PushEventSupplier objects.

5.3.1.3.7 CameraControlModuleProperties (Class)

The CameraControlModuleProperties class is used to provide access to properties used by

the Camera Control Module. This class wraps properties that are passed to it upon

construction. It adds its own defaults and provides methods to extract properties specific to

the Camera Control Module.

5.3.1.3.8 CameraProtocolHdlr (Class)

CameraProtocolHdlr classes provide implementations for all the camera commands. Each

CameraImpl class will have a CameraProtocolHdlr instantiated when initialized. When a

camera control command is sent to the CameraImpl, CameraProtocolHdlr will be called to

translate the command to byte messages which the camera understands. Then those

messages are sent by the CameraControlDevice to the camera. CameraProtocolHdlr is

capable of using different CameraControlDevice which is created during the initialization.

5.3.1.3.9 CheckForAbandonedCameraTask (Class)

The CheckForAbandonedCameraTask is a timer task. When the timer fires, it checks to see

if a camera control session has exceeded the timeout, or whether a camera is controlled by

an Operations center with no one logged in.

5.3.1.3.10 COHU3955Camera (Class)

The COHUCamera interface is implemented by objects representing COHU-brand video

cameras. The COHUCamera interface is extended by the COHUMPCCamera and

CHART R3B3 Detailed Design 5-105 12/23/2008

COHU3955Camera interfaces. The COHUCamera interface includes all methods which

are common to the two COHU cameras used by CHART II, the COHU MPC camera and

the COHU 3955 camera. (Note that this interface may well contain a superset of methods

which would be implemented by the entire line of all models of COHU video cameras).

5.3.1.3.11 COHU3955CameraImpl (Class)

This class implements the COHU3955Camera interface, and inherits from the

ControllableCameraImpl class. The COHU3955CameraImpl implements methods of

COHU3955Camera, extending the controllable camera to include 3955-specific operations.

This class will contain a configuration and status object as necessary to convey 3955-

specific configuration and status information.

5.3.1.3.12 COHU3955CameraStatus (Class)

The CameraStatus class is an abstract value-type class which provides status information

for a Camera. This status information is relatively dynamic: things like the communication

mode, operational status, operation center information, status change time.

5.3.1.3.13 COHUProtocolHdlr (Class)

COHUProtocolHdlr is the base class for all COHU cameras. At present, this class contains

implementations for common functions for COHU MPC and COHU 3955 cameras

5.3.1.3.14 CommandProcessor (Class)

The CommandProcessor class is used to send control commands to a camera.

5.3.1.3.15 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.3.1.3.16 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

CHART R3B3 Detailed Design 5-106 12/23/2008

5.3.1.3.17 ControllableCameraFactoryImpl (Class)

The CameraFactoryImpl class provides an implementation of the CameraFactory interface

(and its CameraFactory and SharedResourceManager interfaces) as specified in the IDL.

The CameraFactoryImpl maintains a list of CameraImpl objects and is responsible for

publishing Camera objects in the Trader on startup and as new camera objects are created.

Whenever a Camera is created or removed, that information is persisted to the database.

This class is also responsible for performing the checks requested by the timer tasks: to

poll the Camera devices, to look for Camera devices with timeout exceeded, to look for

Camera devices with no one logged in at the controlling operations center, and to initiate

recovery processing as needed

5.3.1.3.18 ControllableVideoCamera (Class)

The ControllableVideoCamera interface is implemented by objects representing

controllable video cameras within the CHART II system. The ControllableVideoCamera

interface represents a controllable video camera as opposed to the uncontrollable,

immovable VideoCamera. Current plans call for classes to represent a COHU MPC

camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant camera, and

there are interfaces defined for each of these subtypes of ControllableVideoCamera. The

ControllableVideoCamera interface includes all methods common to the three known types

of video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day. Current plans call for classes to represent a

COHU MPC camera, COHU 3955 camera, Vicon SVFT camera, and NTCIP-compliant

camera.

5.3.1.3.19 ControllableVideoCameraConfig (Class)

The ControllableVideoCameraConfig is used to hold and transmit configuration

information about ControllableVideoCamera objects at the ControllableVideoCamera level.

5.3.1.3.20 ControllableVideoCameraImpl (Class)

The ControllableCameraImpl class provides an implementation of the

ControllableVideoCamera interface and is derived from the CameraImpl class

implementing the VideoCamera interface.

This class contains a CommandQueue object that is used to sequentially execute long

running operations related to camera control in a thread separate from the CORBA request

threads, thus allowing quick initial responses.

Also contained in this class are ControllableVideoCameraConfig and

ControlablVideoCameraStatus objects (used to store the configuration and status of the

camera), and a VideCameraData object (used to store internal status information which is

persisted but not pushed out to clients).

CHART R3B3 Detailed Design 5-107 12/23/2008

The ControllableCameraImpl contains *Impl methods that map to methods specified in the

IDL, including requests to request control of the camera, terminate control of the camera,

override control of the camera, and to send pan/tilt/zoom (PTZ) commands to the camera.

Some of these requests are long running, so each request is stored in a specific subclass of

QueueableCommand and added to the CommandQueue. The queueable command objects

simply call the appropriate ControllableCameraImpl method as the command is executed

by the CommandQueue in its thread of execution. PTZ commands are not considered long

running and are not placed on the command queue.

The ControllableCameraImpl also contains methods called by the CameraFactory to

support the timer tasks of the Camera Service: to poll the Camera, to look for Camera

devices with communications timeout exceeded.

5.3.1.3.21 ControllableVideoCameraStatus (Class)

The ControllableVideoCameraStatus is used to hold and transmit status information about

ControllableVideoCameraStatus objects at the ControllableVideoCamera level.

5.3.1.3.22 ControllingInfo (Class)

The ControllingInfo structure contains information about the entity controlling (or

requesting to control) a VideoCamera.

5.3.1.3.23 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.3.1.3.24 DisplayImageCmd (Class)

This class represents the information needed to create a display image command to be

added on the CommandQueue.

5.3.1.3.25 Encoder (Class)

The Encoder interface is implemented by classes representing any type of video encoder.

The Encoder interface includes both the Codec and the VideoSendingDevice interfaces,

which means in addition to providing forwarding of video, it also is used to send video

camera control commands and return responses to a camera control process.

CHART R3B3 Detailed Design 5-108 12/23/2008

5.3.1.3.26 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.3.1.3.27 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.3.1.3.28 MoveToPresetCmd (Class)

This class represents the information needed to create a move to preset command to be

added on the CommandQueue.

5.3.1.3.29 PollCameraTask (Class)

The PollCameraTask is a timer task. When the timer fires it polls a camera by sending a

poll command to the camera.

5.3.1.3.30 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.3.1.3.31 PutCameraOnlineCmd (Class)

This class represents the information needed to request a put camera online command to be

added on the CommandQueue.

5.3.1.3.32 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

CHART R3B3 Detailed Design 5-109 12/23/2008

5.3.1.3.33 RequestCameraControlCmd (Class)

This class represents the information needed to request a camera control command to be

added on the CommandQueue.

5.3.1.3.34 RequestCameraOverrideCmd (Class)

This class represents the information needed to request a camera control override command

to be added on the CommandQueue.

5.3.1.3.35 RevokeControlCmd (Class)

This class represents the information needed to create a revoke camera control command to

be added on the CommandQueue.

5.3.1.3.36 RevokeDisplayCmd (Class)

This class represents the information needed to create a revoke camera display command to

be added on the CommandQueue.

5.3.1.3.37 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.3.1.3.38 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.3.1.3.39 TakeCameraOfflineCmd (Class)

This class represents the information needed to request a take camera offline command to

be added on the CommandQueue.

5.3.1.3.40 TerminateControlCmd (Class)

This class represents the information needed to request a terminate camera control

command to be added on the CommandQueue.

5.3.1.3.41 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-110 12/23/2008

5.3.1.3.42 ViconSVFTCameraImp (Class)

This class implements the ViconSVFTCamera interface, and inherits from the

ControllableCameraImpl class. The ViconSurveyorVFTCameraImpl implements methods

of ViconSVFTCamera, extending the controllable camera to include Vicon SVFT-specific

operations. This class will contain a configuration and status object as necessary to convey

Vicon SVFT-specific configuration and status information.

5.3.1.3.43 ViconSVFTCameraStatus (Class)

The ViconSVFTCameraStatus class is used to hold camera status information at the

ViconSVFTCamera level. Only ViconSVFTCamera specific information is stored.

5.3.1.3.44 ViconSVFTProtocolHdlr (Class)

This class contains an implementation for Vicon SVFT camera control commands. It

translates every camera command (pan, tilt, zoom…) into bytes that a Vicon SVFT camera

understands. Then, it uses a CameraControlDevice to send the byte codes to the camera and

evaluate responses from the camera.

5.3.1.3.45 VideoCamera (Class)

The VideoCamera interface is implemented by objects representing controllable video

cameras within the CHART II system. The VideoCamera interface represents a

controllable video camera as opposed to the uncontrollable, immovable

FixedVideoCamera, the other type of GenericVideoCamera. (The VideoCamera class

could have been called the ControllableVideoCamera interface, but since the CHART II

video system exists primarily to control controllable video cameras, the camera hierarchy

has been arranged to avoid the longish name ControllableVideoCamera.) Current plans call

for classes to represent a COHU MPC camera, COHU 3955 camera, Vicon SVFT camera,

and NTCIP-compliant camera, and there are interfaces defined for each of these subtypes of

VideoCamera. The VideoCamera interface includes the GeoLocatable interface, to

someday allow for advanced features such as automatic identification of cameras near

traffic events, automatic pointing of cameras to traffic events, etc.

The VideoCamera interface includes all methods common to the three known types of

video cameras currently in use by MDSHA, although it is likely to contain a superset of

methods which would be implemented by the entire universe of all video cameras which

could someday be used. This interface may have to be refined in the event that future

brands or models of video cameras might be incorporated under CHART II, but it is an

appropriate set of methods for the present day.

5.3.1.3.46 VideoCameraConfig (Class)

The VideoCameraConfig structure is used to hold configuration information about

VideoCamera objects at the VideoCamera level. Further details about lower-level

VideoCamera subclasses are provided by subclasses of VideoCameraConfig.

CHART R3B3 Detailed Design 5-111 12/23/2008

5.3.1.3.47 VideoCameraFactory (Class)

The VideoCameraFactory interface is implemented by factory classes responsible for

creating, maintaining, and controlling a collection of VideoCamera objects.

5.3.1.3.48 VideoCameraImpl (Class)

The CameraImpl class provides an implementation of the VideoCamera interface, and by

extension the VideoSource, SharedResource, CommEnabled, GeoLocatable, and

UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations in a thread separate from the CORBA request threads, thus allowing

quick initial responses.

Also contained in this class are VideoCameraConfig and VideoCameraStatus objects (used

to store the configuration and status of the camera), and a VideCameraData object (used to

store internal status information which is persisted but not pushed out to clients).

The CameraImpl contains *Impl methods that map to methods specified in the IDL,

including requests to display the camera video on a monitor, remove the camera video from

a monitor, put the camera online, put the camera offline, put the camera in maintenance

mode (future), or to change (set) the configuration of the camera (future). Some of these

requests require (or potentially require) field communications to the device, so each request

is stored in a specific subclass of QueueableCommand and added to the CommandQueue.

The queueable command objects simply call the appropriate CameraImpl method as the

command is executed by the CommandQueue in its thread of execution.

The CameraImpl also contains methods called by the CameraFactory to support the timer

tasks of the Camera Service: to look for Cameras with no one logged in at the controlling

operations center, and to initiate recovery processing if needed (future).

5.3.1.3.49 VideoCameraStatus (Class)

The VideoCameraStatus structure is used to hold status information about VideoCamera

objects at the VideoCamera level. Further details about lower-level VideoCamera

subclasses are provided by subclasses of VideoCameraStatus.

5.3.1.3.50 VideoProvider (Class)

The VideoProvider interface is a generic abstract interface including VideoSource objects

(e.g. video cameras) and BridgeCircuit objects. Both VideoSource and BridgeCircuit

objects provide video to a VideoCollector, but only VideoSource objects are true origins of

video which a typical user would have direct interaction with. BridgeCircuit VideoProvider

objects merely pass on video provided from elsewhere in a VideoRoute.

5.3.1.3.51 VideoProviderStatus (Class)

The VideoProviderStatus structure is used to hold and transmit status information about

CHART R3B3 Detailed Design 5-112 12/23/2008

VideoProvider objects at the VideoProvider level. Further details about lower-level

VideoProvider subclasses are provided by subclasses of VideoProviderStatus.

5.3.1.3.52 VideoSource (Class)

The VideoSource interface is implemented by objects which originate video signals, such

as video cameras and image generators. Within the user interface, the VideoSource

interface represents all video sources which can be put on monitors (i.e., VideoSink

objects).

The VideoSource interface includes the SharedResource interface. A VideoSource is

controlled by an Operations Center if the VideoSource is in maintenance mode, or if the

VideoSource is a camera which has an active control session up.

5.3.1.3.53 VideoSourceStatus (Class)

The VideoSourceStatus structure is used to hold and transmit status information about

VideoSource objects at the VideoSource level. Further details about lower-level

VideoSource subclasses are provided by subclasses of VideoSourceStatus.

5.3.2 Sequence Diagrams

5.3.2.1 CameraControlModule:SetCameraConfiguration (Sequence Diagram)

This sequence diagram shows the implementation of the setConfiguration interface of the

CameraImpl class (which represents VideoProviderImpl, VideoSourceImpl,

VideoCameraImpl etc.). First a check is performed to verify that the operator has sufficient

privileges to update a camera. Next a check is made to see that the camera is offline. Only

offline cameras may have their configurations updated. If the camera is offline, the new

configuration is validated. Next the new configuration is written to the database. Finally,

the camera is apprised of its new configuration.

CHART R3B3 Detailed Design 5-113 12/23/2008

[invalid config]
Char2Exception

checkCommdMode

setConfig
(token,config)

notOffline
Char2Exception

checkAccess

acessDenied

TokenManipulator CameraControlDB

pushConfig

validateConfig

[online]
log(token, "must be offline to change configuration)

[no rights]
log(token, "unauth. attempto to configure camera)

R3B3:
Set everything in config except location

VideoCameraImpls
ControllableVideoCamera

FactoryImpl OperationsLog

setConfiguration(cameraID, config)

setConfiguration(cameraID, config)

[invalid configuration]
log(token, "invalid data")

PushEvent
Supplier

Figure 5-95 CameraControlModule:SetCameraConfiguration (Sequence Diagram)

CHART R3B3 Detailed Design 5-114 12/23/2008

5.4 DMS Control Module

5.4.1 Classes

5.4.1.1 DMSControlClassDiagram (Class Diagram)

This Class Diagram shows the classes of the DMS Control Module. The DMS Control

Module is an installable module that serves the DMS objects and DMSFactory to the rest of

the Chart2 system. This diagram shows how the implementation of these CORBA

interfaces rely on other supporting classes to perform their functions.

R3B3:Changed fm s XX m ethods
Som e m em ber v a riables and m ethods m ov ed to
 DM SIm pl .(See DM SControlClas s Diagram 2)
handl eOpStatus c hanged.
Rem ov ed m _direc tion. To us e m _l oc a tion to get di rec tion

M odi fied
fo r R3B3

ExternalDM SFactoryImpl

Ex ternalDM SFactory

«i nterfac e»

1

DM SImpl See DM SContro lClas s Diag ram 2
for deta i ls o f Im pl c las s es .

DM S

«in terfac e»

Externa lDM SImpl

*

1

DiscoveryM anager

UPDATED FOR R3B3.
Add c hec k Trav InfoM s gSc hedule (),
c om pu teTrav In foM s gSc hedEnab led().
Added m _dev i c eLoc a tion and s e tLoc ation ().

1

1

TravelRouteConsumer

« inte rfac e»

NEW FOR R3B3.

NOTE: Sta ts m ethods wa i t unti l
routeUpdates Com pl eted () c al l to
upda te a rb queue m s g, as al l TT o r
to l l ra te updates c om e in a bunc h ,
fo l lowed by this c al l .

1

NEW FOR R3B3.

Add Dis c ov e ry M gr
to trac k c hanges to
Sy s tem Profi l e (l i k e
g loba l trav in fo m s g
s c hedule , s o c an
re trof i t trac k i ng o f
c om b inabi l i ty ru les ,
e tc .

1

ArbitrationQueue

« inte rfac e»

1

DM STravInfoM sgHandler

DM STrav InfoM sg

«s truc t»

*1

DM STravInfoM sgDataSupplie r

«i nterfac e»

NEW FOR R3B3.

handl e*() m e thods
c a l led by new
CHART2DM SIm pl
Trav e lRou teCons um er
m ethods , ul t im a tely
res ul ts in c a l l to new
ArbQueue m e thod
updateEn try () on the
m _dm s Im pl .

*

1

1

1

NEW FOR R3B3.

See Ex te rnlDM S diagram fo r de tai l s .

TravInfoM sgSchedWatcherTask

NEW FOR R3B3.

ExternalDM S

«in terfac e»

DM STrav InfoM sgTemplateM odel

Anal y z e
databas e
s c hem a
c hanges
needed for
new c on fig
data , etc
s etLoc a tion added .

UPDATED FOR R3B3.
Add
c hec k Trav InfoM s gSc hedule (),
c al led on a tim er.

1

1

AlertFactoryWrapper

1
1

1*

1

Chart2DM SData

FP9500DM SImpl

1

CommandQueue

SetDM SM essageFromQueueCmd

PortLocator

1

1

1

1

1

HARM essageNotifie r

« inte rfac e»

1

1

1

1

*

DM S

« inte rfac e»

SharedResourceM anager

«i nterfac e»

DM SFactory

«in terfac e»

1
*

*

1

1

UniquelyIdentifiable

« inte rfac e»

java.util.Timer

Chart2DM SFactory

« inte rfac e»

Arbitra tionQueue

«in terfac e»

DM SArbitrationQueue

PushEventSupplie r

Chart2DM SFac toryImpl

CommEnabled

« inte rfac e»

DictionaryWrapper

DBConnec tionM anager

1

1

*

1

1

RecoveryTimerTask

DM SControlDB

DM SControlM oduleProperties

QueueableCommand

« inte rfac e»

CheckForAbandonedDM STask

java.util.TimerTask

PollDM STask

CheckCommLossTask

SharedResource

« inte rfac e»

1

1

*

1

1

1

1

1

1
1

1

1

1

*

1

1

1

1

11

1
1

ArbQueueEntry

«v al uety pe»
DM SControlM odule

ServiceApplica tionM odule

«in terfac e»

Chart2DM SStatus

«v aluety pe»

ServiceApplication

«in terfac e»

java.util.Properties

1

1

1

1

Chart2DM S

«in terfac e»

FP9500DM S

«in terfac e»

Chart2DM SImpl

FP9500DM SStatus

«v a lue ty pe»

Chart2DM SConfigura tion

«v a lue ty pe»

GeoLoca table

«interfac e»

DM SFac tory Im p l(Serv i c eAppl i c ation,
 DM SContro lDB,Pus hEv en tSuppl i er,
 SharedRes ourc eM on i tori ngIn terv al)
c hec k DM SRec ov e ry (): v oi d
c hec k Trav InfoM s gSc hedu le(): v o id
getDM SOffe rIDs ():in t[]
s hu tdown():boo lean
rem ov eDM S(DM SIm pl dm s)
c hec k Com m Los s ():v o id
c hec k ForAbandonedDM S():v o id
c hec k DM SRec ov e ry (in t):v oid
pol l DM SObj ec ts ():v oid

Thread m _as y nc FM SStatus Th read;
Col l ec ti on m _dm s Lis t;

run()

Chart2DM SFac tory Im pl m _ fac tory

DM SContro lM odul ePrope rties (Prope rties props ,
 Prope rties de fau l ts)
getCom m Los s Tim erDelay Sec s () : in t
getFac tory ID() : by te[]
getPol lPortWa i tTim eSec s () : int
getPol lTim erDelay Sec s () : in t
getRec ov e ry Tim e rIntSec s () : int
getSha redRes ourc eM onInt() : int

in t m _ las tAttem p tedPol l Tim e
in t m _ las tContac tTim e
String m _ las tSta tus LogDate
boolean m _s hou ldBeReev a lua ted

DM SCon trol Databas e(DBConnec ti onM anager db)
getDM SLis t() : Cha rt2DM SIm pl []
i ns e rtDM S(Iden ti fe r dm s , Chart2DM SConfiguration c onfi g) :
 Chart2DM SIm pl
dele teDM S(Iden ti fi er id) : v oid
getConfiguration(Identi fier id) : Chart2DM SConfigura tion
getStatus (Identi fer dm s ID) : Chart2DM SStatus
s etConfiguration(Identi fer dm s ID,
 Chart2DM SConfiguration c onfig) : v oid
s etStatus (Identi fer dm s , Chart2DM SStatus s tatus ,
 Chart2DM SData) :v o id
addTraffic Ev en tID(Iden ti fie r dm s ID, Identi fer tfc Ev tID) : v oid
rem ov eTraffic Ev en tID(Iden ti fe r dm s ID, Identi fer t fc Ev tID) : v oid
s etLoc a tion (dm s ID:Identi f ier, loc ation:Ob jec tLoc ati on):v oid
s etDM STrav InfoConfig (dm s ID: Identi f ier,
 dm s Trav InfoConfig DM STrav InfoCon fig): v o id

DBConnec ti onM anage r m _db;

fac to ry c rea teFP9500Status () : FP9500DM SStatus

oc tet m _c urrentM s gNum
oc tet m _c urrentM s gSourc e

DM SIm pl(Con figu ration, DM SFac tory ,
 Pus hEv entSuppl ie r, Di c tionary ,
 Serv ic eAppl ic a tion , DM SControlDB): c tor
s e tM es s ageIm pl (Ac c es s Tok en , s tring , boolean, c om m andStatus):v oid
s e tM es s ageFrom Queue (Ac c es s Tok en , DM SM es s age ,
 Com m andSta tus , int): v o id
s e tM es s ageFrom Queue Im p l(Ac c es s Tok en , DM SM es s age,
 Com m andSta tus , int): v o id
blank Sign Im p l(Ac c es s Tok en, Com m andStatus): v oid
blank SignFrom Queue Im pl(Ac c es s Tok en, Com m andStatus): v oid
blank SignNow(Ac c es s Tok en , Com m andSta tus): v o id
res etControl le rIm pl(Ac c es s Tok en, Com m andStatus): v oid
tak eOffl ineIm pl(Ac c es s Tok en, Com m andStatus): v oid
pu tInM ain tM odeIm pl (Ac c es s Tok en , Com m andSta tus): v o id
pu tOnl ine Im p l(Ac c es s Tok en , Com m andSta tus): v o id
po l lNowIm pl(Ac c es s Tok en, Com m andStatus): v oid
po l l IfNec es s a ry (Ac c es s Tok en, Com m andStatus): v oid
s hutdown(): v oid
equals (Ob jec t ob j): bool ean
c hec k Rec ov e ry Tim e (int tim eDown): boolean
c hec k Com m Los s (): v oid
-c hec k Res ou rc eConfl ic t(Ac c es s Tok en , Com m andStatus): v o id
handleOpStatus (Operational Status , Com m andStatus):v oid
report(s tri ng, boo lean , boolean, Com m andStatus , ArbQueuEn try [])
ev alua teQueue(boolean):v o id
fm s Ge tConnec tedPort(Com m andSta tus , boolean):v oid
fm s Re leas ePort(Port)
reques tFa i led (ArbQueueEntry []):v oi d
reques tSuc c es s ful (ArbQueueEn try [], boolean):v oi d
~c hec k Trav In foM es s ageSc hedule(): v oid
c om pu teTrav InfoM s gSc hedEnabled (): v oid
ge tDirec ti on():s ho rt
ge tSta tus ():DM SStatus
v a l ida tefg (c hart2dm s Config , tok en):v o id
pe rs is tDM SConfig (des c ,warnTx t):v o id
ini tSta tus (): v oid
ini tia l i z eNewDM S(): v oid

m _c on fig : Chart2DM SConfiguration
m _s ta tus : Chart2DM SSta tus
m _ fac tory :Chart2DM SFac tory Im pl
m _ las tSuc c es s fu lPo l lTi m e: int
m _pol l InProg res s : boolean
m _pol lNeeded: boolean
m _ac tiv eArbQueueEn tries : ArbQueueEn try []
m _ las tQueuedSe tM s gCm d: SetDM SM es s ageFrom QueueCm d
m _ infoM s gHandl ers : Vec tor<DM STrav InfoM s gHandler>

getNetwork Connec tionSi te():Network Connec tionSi te
fac tory c reateCha rt2DM SCon figu rati on() :
 Cha rt2DM SCon figu ration

m _dm s M odel ID: DM SM odel ID
m _own ingOrgID: Iden ti fie r
m _network Connec tionSi te: Netwo rk Connec tionSi te
m _pol l ingEnabled : boolean
m _pol l Inte rv a lM inutes : l ong
m _portLoc ationDa ta: PortLoc ationData[]
m _ ipportData: IPPortLoc a tionData[]
m _c om m PortConfig: Com m PortConfig
m _dev ic ePhoneNum ber: s tri ng
m _dev ic eDropAdd res s : l ong
m _c om m uni ty Stri ng: s tri ng
m _dev ic eRes pons eTim eout: long
m _s haz am M es s age : DM SM es s age
m _as s oc i atedHAR: HAR
m _as s oc i atedHARID: Identi fi er
m _enableDev ic eLog : boolean
m _c om m Fai lAlertOpCenter: OpCente rInfo
m _hwFai lAlertOpCenter: OpCente rInfo
m _c om m Fai lNoti fGroup: Noti fic a tionGroupIn fo
m _hwFai lNoti fGroup: Noti fic a tionGroupIn fo
m _dm s Trav In foM s gConfig

trav InfoM s gId: Identi f ier
tem pla teId : Identi fier
rou teIdLis t: Identi fier[]
autoRowPos i tioning: bool ean

+addCom m and(Com m andTrans ac ti on)
+dequeue ()
+ex ec uteCom m and()
+rec ei v e(Iden ti fie r)
+rec ei v eRes pons e(by te [])
+run()
+s endCom m andToCom Port(Cam eraCom m and)
+s topThread()

m _c om m ands : L is t
m _c om port : Cam eraCon trol Com Port
m _c om portNam e : String
m _enableDev ic eLogging : bool ean
m _ loc k : Objec t
m _ res pons eLoc k : Objec t
m _ res pons es : Has h tab le
m _s im ula ted : boolean
m _s topTh read : bool ean

~s etUs e rEnabledFl ag(enabled : boolean): v o id
~s etSc hedu leEnab ledFlag (enabled: boo lean): v oid
~handleTrav elTim eSta ts Upda ted(routeId : Identi f ier, tim eDa ta: RouteTrav Tim eStats): v oid
~handleTol lRou teStats Updated(routeId: Iden ti fie r, to l lDa ta: Rou teTo l lRateStats): v oid
~handleDis play Con figUpdated (rou teId : Identi fier, c onfig : Trav e lRou teDis p lay Config): v oi d
~handleRou teUpda tes Com ple ted(): v o id
-c hec k M es s age(): v oid
-ac ti v ateM es s age(): v o id
-deac tiv ateM es s age(): v o id

m _us erEnabled : boolean
m _s c hedul eEnabled: boo lean
m _trav In foM s gCon fig: DM STrav In foM s g
m _routeDis pConfigs : Trav elRouteDis p lay Con fig[]
m _routeSta ts : Trav elRouteSta ts []
m _dm s Ref: Cha rt2DM S
m _dm s Im p l : Chart2DM SIm pl
m _a rbQueueEn try Key : ArbQueueEntry Key
m _m s gTim es tam pSec s : l ong

Figure 5-96 DMSControlClassDiagram (Class Diagram)

CHART R3B3 Detailed Design 5-115 12/23/2008

5.4.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.4.1.1.2 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the

queue determines which message(s) should be on the device, based upon the priority of the

queue entries. When entries are added to the queue, they are assigned a priority level based

on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are

added to the queue. The queue is evaluated when the device is online and queue entries are

added or removed, when an entry's priority is modified, or when the device is put online.

5.4.1.1.3 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

5.4.1.1.4 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

CHART R3B3 Detailed Design 5-116 12/23/2008

5.4.1.1.5 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to Chart II

processing. Such information includes how to contact the sign under Chart II software

control, the default SHAZAM message for using the sign as a HAR Notifier, and the

owning organization. Such data extends beyond what would be industry-standard

configuration information for a DMS. Parameters to support TCP/IP communications,

notifications and more alerts, and traveler information messages were added for R3B3.

5.4.1.1.6 Chart2DMSData (Class)

This class is used to store data associated with a DMS such as last contact time etc

5.4.1.1.7 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional

Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS

objects). It implements the SharedResourceManager capability to control DMS objects as

shared resources.

5.4.1.1.8 Chart2DMSFactoryImpl (Class)

The Chart2DMSFactoryImpl class provides an implementation of the Chart2DMSFactory

interface (and its DMSFactory and SharedResourceManager interfaces) as specified in the

IDL. The Chart2DMSFactoryImpl maintains a list of Chart2DMSImpl objects and is

responsible for publishing DMS objects in the Trader on startup and as new DMS objects

are created. Whenever a DMS is created or removed, that information is persisted to the

database. This class is also responsible for performing the checks requested by the timer

tasks: to poll the DMS devices, to look for DMS devices with timeout exceeded, to look

for DMS devices with no one logged in at the controlling operations center, and to initiate

recovery processing as needed.

5.4.1.1.9 Chart2DMSImpl (Class)

The Chart2DMSImpl class provides an implementation of the Chart2DMS interface, and by

extension the DMS, SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable,

ArbitrationQueue and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations (field communications to the device) in a thread separate from the

CORBA request threads, thus allowing quick initial responses. The Chart2DMSImpl also

contains a MessageQueue, which is used by the ArbitrationQueue interface methods to

handle requests from TrafficEvents to display or remove messages from the signs in online

mode. When the Chart2DMSImpl evaluates its messages in the MessageQueue, it

combines the highest priority messages into a single message which is placed into an

appropriate QueueableCommand object (subclass of QueueableCommand) and added to the

CommandQueue.

CHART R3B3 Detailed Design 5-117 12/23/2008

Also contained in this class are Chart2DMSConfiguration and Chart2DMSStatus objects

(used to store the configuration and status of the sign), and a Chart2DMSData object (used

to store internal status information which is persisted but not pushed out to clients), a list of

ArbQueueEntry objects from the MessageQueue that are currently active on the sign, and a

copy of the last QueueableCommand to put a message on the sign.

The Chart2DMSImpl contains *Impl methods that map to methods specified in the IDL,

including requests to put a message on the sign or remove a message (in maintenance mode

only), put the sign online, put the sign offline, put the sign in maintenance mode, or to

change (set) the configuration of the sign. All of these requests require (or potentially

require) field communications to the device, so each request is stored in a specific subclass

of QueueableCommand and added to the CommandQueue. The queueable command

objects simply call the appropriate Chart2DMSImpl method as the command is executed by

the CommandQueue in its thread of execution.

The Chart2DMSImpl also contains methods called by the Chart2DMSFactory to support

the timer tasks of the DMS Service: to poll the DMS devices, to look for DMS devices with

communications timeout exceeded, to look for maintenance mode DMS devices with no

one logged in at the controlling operations center, and to initiate recovery processing if

needed.

5.4.1.1.10 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to

provide status information specific to CHART processing, such as information on the

controlling operations center for the sign. This data extends beyond what would be

industry-standard status information for a DMS. Status information for traveler information

messages was added in R3B3.

5.4.1.1.11 CheckCommLossTask (Class)

The CheckCommLossTask class is responsible for determining when communications to a

DMS device have been down long enough to decide that the sign is or should be blank or

considered to be blank. The anticipated time interval for making such a determination is on

the order of ten minutes (however, this task is called much more frequently than that, so

that the timeout can be detected soon after it has expired). This class implements the

java.util.TimerTask interface, and as such it contains one method, run(), which is invoked

by Java timer object on a regularly scheduled basis. This class contains a reference to the

Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects each time

this task is called.

5.4.1.1.12 CheckForAbandonedDMSTask (Class)

The CheckForAbandonedDMSTask class is responsible for detecting any DMS device in

maintenance mode with a message on it which has no one logged it at the controlling

operations center. This would only occur as a result of an anomaly, such as a reboot of a

user's machine, because during a normal Chart II logout attempt, the logout is prohibited by

CHART R3B3 Detailed Design 5-118 12/23/2008

Chart II system if the user is the last user on his/her operations center and that operations

center is controlling a sign. However, because anomalies happen, this task runs

periodically to look for abandoned DMS devices. This class implements the

java.util.TimerTask interface, and as such it contains one method, run(), which is invoked

by Java timer object on a regularly scheduled basis. This class contains a reference to the

Chart2DMSFactoryImpl, which is called upon to actually check the DMS objects and

controlling operations centers of each DMS every time this task is called.

5.4.1.1.13 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.4.1.1.14 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.4.1.1.15 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.4.1.1.16 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic

location of the dictionary and automatic re-discovery should the dictionary reference return

an error. This class also allows for built-in fault tolerance by automatically failing over to a

"working" dictionary without the user of this class being aware that this being done. In

CHART R3B3 Detailed Design 5-119 12/23/2008

addition, this class defers the discovery of the Dictionary until its first use, thus eliminating

a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently

known good reference to the system dictionary. If the current reference returns a CORBA

failure in the delegated call, this class automatically switches to another reference. When

there are no good references (as is true the first time the object is used), this class issues a

trader query to (re)discover the published Dictionary objects in the system. During a

method call, the trader will be queried at most one time and under normal circumstances

(other than the first use) the trader will not be queried at all.

5.4.1.1.17 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

5.4.1.1.18 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

5.4.1.1.19 DMSArbitrationQueue (Class)

This class provides the implementation of an arbitration queue tailored for DMS devices.

5.4.1.1.20 DMSControlDB (Class)

The DMSControlDB class provides an interface between the DMS service and the database

used to persist the DMS objects and their configuration and status in the database. It

contains a collection of methods that perform database operations on tables pertinent to

DMS Control. The class is constructed with a DBConnectionManager object, which

manages database connections. Methods exist to insert and delete DMS objects from the

database, and to get and set their configuration and status information. All information

about a sign is persisted, including its current displayed message, communications status,

and time of last contact, so that a momentary glitch or restart of the software will not

CHART R3B3 Detailed Design 5-120 12/23/2008

interrupt messages on signs.

5.4.1.1.21 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS

factory. It implements the ServiceApplicationModule interface. It creates and serves a

single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects.

It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and

PushEventSupplier and NotificationChannel objects.

5.4.1.1.22 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the

DMS Control Module. This class wraps properties that are passed to it upon construction.

It adds its own defaults and provides methods to extract properties specific to the DMS

Control Module.

5.4.1.1.23 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the

Chart II system. It also provides a method to get a list of DMS devices currently in the

system.

5.4.1.1.24 DMSImpl (Class)

This abstract class implements the DMS interface. It provides methods to configure and

control DMS objects in CHART. This class was added in R3B3, when the concept of

external DMSs was added to CHART. The DMSImpl class is the base class for both

Chart2DMSImpl and ExternalDMSImpl, and provides methods shared by these two classes.

5.4.1.1.25 DMSTravInfoMsg (Class)

This class holds information necessary to put traveler information messages (containing

travel times and/or toll rates) on DMSs. Each TravelerInfoMsg contains the ID for the

template, and the IDs of the routes to use, as configured for its specific DMS. Each

TravelerInfoMsg can be enabled or disabled. The DMSControlModule will ensure that a

maxiumum of one TravelerInfoMsg is enabled at a time.

5.4.1.1.26 DMSTravInfoMsgDataSupplier (Class)

This interface provides data for travel routes used in a DMSTravInfoMsg. It will be used to

substitute the template tags with route-specific data, in order to format the template and

produce MULTI. This is needed in the GUI for true display, and is needed in the server for

formatting messages to send to a DMS. The routeNum parameter corresponds to route

numbers contained in the template data tags, and it is a 1-based index. These methods will

throw an exception if the requested data is not available.

CHART R3B3 Detailed Design 5-121 12/23/2008

5.4.1.1.27 DMSTravInfoMsgHandler (Class)

This class implements DMSTravInfoMsgDataSupplier interface. Class will provide data

for travel routes used in a DMSTravInfoMsg. It will be used to substitute the template tags

with route-specific data, in order to format the template and produce MULTI. This is

needed in the GUI for true display, and is needed in the server for formatting messages to

send to a DMS. The routeNum parameter corresponds to route numbers contained in the

template data tags, and it is a 1-based index. These methods will throw an exception if the

requested data is not available.

5.4.1.1.28 DMSTravInfoMsgTemplateModel (Class)

This class contains functionality for formatting and modelling DMS message templates.

During initialization a model of pages, rows, and elements (including the template tags) is

constructed. MULTI fragments (the MULTI outside of the template tags) are stored so that

they can be carried to the formatted MULTI. The tags can also be queried from the model,

which can be used to figure out what data will be required for each route by the template.

5.4.1.1.29 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

5.4.1.1.30 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

5.4.1.1.31 ExternalDMSFactoryImpl (Class)

This class implements the ExternalDMSFactory interface. It provides the interface to create,

remove and list ExternalDMS objects in CHART mirroring the data from external agencies.

5.4.1.1.32 ExternalDMSImpl (Class)

This class implements the ExternalDMS interface. It provides the interface to ExternalDMS

objects in CHART.

5.4.1.1.33 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed

interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of

potentially a whole suite of subclasses specific to a specific brand and model of sign for

manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest

method, which knows how to invoke and interpret a pixel test as supported by the FP9500

model DMS.

CHART R3B3 Detailed Design 5-122 12/23/2008

5.4.1.1.34 FP9500DMSImpl (Class)

The FP9500DMSImpl class provides a specific implementation to implement the

FP9500DMS interface, providing any specific functionality unique to this brand and model

of sign. This class is exemplary of a whole suite of implementation classes which may be

created, on a case-by-case basis, to support specific capabilities of speciifc brands and

models of signs.

5.4.1.1.35 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to

the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus

subclasses specific to a specific brand and model of sign.

5.4.1.1.36 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.4.1.1.37 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

5.4.1.1.38 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

property list is searched if the property key is not found in the original property list.

5.4.1.1.39 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.4.1.1.40 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.4.1.1.41 PollDMSTask (Class)

The PollDMSTask class is responsible for polling all the DMS devices. This class

implements the java.util.TimerTask interface, and as such it contains one method, run(),

CHART R3B3 Detailed Design 5-123 12/23/2008

which is invoked by Java timer object on a regularly scheduled basis. This class contains a

reference to the Chart2DMSFactoryImpl, which is called upon to request each DMS to poll

itself (its poll interval has expired) each time this task is called.

5.4.1.1.42 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device.

The actual implementation of the operations is done by the derived classes depending on

what protocol is used for communication.

5.4.1.1.43 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.4.1.1.44 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.4.1.1.45 RecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the

life of the process. During normal operations, this task's sole purpose is to write a

timestamp to a file each time it is called. This timestamp file serves to provide, to an

approximation as accurate as its frequency of invocation, when the DMSService last went

down, an essential piece of information for recovery during DMSService startup. When the

DMSService has recently started up, this Task, in addition to maintaining an up-to-date

timestamp in the timestamp file, also calls a method in the Factory (checkDMSRecovery)

which requests all DMS objects to check and see if their recovery period has expired. (The

recovery period is defined to be their poll interval times a system-wide multiplier (expected

to be 2), or, if the DMS has no poll interval, a system-wide constant (on the order of 10-15

minutes.) Each DMS, therefore terminates its recovery period independently of the others.

CHART R3B3 Detailed Design 5-124 12/23/2008

(When all DMSes have terminated their recovery period, checkDMSRecovery is no longer

called.)

When each DMS checks its own recovery time, if it finds that it has just now exceeded the

recovery period, it calls its MessageQueue to take one last try at resolving traffic events on

its queue, then the DMS makes final a determination as to what message (or blank) belongs

on the sign, and it requests the DMS to set the sign appropriately.

5.4.1.1.46 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.4.1.1.47 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.4.1.1.48 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which

contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign

during normal operations (online mode). It is created by the Chart2DMSImpl during

successful processing of its setMessageFromQueue and evaluateQueue methods. When the

CommandQueue invokes the execute method of this class, it merely calls the

setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with

the data stored within this class.

5.4.1.1.49 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

5.4.1.1.50 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

CHART R3B3 Detailed Design 5-125 12/23/2008

5.4.1.1.51 TravelRouteConsumer (Class)

This interface allows other CHART objects to register as a direct consumer of travel route

statistical data. It provides operations for the travel route to call when the travel time or toll

rate for the route is updated. A DMS registers as a TravelRouteConsumer when a

TravelerInfoMsg is enabled.

5.4.1.1.52 TravInfoMsgSchedWatcherTask (Class)

5.4.1.1.53 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.4.1.2 DMSControlClassDiagram-ExternalDMS (Class Diagram)

This class diagram shows the relationship between classes that implement the ExternalDMS

functionality.

ExternalDMS

«interface»

See DMSControlClassdiagram
for details

1

*

ExternalDMSFactoryImpl

1

Chart2DMSImpl

ExternalDMSImpl

DMSControlModule

1

DMS

«interface»

DMSImpl
During implementation,
more methods may move
here from CHART2DMsImpl.
All these variables are
'moved' from CHART2DMSImpl.

1

Char t2DMS

«interface»

DMSControlModuleProper ties

1

ExternalDMSFactory

«interface»

createExternalDMStoken(token:AccessToken,
 externalDMSconfiguration:ExternalDMSConfiguration)raises(AccessDenied,CHART2Exception)

ExternalDMSFactoryImpl(extDMSFactoryId,
 svcApp,dmsControlDB, dmsPushEvtSupplier,
 dmsControlModuleProperties):ctor
createExternalDMS(token,
 externalDMSConfiguration):ExternalDMS
getDMSList():ExternalDMS[]
removeDMS(token, externalDMSImpl):void
addExternalDMSTypesToTrader():void
shutdown():void

m_extDMSVect:Vector<ExternalDMS>
m_serviceApp:ServiceApplication
m_properties:DMSControlModuleProperties
m_name:String
m_systemToken:AccessToken

initialize(svcApp:ServiceApplication):boolean
shutdown(svcApp:ServiceApplication):void
createEventChannel(name:string):
 PushEventSupplier
createChart2DMSFactory(timeDown):boolean
createExternalDMSFactory(): boolean
addDMSFactoryTypesToTrader():void
addExternalDMSFactoryTypesToTrader():void
registerValueTypeFactories():void

DMS_FACTORY_ID_FILENAME: string
EXT_DMS_FACTORY_ID_FILENAME:string

getID():byte[]
getLocationDesc():string
getLocationProfiles():LocationProfile[]
getName():string
setLocation(token:byte[], location:ObjectLocation):void
verifyDMSAccess(token, rightID,descPrefix, descSuffix,
 cmdStat, updateCmdStateFlag):void
validateCfg(dmsConfig, token):void
pushDMSStatus(desc,warnTxt):void
pushDMSConfig(desc,warnTxt):void
persistDMSStatus(desc,warnTxt):void
opLog(token,msg, action,devicename):void
logStackProd(method,txt,exception):void
log(flags,method,txt):void
initDMSStatus():void

m_idObj: Identifer
m_lockConfig:Object[]
m_lockStatus :Object[]
m_lockName:Object[]
m_logFlags:boolean[]
m_dmsPushEventSupplier:PushEventSupplier
m_systemToken:byte[]
m_svcApp:ServiceApplication

updateStatus(token : AccessToken,
 status : DMSStatus) : void
setExternalConfiguration(token : AccessToken,
 extdmsConfig:ExternalDMSConfiguration):void
getExternalConfiguration(token:AccessToken):
 ExternalDMSConfiguration

ExternalDMSImpl(externalDMSConfig, extDMSFactory,
 pushEventSupplier, serviceApp, dmsControlDB) :ctor
getExternalConfiguration(token : AccessToken):ExternalDMSConfiguration
setExternalConfiguration(token:AccessToken,
 extDMSConfig:ExternalDMSConfiguration):void
updateStatus(token : AccessToken, status : DMSStatus) : void
remove(token:AccessToken):void
getStatus(token:AccessToken):DMSStatus
validateCfg(extdmsConfig, token):void
persistDMSConfig(desc,warnTxt):void
initializeNewDMS(): void

m_extDMSConfiguration:ExternalDMSConfiguration
m_extFactoryImpl:ExternalFactoryImpl
m_dmsStatus:DMSStatus

Figure 5-97 DMSControlClassDiagram-ExternalDMS (Class Diagram)

5.4.1.2.1 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

CHART R3B3 Detailed Design 5-126 12/23/2008

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

5.4.1.2.2 Chart2DMSImpl (Class)

The Chart2DMSImpl class provides an implementation of the Chart2DMS interface, and by

extension the DMS, SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable,

ArbitrationQueue and UniquelyIdentifiable interfaces, as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations (field communications to the device) in a thread separate from the

CORBA request threads, thus allowing quick initial responses. The Chart2DMSImpl also

contains a MessageQueue, which is used by the ArbitrationQueue interface methods to

handle requests from TrafficEvents to display or remove messages from the signs in online

mode. When the Chart2DMSImpl evaluates its messages in the MessageQueue, it

combines the highest priority messages into a single message which is placed into an

appropriate QueueableCommand object (subclass of QueueableCommand) and added to the

CommandQueue.

Also contained in this class are Chart2DMSConfiguration and Chart2DMSStatus objects

(used to store the configuration and status of the sign), and a Chart2DMSData object (used

to store internal status information which is persisted but not pushed out to clients), a list of

ArbQueueEntry objects from the MessageQueue that are currently active on the sign, and a

copy of the last QueueableCommand to put a message on the sign.

The Chart2DMSImpl contains *Impl methods that map to methods specified in the IDL,

including requests to put a message on the sign or remove a message (in maintenance mode

only), put the sign online, put the sign offline, put the sign in maintenance mode, or to

change (set) the configuration of the sign. All of these requests require (or potentially

require) field communications to the device, so each request is stored in a specific subclass

of QueueableCommand and added to the CommandQueue. The queueable command

objects simply call the appropriate Chart2DMSImpl method as the command is executed by

the CommandQueue in its thread of execution.

The Chart2DMSImpl also contains methods called by the Chart2DMSFactory to support

the timer tasks of the DMS Service: to poll the DMS devices, to look for DMS devices with

communications timeout exceeded, to look for maintenance mode DMS devices with no

one logged in at the controlling operations center, and to initiate recovery processing if

needed.

5.4.1.2.3 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

CHART R3B3 Detailed Design 5-127 12/23/2008

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

5.4.1.2.4 DMSControlModule (Class)

The DMSControlModule class is the service module for the DMS devices and a DMS

factory. It implements the ServiceApplicationModule interface. It creates and serves a

single DMSFactoryImpl object, which in turn serves zero or more Chart2DMSImpl objects.

It also creates DMSControlDB, DictionaryWrapper, DMSControlModuleProperties, and

PushEventSupplier and NotificationChannel objects.

5.4.1.2.5 DMSControlModuleProperties (Class)

The DMSControlModuleProperties class is used to provide access to properties used by the

DMS Control Module. This class wraps properties that are passed to it upon construction.

It adds its own defaults and provides methods to extract properties specific to the DMS

Control Module.

5.4.1.2.6 DMSImpl (Class)

This class implements the DMS interface. It provides methods to configure, control DMS

objects in CHART

5.4.1.2.7 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

5.4.1.2.8 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

5.4.1.2.9 ExternalDMSFactoryImpl (Class)

This class implements the ExternalDMSFactory interface. It provides the interface to create,

remove and list ExternalDMS objects in CHART mirroring the data from external agencies.

5.4.1.2.10 ExternalDMSImpl (Class)

This class implements the ExternalDMS interface. It provides the interface to ExternalDMS

objects in CHART

CHART R3B3 Detailed Design 5-128 12/23/2008

5.4.1.3 QueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for DMS

Control. A class exists for each type of command that can be executed asynchronously on a

DMS object.

NEW FOR R3B3.

EnableTravInfoMsgCmd

PutDMSInMaintModeCmd

SetDMSConfigCm d

QueueableCommand

«interface»

BlankDMSFromQueueCmd

PutDMSOnlineCmdSetDMSMessageCmd
BlankDMSCmd

UpdateTravInfoMsgCmd

TakeDMSOfflineCmd

SetDMSMessageFromQueueCmd

ResetDMSCmdPollDMSNowCmd

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
DMSMessage m_DMSMsg
boolean m_beacon

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
DMSMessage m_DMSMsg
boolean m_beacon
long reqID
ArbQueueEntry[] m_ArbQueueEntries

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
boolean m_maintMode

execute()
interrupted()

execute()
interrupted()

m_infoMsgHandler: TravInfoMsgHandler

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupt()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
long reqID

execute()
interrupted()

m_infoMsgHandler: TravInfoMsgHandler

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token
Chart2DMSConfiguration m_config

execute()
interrupted()

CommandStatus m_status
Chart2DMS m_dms
AccessToken m_token

Figure 5-98 QueueableCommandClassDiagram (Class Diagram)

5.4.1.3.1 BlankDMSCmd (Class)

The BlankDMSCmd class is a QueueableCommand subclass which contains data necessary

to send a request to a Chart2DMSImpl to blank the sign in maintenance mode. It is created

by the Chart2DMSImpl during successful processing of its blankSign and

deactivateHARNotice methods. When the CommandQueue invokes the execute method of

this class, it merely calls the blankSignImpl method of the appropriate Chart2DMSImpl

object with the data stored within this class.

5.4.1.3.2 BlankDMSFromQueueCmd (Class)

The BlankDMSFromQueueCmd class is a QueueableCommand subclass which contains

data necessary to send a request to a Chart2DMSImpl to blank the sign during normal

operations (online mode). It is created by the Chart2DMSImpl during successful

CHART R3B3 Detailed Design 5-129 12/23/2008

processing of its evaluateQueue method. When the CommandQueue invokes the execute

method of this class, it merely calls the blankSignFromQueueImpl method of the

appropriate Chart2DMSImpl object with the data stored within this class.

5.4.1.3.3 EnableTravInfoMsgCmd (Class)

The EnableTravInfoMsgCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to activate Travel Info Message a message

on the sign. It is created by the DMSTravInfoHandler during setTravInfoMsgEnabledFlag

call.

5.4.1.3.4 PollDMSNowCmd (Class)

The PollDMSNowCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to poll its device. It is created by the

Chart2DMSImpl during successful processing of its pollNow method in maintenance mode

(triggered by a user request) or during processing of the pollIfNecessary method (triggered

by the automatic polling of the PollDMSTask object). When the CommandQueue invokes

the execute method of this class, it merely calls the pollNowImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

5.4.1.3.5 PutDMSInMaintModeCmd (Class)

The PutDMSInMaintModeCmd class is a QueueableCommand subclass which contains

data necessary to send a request to a Chart2DMSImpl to put the sign in maintenance mode

(from either offline or online mode). It is created by the Chart2DMSImpl during successful

processing of its putInMaintMode method. When the CommandQueue invokes the execute

method of this class, it merely calls the putInMaintModeImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

5.4.1.3.6 PutDMSOnlineCmd (Class)

The PutDMSOnlineCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to put the sign online (from either offline

or maintenance mode). It is created by the Chart2DMSImpl during successful processing

of its putDMSOnline method. When the CommandQueue invokes the execute method of

this class, it merely calls the putDMSOnlineImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

5.4.1.3.7 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

CHART R3B3 Detailed Design 5-130 12/23/2008

5.4.1.3.8 ResetDMSCmd (Class)

The ResetDMSCmd class is a QueueableCommand subclass which contains data necessary

to send a request to a Chart2DMSImpl to put reset the sign (in maintenance mode only). It

is created by the Chart2DMSImpl during successful processing of its resetController

method. When the CommandQueue invokes the execute method of this class, it merely

calls the resetControllerImpl method of the appropriate Chart2DMSImpl object with the

data stored within this class.

5.4.1.3.9 SetDMSConfigCmd (Class)

The SetDMSConfigCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to update its configuration (in

maintenance mode only). It is created by the Chart2DMSImpl during successful processing

of its setConfiguration method. When the CommandQueue invokes the execute method of

this class, it merely calls the setConfigurationImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

5.4.1.3.10 SetDMSMessageCmd (Class)

The SetDMSMessageCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to put a message on the sign in

maintenance mode. It is created by the Chart2DMSImpl during successful processing of its

setMessage and activateHARNotice methods. When the CommandQueue invokes the

execute method of this class, it merely calls the setMessageImpl method of the appropriate

Chart2DMSImpl object with the data stored within this class.

5.4.1.3.11 SetDMSMessageFromQueueCmd (Class)

The SetDMSMessageFromQueueCmd class is a QueueableCommand subclass which

contains data necessary to send a request to a Chart2DMSImpl to put a message on the sign

during normal operations (online mode). It is created by the Chart2DMSImpl during

successful processing of its setMessageFromQueue and evaluateQueue methods. When the

CommandQueue invokes the execute method of this class, it merely calls the

setDMSMessageFromQueueImpl method of the appropriate Chart2DMSImpl object with

the data stored within this class.

5.4.1.3.12 TakeDMSOfflineCmd (Class)

The TakeDMSOfflineCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to put the sign offline (from either online

or maintenance mode). It is created by the Chart2DMSImpl during successful processing

of its takeOffline method. When the CommandQueue invokes the execute method of this

class, it merely calls the takeOfflineImpl method of the appropriate Chart2DMSImpl object

with the data stored within this class.

CHART R3B3 Detailed Design 5-131 12/23/2008

5.4.1.3.13 UpdateTravInfoMsgCmd (Class)

TheUpdateTravInfoMsgCmd class is a QueueableCommand subclass which contains data

necessary to send a request to a Chart2DMSImpl to activate Travel Info Message a message
on the sign. It is created by the DMSTravInfoHandler during checkMessage call.

CHART R3B3 Detailed Design 5-132 12/23/2008

5.4.2 Sequence diagrams

5.4.2.1 CHART2DMSImpl:validate (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to request validate

DMSTravInfoMsgHandler. This method return true if ArbQueueEntryKey passed in exist

in one of the DMSTravInfoMsgHandlerobjects owned by this Chart2DMSImpl.

return false

return true

Chart2DMSImpl

[* each travInfoHandler in
DMSTravInfoHandlerListt]

if(ArbQueueEntryKey == travInfoHandler.m_arbQueueEntryKey)

vaildate(ArbQueueEntryKey)

Figure 5-99 CHART2DMSImpl:validate (Sequence Diagram)

CHART R3B3 Detailed Design 5-133 12/23/2008

5.4.2.2 Chart2DMSFactoryImpl:checkTravInfoMsgSchedule (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl checks

TravInfoMsgSchedule.Timer calls run() on TravInfoMsgSchedWatcherTask with call

checkTracInfoMsgSchedEnabled on each DMS.

checkTravInfoMsgShedule()

checkTravInfoMsgShedule()

checkMessage()

[bool enabled =
computeTravInfoMsgSchedEnabled()]

setScheduleEnabledFlag(enabled)

[* for each
DMS] [* for each

DMSTravInfoMsgHandler]

[m_scheduleEnabled is changed]

If the new incoming enabled
value is different from original
m_scheduleEnabled value,
call checkMessage

java.util.Timer

Chart2DMSFactoryImpl

CHART2DMSImpl DMSTravInfoMsgHandler

computeTravInfoScheduleEnabled()
check its schedule(it may be using global schedule
or it may have iys own) and return correct boolean

see computeTravInfoMsgSchedule
diagram

see checkMessage
diagram

Figure 5-100 Chart2DMSFactoryImpl:checkTravInfoMsgSchedule (Sequence Diagram)

CHART R3B3 Detailed Design 5-134 12/23/2008

5.4.2.3 Chart2DMSImpl:RouteUpdate (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to request update

routes status data.The requesting operator must have Chart2System right.This diagram

include calls to RouteTravelTimeStatsUpdated, RouteTollRateStatsUpddated,

RoteUpdateCompleted amd RouteConfigUpdated methods on Chart2DMSImpl.

updateRouteStatus()

updateRouteStatus()

CheckMessage()

checkMessage()

TravelRoute
CHART2DMSImpl TokenManipulator OperationsLog

RouteTravelTimeUpdate()

RouteTollRateStatsUpdate()

RouteUpdateCompleted()

RouteDisplayConfigUpdate()

checkAccess()

[no rights]
log]

checkAccess()

[no rights]
log]

checkAccess()

[no rights]
log]

checkAccess()

[no rights]
log]

[no rights]
AccessDenied

[no rights]
AccessDenied

[no rights]
AccessDenied

[no rights]
AccessDenied

handleTollRateStatsUpdate()

handleRouteUpdateComplited(0

handleDisplayConfigUpdate()

DMSTravInfoHandler

handleTravelTimeStatusUpdate()
[* for each

DMSTravInfoHandler]

Figure 5-101 Chart2DMSImpl:RouteUpdate (Sequence Diagram)

CHART R3B3 Detailed Design 5-135 12/23/2008

5.4.2.4 Chart2DMSImpl:addDMSTravInfoMsg (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to add

TravInfoMsg to DMS TravInfoMsg config. Requesting operator must have proper

functional rights.

operator
Chart2DMS TokenManipulator OperationsLog

Not diagrammed. Include tests for:
template matches sign size.

IdentifierGenerator

DMSControlDB

pushNeeded = false

DMSTravInfoHandler

PushEventSupplier

pushNeeded = truepushNeeded = true

throw
CHART2Exception

throw
CHART2Exception

[pushNeeded][pushNeeded]

[dmsTravInfoMsgId][dmsTravInfoMsgId]

setTravInfoMsgConfig(TravInfoMsgConfig)setTravInfoMsgConfig(TravInfoMsgConfig)

addDMSTravInfoMsg
(token, dsmTravInfoMsg)

addDMSTravInfoMsg
(token, dsmTravInfoMsg)

checkAccessRights()checkAccessRights()

[no rights]
AccessDenied

[no rights]
AccessDenied

throw
CHART2Exception

throw
CHART2Exception

createIdentifier()createIdentifier()

[no rights]
log

[no rights]
log

validateTravInfoMsg(dmsTravInfoMsg)validateTravInfoMsg(dmsTravInfoMsg)

push(DMSTravInfoMsgConfigChanged)push(DMSTravInfoMsgConfigChanged)

createcreate

addToList(dmsTravInfoMsg)addToList(dmsTravInfoMsg)

RollBack if db operation failedRollBack if db operation failed

Figure 5-102 Chart2DMSImpl:addDMSTravInfoMsg (Sequence Diagram)

CHART R3B3 Detailed Design 5-136 12/23/2008

5.4.2.5 Chart2DMSImpl:computeTravInfoMsgSchedEnabled (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl checks the DMS's schedule(it may

be using global schedule or it have its ouwn), compare to current time of the day, and return

the correct boolean.

checkTravInfoMsgSchedule()
CHART2DMSImpl

m_overrideDefaultSchedule == true
Custom Schedule
m_useCustomSchedule == false
Default Schedule

m_enabledSpecificTimes == true
Enable during specific time
m_enabledSpecificTimes == false
Enabled 24/7

Custom Schedule

Default Schedule

Compare current time to
m_customSchedule: HHMMRange[]
from properties file
if(current time in range)
return true, otherwise false

Enable during specific time

Compare current time to
m_customSchedule: HHMMRange[]
if(current time in range)
return true, otherwise false

Enabled 24/7

computeTravInfoMsgSchedEnabled(enabled)

[m_overrideDefaultSchedule = true]

[m_enabledSpecificTimes = true]

else

else

[true]

else
[false]

[needToRun(globalSchedule [])]

[false]
else

[needToRun(customSchedule[])]
[true]

[true]

Figure 5-103 Chart2DMSImpl:computeTravInfoMsgSchedEnabled (Sequence Diagram)

CHART R3B3 Detailed Design 5-137 12/23/2008

5.4.2.6 Chart2DMSImpl:modifyDMSTravInfoMsg (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to modify

TravInfoMsg in DMS TravInfoMsg config. Requesting operator must have proper

functional rights.

[pushNeeded]

save travInfoMsg to memory

pushNeeded = true

RollBack if db operation failed

pudh(DMSTravInfoMsgConfigChanged)

PushEventSupplier

travInfoMsg = getTravInfoMsg(dmsTravInfoMsg)
find dmsTravInfoMsg
in travInfoMsgList by travInfoMsgId

else

operator

Chart2DMSImpl TokenManipulator OperationsLog DMSControlDB

modifyDMSTravInfoMsg
(token, dsmTravInfoMsg)

checkAccessRights()
[no rights]

log

setTravInfoMsgConfig(m_msgConfig)

[no rights]
AccessDenied

validateTravInfoMsg(dsmTravInfoMsg)

pushNeeded = false

[throw
CHART2Exception]

modify dmsTravInfoMsg

[travInfoMsg is null][throw
CHART2Exception]

Figure 5-104 Chart2DMSImpl:modifyDMSTravInfoMsg (Sequence Diagram)

CHART R3B3 Detailed Design 5-138 12/23/2008

5.4.2.7 Chart2DMSImpl:removeDMSTravInfoMsg (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to remove

TravInfoMsg from DMS TravInfoMsg config. Requesting operator must have proper

functional rights.

pushNeeded = false

[userEnabled AND schedEnabled]

throw
InvalidState

RollBack if db operation failed

pushNeeded = true

[pushNeeded]

[throw
CHART2Exception]

PushEventSupplier

dmsTravInfoHandler = getDmsTravInfoMsgHandler(Identifier)

operator

Chart2DMSImpl TokenManipulator OperationsLog DMSControlDB

DMSTravInfoHandler

removeDMSTravInfoMsg
{token, Identifier) checkAccessRights()

[no rights]
log

[no rights]
AccessDenied

setUserEnabled(false)

setTravInfoMsgConfig(TravInfoMsgConfig)

push (DMSTravInfoMsgRemoved)

Figure 5-105 Chart2DMSImpl:removeDMSTravInfoMsg (Sequence Diagram)

CHART R3B3 Detailed Design 5-139 12/23/2008

5.4.2.8 Chart2DMSImpl:routeDeleted (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl object responds to request route

deleted. This method will set the roteId in any TravelerInfoMsg to NULL identifier and

also in any relatedRoutes in TravelerInfoMsgConfig.

[pushNeeded]

checkMessage()

remove(routeId from vector)
[pushNeeded = true]

PushEventSupplier

TravelRouteModule

[*for each route in
routeList]

[routeList[i] = createNullIdentifier]

push(DMSTravInfoMsgConfigChanged

IdentifierGenerator DMSTravInfoHandler

updateTravInfoMsg(travInfoMsg[i])

[relatedRoutes[i] = createNullIdentifier]

[routeID = routeList[i]]

[pushNeeded = true]

Chart2DMSImpl

routeDeleted(routeID)

[*for each
TravInfoMsg]

[* for each
relatedRoutesVector]

[routeID = relatedRoutesVector[i]

[m_travInfoMsgConfig is active]

[relatedRoutes = relatedRoutesVector.toArray()

[relatedRoutesVector = new vector(relatedRoutes)] java.util.Vector

Figure 5-106 Chart2DMSImpl:routeDeleted (Sequence Diagram)

CHART R3B3 Detailed Design 5-140 12/23/2008

5.4.2.9 Chart2DMSImpl:setQueueLevels (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to change the

set QueuLevels on configuration of a DMS.

pushNeeded = false

save travelT imeQueueLevel and
tollRateQueueLevel to memory

pushNeeded = true

[if pushNeeded]

push (DMSTravInfoMsgConfigChanged)

PushEventSupplier

RollBack if db operation failed

change m_travInfoMsgConfig:
m_travelT imeQueuLevel = travelT imeQueuLevel
m_tollRateQueueLevel = tollRateQueuLeve

setTravInfoMsgConfig(TravInfoMsgConfig)

checkAccessRights()
[no rights]

log
[no rights]

AccessDenied

operator

Chart2DMSImpl TokenManipulator OperationsLog

DMSControlDB

setQueueLevels
(token,

travelTimeQueueLevel
tollRateQueueLevel)

[throe
CHART2Exception]

Figure 5-107 Chart2DMSImpl:setQueueLevels (Sequence Diagram)

CHART R3B3 Detailed Design 5-141 12/23/2008

5.4.2.10 Chart2DMSImpl:setRelatedRoutes (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to set

RelatedRoutes in DMS TravInfoMsg config.Requesting operator must have proper

functional rights.

[throw
CHART2Exceprion]

validateIdentifierList()

[*for each
routeLis t]

[routeLis t[i] = IdentifuerLis t[i]]

throw
CHART2Exception

PushEventSupplier

save IdentifierLis t to memory

pushNeeded = false

pushNeeded = true

[if pushNeeded]

push (DMSTravInfoMsgConfigChanged)

RollBack if db operation failed

operator

Chart2DMSImpl TokenManipulator OperationsLog DMSControlDB

setRelatedPoutes
(token, IdentifuerLis t)

[no rights]
log [no rights]

AccessDenied

checkAccessRights()

setTravInfoMsgConfig(m_msgConfig)

[throw
CHART2Exception]

set m_relatedRoutes = IdentifierLis t

Figure 5-108 Chart2DMSImpl:setRelatedRoutes (Sequence Diagram)

CHART R3B3 Detailed Design 5-142 12/23/2008

5.4.2.11 Chart2DMSImpl:setTravInfoMsgEnabledFlag (Sequence Diagram)

This Sequence Diagram shows how a DMSTravInfoMsgHandler responds to request set

TravelInfoMsg enabled flag. The requesting operator must have proper functional rights.

This method calls setUserEnabled on all DMSTravInfoMsgHandler objects, if

DMSTravInfoMsgHandler was enabled DMSTravInfoMsgHandler call each its routes

removeConsumer method. Then its construct an EnableTravInfoMsgCmd and queue on

DMSImpl own CommandQueue

ORB

if (flag = true AND
travInfoMsgId =
m_status.enabledTravInfoMsgID)
OR
(flag = false AND
travInfoMsgId !=
m_status.enabledTravInfoMsgID)
then status is already the way
the user requested, so just do
nothing and return.

CHART2DMSImpl TokenManipulator

DMSTravInfoHandler

DMSTravInfoHandler
for
m_status.enabledTravInfoMsgID

if m_useOvewriteDefaultSchedule = true
and m_scheduleEnabled = true

DMSTravInfoHandler

DMSTravInfoHandler
for travInfoMsgId

EnabledTravInfoCmd

OperationsLog

see Execute
diagram

CommandQueue

see Execute
diagram

CommandQueue
executes commands
asynchronously

EnabledTravInfoCmd

PushEventSupplier

CommandQueue

push(DMSTravInfoMsgChanged)push(DMSTravInfoMsgChanged)

addCommand(EnabledTravInfoCmd)addCommand(EnabledTravInfoCmd)

setTravInfoMsgEnabledFlag(
travInfoMsgId, flag)

setTravInfoMsgEnabledFlag(
travInfoMsgId, flag)

[no rights]
log

[no rights]
log

setUserEnabled(true)setUserEnabled(true)

log(token, "<user> (enabled or disabled) <named Trav Info Msg> on DMS <name>")log(token, "<user> (enabled or disabled) <named Trav Info Msg> on DMS <name>")

addCommand(EnabledTravInfoCmd)addCommand(EnabledTravInfoCmd)

getDmsTravInfoMsg(travInfoMsgId)getDmsTravInfoMsg(travInfoMsgId)

validate()validate()

elseelse

create()create()

[no rights]
AccessDenied

[no rights]
AccessDenied

[DMSTravInfoHandler
 = enabled]

[DMSTravInfoHandler
 = enabled]

checkAccess()checkAccess()

[acive handler][acive handler]

update(travInfoMsgStats)update(travInfoMsgStats)

returnreturn

setUserEnabled(false)setUserEnabled(false)

create()create()

deletedelete

Figure 5-109 Chart2DMSImpl:setTravInfoMsgEnabledFlag (Sequence Diagram)

CHART R3B3 Detailed Design 5-143 12/23/2008

5.4.2.12 Chart2DMSImpl:setTravelTimeSchedule (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to change the

set TrvelTimeSchedule on configuration of a DMS.

 should validate (for each range):
 0 <= hrs < 24, 0 <= mins < 59,
 startTime < stopTime

[range not valid]
throw

CHART2Exception

pushNeeded = false

pushNeeded = true

[if pushNeeded]

save value to memory

PushEventSupplier

push (DMSTravInfoMsgConfigChanged)

throw
CHART2Exception RollBack if db operation failed

validateRanges(ranges[])

operator

Chart2DMSImpl TokenManipulator OperationsLog

DMSControlDB

change m_travInfoMsgConfig:
m_overrideDefaultSchedule = overrideDefaultSchedule
m_useSpecificTime = useSpecificTime
m_customSchedule = range

checkAccessRights()

[no rights]
log [no rights]

AccessDenied

setTravelTimeSchedule
(overrideDefaultSchedule,

useSpecificTime,
ranges[])

setTravInfoMsgConfig(travInfoMsgConfig)

Figure 5-110 Chart2DMSImpl:setTravelTimeSchedule (Sequence Diagram)

CHART R3B3 Detailed Design 5-144 12/23/2008

5.4.2.13 DMSControlModule:FmsGetConnectedPort (Sequence Diagram)

This sequence diagram shows how a DMSImpl object gets a connected port. This method

is called from several other methods in the DMS service. A modem port is obtained from

the ModemPortLocator object. On failure, a call is made to the helper method

handleOpStatus to deal with the case where the operational status has changed. The

command status is either updated or completed during the call to the ModemPortLocator

object based on a flag passed into this method.

ConnectedPortInfo

[failure]
handleOpStatus(result,null)

[failure]

[failure]

fmsGetConnectedPort(priority,desc,
cmdStat,complete)

Updates and pushes new
DMSStatus if necessary

PortLocator completes or updates
CommandStatus on failure as requested.
See DeviceUtil ity/PortLocator:getConnectedPort
and PortLocator:getConnectedPort2
sequence diagrams for details.
[This PortLocator could either be FMSPortLocator
or TCPPortLocator]

DMSImpl

DMSImpl PortLocatorCommandStatus

getConnectedPort(cmdStat, complete)

Figure 5-111 DMSControlModule:FmsGetConnectedPort (Sequence Diagram)

CHART R3B3 Detailed Design 5-145 12/23/2008

5.4.2.14 DMSControlModule:FmsReleasePort (Sequence Diagram)

This helper method releases an FMS port which is no longer needed. It disconnects the port

first, then calls the PortLocator to release it. Errors are logged, but not reported, as the port

will be released or reclaimed in any case, and errors relating to releasing a port would mask

an otherwise successful status or more a useful error status.

R3B3: DataPortWrapper is new. All calls to the Port
will go thro' the dataportwrapper. All other fmsXXX
methods should do the same.

This is either the
fms CORBA object or
the DeviceUtility::TCPPort
object. TheDataPortWrapper
calls the appropriate object.

getDataPortWrapper()

PortFMSConnectedPortInfo

[if notify =true] "releasing port"

disconnect()

PortLocatorDataPortWrapperChart2DMSImpl
Chart2DMSImpl

If any errors occur,
log it, but continue
processing.

releaseConnectedPort(port)

disconnect

fmsReleasePort(connPortInfo,
desc,cmdStat,notify)

CommandStatus

Figure 5-112 DMSControlModule:FmsReleasePort (Sequence Diagram)

CHART R3B3 Detailed Design 5-146 12/23/2008

5.4.2.15 DMSControlModule:HandleOpStatus (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl handles the task of detecting and

responding to changes in its operational status (whether it is in "OK", "COMM_FAILURE"

or "HARDWARE_FAILURE" status). A DMS is normally "OK", but falls into

"COMM_FAILURE" when FMS reports that it cannot communicate with the device, and

into "HARDWARE_FAILURE" when the FMS can communicate with the device but the

device or FMS is detecting some sort of hardware problem with the device itself. At this

point, HARDWARE_FAILURE and COMM_FAILURE are treated virtually identically.

This method is called, with the status reported back from FMS, after every attempt to

communicate with the device, and processing falls into one of three cases, depending on the

status reported (although the two failure cases are nearly identical).

If the device now being reported OK and it was already OK, there is no change in status,

and all that is necessary is to update the m_lastContactTime of the device. (This variable is

used to determine when to poll [see runPollDMSTask] and when to declare that a

"Communications Timeout" has occurred [see runCheckCommLossTask].) If the status has

just become OK, this fact is logged, and the new DMSStatus is persisted and pushed out

into the event channel. The DMS is polled to determine its current status. If the device is

online, and m_needsReevaluation is true, this means an earlier attempt to set the device to

the correct condition (new message, default message) has failed since the device went

COMM_FAILED, so evaluateQueue is called to ensure that the correct message is put on

the DMS.

If the device is now being reported with a failure and the device was already in that failure

condition, there is no change in status, and nothing is done. If the status is just now

changing, this is logged, the DMSStatus is persisted and pushed out into the event channel,

and a device failure alert is created. Note that if the device has gone into

COMM_FAILURE, and it remains in this condition for the timeout period, the

CheckCommLossTask's run method will detect and handle it (see

runCheckCommLossTask). Until the timeout period expires, it is assumed that the message

is still on the sign, so no further action is taken now. If the device has gone into

HARDWARE_FAILURE, FMS is still in contact with it, and changes in status (e.g., loss of

a message) can be detected by other means, for instance, by polling (see runPollDMSTask)

A DeviceFailure Alert is only created when the DMS transitions into

HARDWARE_FAILURE. Any future transitions into another state have no effect on the

alert.

When a comm failure is detected, a DeviceFailureAlert is created. Also Notifications are

sent when HARDWARE_FAILURE or COMM_FAILURE happens.

CHART R3B3 Detailed Design 5-147 12/23/2008

createDeviceFailureAlert(token,deviceId,"DMS <name> commfailed.", owningCenter)

New for R3B1.

AlertFactoryWrapper

createDeviceFailureAlert(token, deviceId, "DMS <name> is in hardware failure.", owningCenter)

update("DMS just reported HW failure")

[m_status.m_opStatus == OK]

m_lastContactTime = now

log("DMS has just gone into HW failure")

log("DMS has just lost comms")

log("DMS now operational")

push(CurrentDMSStatus)

handleOpStatus(opStatus, cmdStatus)

CommandQueue
m_status:

DMSStatus

If opStatus == OK

Chart2DMSImpl
Chart2DMSImpl

DMSControlDB

cmdStatus:
CommandStatus

Bad status has been handled previously.
No need to do anything more.

If opStatus == COMM_FAILURE

Poll device ASAP to make sure we have its complete status and config.
If the message doesn't match, poll will catch it and inform Arb Queue.
(For instance, if we have blanked due to commLossTimeout, but the sign
still displays a message, that will be caught and corrected by the poll.)

OperationsLog

Normal case,
opStatus OK and unchanged

PushEventSupplier

NOTE: if we remain in HW_FAILURE for
the commLossTimeout period, the
CheckCommLossTask will detect it and
handle that situation.

Bad status has been handled previously.
No need to do anything more.

If opStatus == HW_FAILURE

NOTE: if we remain in COMM_FAILURE
for the commLossTimeout period, the
CheckCommLossTask will detect it and
handle that situation.

setOpStatus(HW_FAILURE)

[m_status.m_opStatus == HW_FAILURE]

setStatusChangeTime(now)

setOpStatus(COMM_FAILURE)

addCommandOnTop(PollDMSNowCmd)

updateStatus(m_id, m_status)

update("DMS just CommFailed")

setStatusChangeTime(now)

updateStatus(m_id, m_status)

[m_needsEvaluation and online]
evaluateQueue(false)

sendNotification()

NotificationManager

sendNotification()

 NOTIF_TYPE_STAND_ALONE

push(CurrentDMSStatus)

[m_status.m_opStatus == COMM_FAILURE]

push(CurrentDMSStatus)

updateStatus(m_id, m_status)

update("DMS now OK")

setOpStatus(OK)

setStatusChangeTime(now)

Figure 5-113 DMSControlModule:HandleOpStatus (Sequence Diagram)

CHART R3B3 Detailed Design 5-148 12/23/2008

5.4.2.16 DMSControlModule:Initialize (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is started. This module is

created by a service application that will host this module's objects. A ServiceApplication

is passed to this module's initialize method and provides access to basic objects needed by

this module. This module creates a DMSFactory, which creates the known DMS objects

which have been persisted into the database. Two PushEventSupplier objects, one for

status, configuration, and existence changes and one for abandoned DMSs (active DMSs

with no one logged in at the controlling operations center), are created. In addition,

NotificationChannel and DMSControlDB objects are created.

The DMSFactory and DMS objects are published via the CORBA Trading Service to make

them available for general status updates and as candidates for control (given the proper

access rights). In addition, this service also performs regularly recurring maintenance

functions controlled by timer tasks started by this initialize method.

the DMSControlModule also creates the ExternalDMSFactory and ExternalDMS objects

that import DMS data from external agencies.

CHART R3B3 Detailed Design 5-149 12/23/2008

Timer tasks apply
 to CHART2DMS only.

ExternalDMSFactory is
created only when
EnableExternalDMS property
is set to true.

* for each extDMS

Schedule checkTravInfoMsg
Timer task

R3B3:
ExternalDMSFactory
and ExternalDMS are
new.

activate_object(ExternalDMSFactory)

registerObject(extDMS)

create

initialize()

DMSControlModule ServiceApplication

PushEventSupplier

Time DMSSerivce last went down. (Technically, it is
the last time the Service was known to be running.)

timeDown passed to factory
during construction.

Two -- one for DMSs for status/config/existence changes,
one for the Module for abandoned DMSs (active DMSs with
no one logged in at the controlling Op Ctr) (resourceMgtEventChannel).

NotificationChannel

DMSControlDB

RecoveryTimerTask

This is really a subclass of Chart2DMSImpl (such as FP9500DMSImpl).
The DMSControlDB knows what subclass to create based on data
stored in the database when the DMS was initially created and
persisted. (At the DMS creation time, the DMSControlDB knows what
specific type of Impl to create based on the dmsModelID and subclass of
Chart2DMSConfiguration passed in (such as FP9500DMSConfiguration).)

POA

TIMER TASK: Writes current time to a file so that upon
startup task can determine the time DMSService went down.
Additionally, for a period of time upon startup, queries DMS
objects to have them check if their own recovery period has
expired. (After all DMS recovery periods have expired,
this responsibility of the task ends.)
This object is needed now, to get timeDown, but will not be
scheduled until after all DMSes are created. See below.

DMSControlModuleProperties

java.util.timer

getDBConnectionManager

create

create

activate_object (DMSFactory)

DictionaryWrapper

PollDMSTask

getOperationsLog

getEventChannelFactory

schedule

create

getProperties

registerObject(DMS)

getEventChannel

registerObject
(DMSFactory)

activate_object
(DMS)

schedule

registerObject(ExternalDMSFactory)

getTimeDown

create

activate_object(extDMS)

getDefaultProperties

getPOA

[*for
each
DMS
object]

ExternalDMSImpl

DMSFactoryImpl

ExternalDMSFactoryImpl

Chart2DMSImpl

Schedule RecoveryTimerTask,
which was instantiated at
top of constructor.

CheckCommLossTask

TIMER TASK: To periodically
check for comm loss timeout
and blank the sign.

TIMER TASK: To periodically have each DMS
check to see if it is time to poll (poll interval
expired) andpoll if necessary.

TIMER TASK: To periodically
check for active DMSs with
 no one logged
in at the controlling Op Ctr.

See DMSControlModule:RestoreDMS
for details.

CheckForAbandonedDMSTask

getDMSList

create

create

create

[2]

ServiceApplication

create

registerEventChannel
(EventChannel)

schedule

create

create

create

schedule

getExternalDMSList()

[externalDMSFactoryenabled=true]

schedule

for each
DMS in DB

* for each
extDMS

Figure 5-114 DMSControlModule:Initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-150 12/23/2008

5.4.2.17 DMSControlModule:RestoreDMS (Sequence Diagram)

This Sequence Diagram shows how a DMSImpl is initialized (whether being depersisted or

created from scratch). DMSProtocolHdlr, ModemPortLocator, CommandQueue, and

MessageQueue objects are created. If the DMS is being depersisted, after the

MessageQueue is depersisted, the MessageQueue method validateEntries() is called to

attempt to contact the TrafficEvent IDs on the list to validate their existence. If not in

recovery mode, this is the only chance the TrafficEvents get. If still within the recovery

mode, another attempt to contact the traffic events will be made when the recovery period is

over. This diagram also shows a summary of what happens when an entry is added to or

reprioritized in the message queue during recovery mode, and what happens when the

recovery mode period expires.

CHART R3B3 Detailed Design 5-151 12/23/2008

getTravInfoMsgConfig()

DMSProtocolHdlr

When the RecoveryTimerTask calls a DMS which discovers that its recovery period has just expired, the following occurs. (Summary provided here, see DMSControlModule:RunRecoveryTimerTask also.)

DMSImpl

DMSFactoryImpl

[recoveryMode true && validateEntries rtnd false]
purgeUnresolvedEntries

[recoveryMode == true]
validateEntries

create

[invalid request]
exception

[depers is ting]
depers is t

[depers is ting &
recoveryMode false & validateEntries rtnd false]

purgeUnresolvedEntries

purgeUnresolvedEntries

create

run

create

[being depers is ted]
getTimeDown

validateEntries

addEntry or changePriority

DMSImpl

ModemPortLocator

CommandQueue

DMSControlDB creates DMSImpl objects v ia depers is tence and also as
new DMS objects are created by operators. In the latter case (dis tinguishable
via parameter lis t) recovery timer processing is not relevant.

If validateEntries() returns true, all entries were resolved.
There is no unresolved stuff to recover, so we no longer
need to be in recoveryMode now.

DMSControlDB

recoveryMode
initialized to
false

If we are depers is ting, but we are not supposed to be in recovery mode and we called validateEntries
only to be nice, we purge any entries we could not recover right now.

Returns true if all entries have now been validated (positively or negatively).
Returns false if one or more entries still have unknown status (could not be contacted).

If addEntry or changePriority request is valid, and we are in recovery
mode, at this point our hand is forced, we better give all traffic events
one last chance to validate themselves and then we purge any
traffic events we still haven't heard from.

Even if we are beyond the recovery time, to be nice
we still give the ArbQueueEntries this one chance to
be validated. Any that fail here right now are purged.

[being depersisted & timeDown within recovery period]
recoveryMode = true

create(ID, depersisting flag)

create

addEntry or changePriority

[depers is ting]
validateEntries

[validateEntries rtnd true]
recoveryMode = false

MessageQueue

If a Traffic Event is added or reprioritized while the DMS is in recoveryMode, the following occurs. (Summary prov ided here, see DMSControlModule:AddEntry and ChangePriority for full details).

TrafficEvent

set recoveryMode false

set recoveryMode false

[online]
evaluateQueue(true)

[online]
evaluateQueue(false)

Figure 5-115 DMSControlModule:RestoreDMS (Sequence Diagram)

CHART R3B3 Detailed Design 5-152 12/23/2008

5.4.2.18 DMSControlModule:SetConfiguration (Sequence Diagram)

This Sequence Diagram shows how a Chart2DMSImpl responds to a request to change the

configuration of a DMS. The DMS must be in maintenance mode, the requesting operator

must have proper functional rights, and if there is a (maintenance mode) message on the

sign from another operations center, the user must have override authority. This method

creates a SetDMSConfigCmd (a QueueableCommand) and adds it to the DMS's

CommandQueue. The CommandQueue is required since some configuration changes

require field communications to the sign, and field communications are relatively slow and

can queue up. Requests to communicate with the sign are processed on a first-come, first-

served basis. When the CommandQueue is ready, it executes the SetDMSConfigCmd,

which calls the setConfigurationImpl method, also shown on this diagram. When the

setConfigurationImpl method runs, it checks that the DMS is still in maintenance mode (a

previously queued command could have changed it), and that there is no resource conflict

(a previously queued command could have written a message from an operator at another

operations center). Assuming no problems, the Chart2DMSConfiguration is locked down,

and all parameters which need to change are changed. If any of these parameter changes

require communications to the sign (e.g., setting the Comm Loss Timeout in an FP9500), a

new PortLocator is created using the new parameters. Then, FMS is requested to make the

specified change(s). The method handleOpStatus handles and responds to any changes to

the operational status of the sign (OK, comms failure, or hardware failure) reported by FMS

during this operation. The new configuration is persisted and pushed into the event

channel. The requesting user is kept abreast of progress of the request all the while, via a

CommandStatus object viewable by the user.

CHART R3B3 Detailed Design 5-153 12/23/2008

R3B3: If necessary,
create the appropriate
PortLocator by checking the
passed in config.

DMSProtocolHndlr

setConfiguration
(token, config, cmdStatus)

log(token, "DMS <name>, "configuration changed")

update("command queued")

Updates CommandStatus
(completed() call)
if necessary.

addCommand(SetDMSConfigCmd)

R3B3:set everything in config except
device location and m_dmsTravInfoMsgConfig.

[resource conflict]
ResourceControlConflict

end synchronize

delete

fmsReleasePort

checkResourceConflict
(token, cmdStatus)

If any changes
require comms to
sign,e.g., for
FP9500, derived class
implementation will
do more, such as this.

DMSControlDB OperationsLogPushEventSupplier

m_dmsConfig:
Chart2DMSConfiguration

CommandStatus

Chart2DMSImpl

Operator

If any changes
actually occured...

Happens if user from
another op ctr has msg
on DMS in maint mode.

CommandQueue executes
command asynchronously.

CommandQueue

DMSEvent

Writes to CommandStatus
if necessary.

SetDMSConfigCmd

PortLocator

PortLocator

completed("success or failure")

push (DMSConfigChanged)

setConfiguration

"set data as requested"

[failure]
[failure]

fmsGetConnectedPort

[not in maint mode]
push(currentStatus)

[no rights]
log

[comm parameter changed]
create

[comm parameter changed]
delete

[not in maint mode]

[change to commLossTimeout requested]
setCommLossTimeout

[not in maint mode]
completed("wrong mode")

synchronized

[no chng]
[no change to existing config]

[no change to existing config]
completed("nothing changes")

update("setting config")

[not in maint mode]
CHART2Exception

[not in maint mode]
completed("wrong mode")

create

[resource conflict]
ResourceControlConflict

checkResourceConflict
(token, cmdStatus)

create "Any" DMSEvent of type DMSConfigChanged

[no rights]
AccessDenied

create

execute

setConfigurationImpl

handleOpStatus
(result, cmdStatus)

[no rights]
completed("no rights")

Figure 5-116 DMSControlModule:SetConfiguration (Sequence Diagram)

CHART R3B3 Detailed Design 5-154 12/23/2008

5.4.2.19 DMSControlModule:Shutdown (Sequence Diagram)

This Sequence Diagram shows how the DMSControlModule is terminated. The

DMSControlModule is shut down by the ServiceApplication that started it. When told to

shut down, the DMSControlModule disconnects the DMSFactory from the ORB,

withdraws its offer from the trader, and shuts down the object. When the DMSFactory is

shut down, it withdraws the offers of each DMS, disconnects each DMS from the ORB, and

shuts down each Chart2DMSImpl. Chart2DMSImpl shutdown processing includes

destroying the MessageQueue and shutting down the CommandQueue. No information

needs to be persisted to the database during shutdown, as information is written to the

database as it is updated. When the ExternalDMSFactory is shutdown, it deactivates and

deletes the ExternalDMS objects from memory.

ExternalDMSFactoryImpl ExternalDMSImpl

deactivate_object(ExternalDMSFactory)

[*for each extDMS]

delete

Chart2DMSImplDMSFactoryImplDMSControlModule

ServiceApplication

POAjava.util.Timer CommandQueueMessageQueue

cancel

[*for
each
DMS]

delete

shutdown
destroyshutdown

deactivate_object(DMS)

delete

shutdown

shutdown

deactivate_object (DMSFactory)

deactivate_object(ExternalDMS)

delete

delete

shutdown

R3B3:Shutdown
ExternalDMSFactory

Figure 5-117 DMSControlModule:Shutdown (Sequence Diagram)

CHART R3B3 Detailed Design 5-155 12/23/2008

5.4.2.20 DMSImpl:setLocation (Sequence Diagram)

DMSImpl

DMSEvent
create "Any" DMSEvent of type DMSConfigChanged

push(" DMS Config Changed")

log("DMS <name >", "config changed")

[DB Error]
CHART2Exception

setLocation (deviceLocation)

set location

[no righs]
AccessDenied

setLocation(token,
deviceLocation)

verifyAccess()

DMSControlDB PushEventSupplier
OperationsLog

Operator m_config

validateLocation()

Figure 5-118 DMSImpl:setLocation (Sequence Diagram)

CHART R3B3 Detailed Design 5-156 12/23/2008

5.4.2.21 DMSTravInfoMsgHandler:checkMessage (Sequence Diagram)

This Sequence Diagram shows how a DMSTravInfoMsgHandler responds to request

checkMessage. DMSTravInfoMsgHandler call checkMessage on itself. checkMessage

queues a UpdateTravInfoMsgCmd on dms queue.

DMSTravInfoHandler
DMSTravInfoMsgHandler

CommandQueue
executes commands
asynchronously

UpdateTravInfoMsgCmd CommandQueue

OperationsLog

Chart2DMSImpl

DMSTravInfoTemplateFormatter

Add to m_tollRateQueueLevel
if any toll rate tags present,
otherwise add to
m_travelTimeQueueLevel.

Same here, but in this case the
addEntry() is treated as an
update. If a message for the
given entry key already exists
on the queue, addEntry updates
the entry in place (preserving
where the entry has been
manually moved to, etc.).

addCommand(UpdateTravInfoMsgCmd)addCommand(UpdateTravInfoMsgCmd)

addEntry(token, level, arbQueueEntry)addEntry(token, level, arbQueueEntry)

checkMessageImpl()checkMessageImpl()

checkMessage()checkMessage()

[m_userEnabled &&
(m_scheduleEnabled || has toll rate tag(s))]

[m_userEnabled &&
(m_scheduleEnabled || has toll rate tag(s))]

removeEntries(token, m_arbQueueEntryKey)removeEntries(token, m_arbQueueEntryKey)

[DMSMessage not null][DMSMessage not null]

else()else()

[m_arbQueueEntryKey is null][m_arbQueueEntryKey is null]

deletedelete

executeexecute

addEntry(token, level, arbQueueEntry)addEntry(token, level, arbQueueEntry)

createcreate

[m_arbQueueEntryKey is not null][m_arbQueueEntryKey is not null]

[string DMSMessage = formatMulti(travMsgTemplateConfig, this, false, true)][string DMSMessage = formatMulti(travMsgTemplateConfig, this, false, true)]

[m_arbQueueEntryKey is null][m_arbQueueEntryKey is null]

elseelse

[msg removed automatically due to missing data]
log("message removed due to missing data")

[msg removed automatically due to missing data]
log("message removed due to missing data")

Figure 5-119 DMSTravInfoMsgHandler:checkMessage (Sequence Diagram)

CHART R3B3 Detailed Design 5-157 12/23/2008

5.4.2.22 DMSTravlInfoMsgDataSupplier:getData (Sequence Diagram)

This Sequence Diagram shows how a DMSTravInfoMsgDAtaSupplier object responds to

data requests for a DMS Traveler Information Message.

DMSTravInfoMsgTemplateModel

7 separate methods
 diagrammed here

DMStravInfoMsgHandler

All those methods
return data from
m_routeStats object

Return range based on
m_routeStats[routeIndex].tvlTimeStats.routeTvlTimeSecs,
together with range definition settings from sysytem profile

Utility.
TravelTimeRange

tvlTimeStats.routeTravTimeStateCode != SS_DATA_OK &&
tvlTimeStats.TvlTimeEffTimeSecs > <expiration time>

 m_routeDispConfig[routeIndex].milliMiles)/100

Loop finds maximum
effective time over all
routes associated with
the Traveler Info Msg.

getRouteDestinationNames(routeIndex)getRouteDestinationNames(routeIndex)

getRouteTravelTimeMinutes(routeIndex)getRouteTravelTimeMinutes(routeIndex)

getRouteTravelTimeRangeMinutes(routeIndex)getRouteTravelTimeRangeMinutes(routeIndex)

getRouteLengthTenths(routeIndex)getRouteLengthTenths(routeIndex)

getRouteTollRateCents(routeIndex)getRouteTollRateCents(routeIndex)

getTollRateTimeSecs(routeIndex)getTollRateTimeSecs(routeIndex)

m_routeDispConfig[routeIndex].destTextm_routeDispConfig[routeIndex].destText

elseelse

 m_routeDispConfig[routeIndex].milliMiles) over 100 m_routeDispConfig[routeIndex].milliMiles) over 100

 DATA_EXPIRED DATA_EXPIRED

[TollRateEffTimeSecs older than now][TollRateEffTimeSecs older than now]

 DATA_EXPIRED DATA_EXPIRED

 range] range]

 tollRateStats.routeTollRateCents tollRateStats.routeTollRateCents
elseelse

[TollRateEffTimeSecs older than now][TollRateEffTimeSecs older than now]

 tollRateStats.routeTollRateCents tollRateStats.routeTollRateCents

[stats ok and not expired][stats ok and not expired]

elseelse

DATA_EXPIRED]DATA_EXPIRED]

routeTvlTimeSecsrouteTvlTimeSecs

[stats ok and not expired][stats ok and not expired]

elseelse

DATA_EXPIRED DATA_EXPIRED

getTollRateTimeEffSecs(routeIndex)getTollRateTimeEffSecs(routeIndex)

[TollRateTimeEffSecs[i] > effTime[TollRateTimeEffSecs[i] > effTime

[*for each
route in msg]

[*for each
route in msg]

[effTime = 0]
DATA_EXPIRED

[effTime = 0]
DATA_EXPIRED

effTime=0effTime=0

effTime=TollRateEffTimeSecs[i]effTime=TollRateEffTimeSecs[i]

effTimeeffTime

Figure 5-120 DMSTravlInfoMsgDataSupplier:getData (Sequence Diagram)

CHART R3B3 Detailed Design 5-158 12/23/2008

5.4.2.23 EnabledTravInfoMsgCmd:execute (Sequence Diagram)

 This Sequence Diagram shows how the EnableTravInfoMsgCmd object executes its task

when directed to run by the Java timer object.The run method of EnableTravInfoMsgCmd

calls setUserEnabled(true) on DMSTravInfoMsgHandler which calls addConsumer() on

each of its routes.

setUserEnabled = flag

removeConsumer()

[flag = true]

checkMessage()

CommandQueue

DMSTravInfoMsgHandler

setUserEnabled(flag)

EnabledTravInfoMsgCmd

addConsumer()

execute()

[* * for each
route]

Figure 5-121 EnabledTravInfoMsgCmd:execute (Sequence Diagram)

CHART R3B3 Detailed Design 5-159 12/23/2008

5.4.2.24 ExternalDMSImpl:GetExternalConfiguration (Sequence Diagram)

This diagram shows the implementation of the GetExternalConfiguratio interface that

returns the configuration of external dms.

[config]
DMSConfiguration

[no rights]
AccessDenied

[no rights]
log(token, "unauth. access attempt")

checkAccess(token)

getExternalConfiguration(
token)

config=m_extconfig

ExternalDMSConfiguration

synchronized(
 m_lockConfig)

ORB

ExternalDMSImpl TokenManipulator

This object is always kept up to date
throughout the life of the ExternalDMSImpl.
All that needs to be done is to return the
existing, current ExternalDMSConfiguration
object.cast and return DMSConfiguration.

OperationsLog SystemToken
 is allowed.

The getConfiguration method of DMSInterface will be implemented by
ExternalDMSImpl to thrown an "unsupported" CHART2 Exception.

Figure 5-122 ExternalDMSImpl:GetExternalConfiguration (Sequence Diagram)

CHART R3B3 Detailed Design 5-160 12/23/2008

5.4.2.25 ExternalDMS:GetStatus (Sequence Diagram)

This diagram shows the sequence of getting the status of External DMS from CHART.

ExternalDMSStatusImpl

synchronized
(m_lockStatus)

ORB

ExternalDMSImpl

This object is alw ays kept up to date
throughout the life of theExternalDMSImpl.
All that needs to be done is to return the
existing, current ExternalDMSStatus object.

ExternalDMSStatus

getStatus

Figure 5-123 ExternalDMS:GetStatus (Sequence Diagram)

CHART R3B3 Detailed Design 5-161 12/23/2008

5.4.2.26 ExternalDMS:RemoveDMS (Sequence Diagram)

This diagram shows the removal sequence of External DMS in CHART.

Systemtoken and
CONFIGURE_DMS
 tokens only .

ORB

ExternalDMSImpl TokenManipulator ExternalDMSFactoryImplCosTrading.Register POA DMSControlDB PushEventSupplier OperationsLog

[no rights]
AccessDenied

[no rights]
log(token, "unauth. attempt to remove DMS <name>")

checkAccess

removeDMS(this)

[not found]
Chart2Exception

remove(token)

push (DMSDeleted)

log(token, "DMS <name> removed")

withdraw
[not found]

Chart2Exception

deactivate_object

deleteDMS (DMS ID)

Figure 5-124 ExternalDMS:RemoveDMS (Sequence Diagram)

CHART R3B3 Detailed Design 5-162 12/23/2008

5.4.2.27 ExternalDMS:SetExternalConfiguration (Sequence Diagram)

This diagram shows the sequence of setting the configuration of External DMS.

The SetConfiguration method of the
 DMS Interface will be implemented
 in ExternalDMSImpl to thrown
 "unsupported" CHART2Exception.

log(token,"success")

[invalid config]
CHART2Exception

validateCfg(config)

m_externalDMSConfig

m_externalDMSConfig=config

ORB

ExternalDMSImpl TokenManipulator OperationsLog

Only System Token
is allowed.

[no rights]
log(token, "unauth. access attempt")

setExternalConfiguration(
token,config)

synchronized(
 m_lockConfig)

[no rights]
AccessDenied

checkAccess(token)

[DB Exception]
CHART2Exception

Set individual members of m_extDMSConfig,
if it needs to be set,

updateExternalDMSConfig(dmsID, extDMSConfig)

DMSControlDB

Persist and Push only if
something changed in the
configuration.

pushDMSConfig()

Figure 5-125 ExternalDMS:SetExternalConfiguration (Sequence Diagram)

CHART R3B3 Detailed Design 5-163 12/23/2008

5.4.2.28 ExternalDMS:updateStatus (Sequence Diagram)

This diagram shows the sequence of updating the status of External DMS when an update is

recived from the external agency.

[DBError]
CHART2Exception

updateStatus(dmsID,m_externalDmsStatus)

push("DMSStatus changed")

PushEventSupplier

ORB

ExternalDMSImpl TokenManipulator
m_externalDMSStatus

Only System Token
is allowed.

m_externalDMSstatus=extDMSStatus

updateStatus(token,
extDMSStatus)

synchronized(
 m_lockStatus)

checkAccess(token)

DMSControlDB

[no rights]
AccessDenied

Pers is t and Push only if
 something changed.

Set the members of m_externalDMSstatus
one at a time if it needs to be set here.

Figure 5-126 ExternalDMS:updateStatus (Sequence Diagram)

CHART R3B3 Detailed Design 5-164 12/23/2008

5.4.2.29 chartlite.servlet.dms:setDMSConfigCommSettings (Sequence Diagram)

This diagrams shows the processing that occurs when a DMS is configured for TCP/IP

communications.

Redirect to view DMS properties

Administrator
TSSReqHdlr

update m_portLocData.Im_ipPortLocationData

DeviceUtil ServletUtil

getStringParam(req,"TCPIPAddress")

setDMSConfigCommSettings

[config.m_portLocData.m_portType.equals(PortType.TCPIP]
parseTCPIPParams(req,config.m_portLocData)

getIntParam(req,"TCPIPPort")

Figure 5-127 chartlite.servlet.dms:setDMSConfigCommSettings (Sequence Diagram)

CHART R3B3 Detailed Design 5-165 12/23/2008

5.5 DMS Protocols Pkg

5.5.1 Classes

5.5.2 Sequence Diagrams

5.5.2.1 DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram)

This sequence shows typical processing of a protocol handler to set the message of a DMS.

All protocol handlers have slightly different implementations due to the different protocols

being implemented, however all protocol handlers have a general goal of formatting a byte

array according to the device protocol, sending the byte array to the device, and receiving a

response from the device to determine if the command was successful. Because DMS

messages are specified in the MULTI format, part of the processing required to format a

byte array to command the DMS includes converting the MULTI message into the proper

sequence of bytes the DMS expects. The MultiConverter class helps to parse through the

MULTI tags and pull apart the message into simple pieces that the protocol handler can use

to format the byte array. Once told to parse a multi string, the MultiConverter calls back

into the parse listener (which happens to be the protocol handler in our case) as it

encounters multi tags and message text. After the protocol handler has formatted the byte

array, it sends it to the device using the DataPort interface, which may actually be a modem

or a direct connect port. After sending the command, the protocol handler reads the

response from the device and determines if the command was successful. Failures are

indicated though the use of exceptions which contain a specific reason for the failure.

CHART R3B3 Detailed Design 5-166 12/23/2008

DataPort

send

receive

setMessage

When parse is completed,
protocol handler will finalize
any line / page that was not
explicitly terminated and copy
data into the command packet
to be sent to the device.

Protocol handler will typically
make justification adjustments
to text on current line and place
line's text into the set message
command that will be sent to
the device.

Protocol handler will
typically store the text
in a buffer for the current
row and perform final
adjustments when a
new line is encountered.

Protocol handler
will typically store
the justification until
a new line is encountered,
at which time it may add
blanks to the front of the
text to achieve the desired
justification.

The DMSProtocolHandler implements
the MultiParseListener interface
which is called back from the
MultiConverter parseMulti method.

MultiConverter DataPortWrapper
CHART II

DMS Object

response data

receive

send

parseComplete

newLine

messageText

lineJustification

newLine

messageText

Protocol handler will complete
the command packet, adding
checksum, trailers, etc.

DMSProtocolHandler
Derived Class

parseMulti

lineJustification

Figure 5-128 DMSProtocolsPkg:TypicalSetMessage (Sequence Diagram)

5.5.2.2 FP9500ProtocolHdlr:GetStatus (Sequence Diagram)

This sequence shows the processing involved in getting the status from the FP9500 device.

Since the device updates the pixel status information internally only during a pixel test

operation, the caller must have issued a pixel test command prior to get status operation in

order to receive the most current status from the device. During get status operation, the

Status record is downloaded from the device using the "Parameter Upload" command. Next

the lamp status and pixel status bitmaps are downloaded from the device using the "Display

Upload" command. If any of the above device commands fail due to response timeout or

response format error, a DMSProtocolHandlerException is thrown detailing the failure. On

CHART R3B3 Detailed Design 5-167 12/23/2008

successful completion of all the above command sequences, the device responses are

reformatted and stored in a FP9500DMSDeviceStatus struct and returned to the caller.

R3B3: All protocolhdlr methods should
use dataportwrapper from now. Use
this diagram as a sample.

Chart2 DMS
Object

DataPortWrapperFP9500ProtocolHdlr

Refer to Page 36 of protocol
document for response format

Display Upload command with
Item no. = 3. Refer to Page 31 of
the protocol document.

Refer to Page 33 of protocol
document for response format

Display Upload command with
Item no. = 4. Refer to Page 31 of
the protocol document.

Refer to Page 47 of protocol
document for response format

Parameter upload command
with Block ID = 7 and Item no. =0.
Refer to Page 28 of protocol
document

getStatus

[timedout or bad resp]
DMSProtocolHandlerException

[timedout or bad resp]
DMSProtocolHandlerException

FP9500DMSDeviceStatus

"Fill the FP9500DMSDeviceStatus
struct"

[timedout or bad resp]
DMSProtocolHandlerException

send (Parameter upload command for Status Record)

recv (Pixel status)

send (Display upload command for Pixel status)

recv (Lamp status)

send (Display upload command for Lamp status)

recv (Status Record from the device)

Figure 5-129 FP9500ProtocolHdlr:GetStatus (Sequence Diagram)

5.5.2.3 FP9500ProtocolHdlr:PixelTest (Sequence Diagram)

This sequence shows the processing involved in running a pixel test on the FP9500 device.

The FP9500 message selection command with Pixel test option is sent to the device. The

response from the device is trivial and indicates the successful start of the pixel test on the

sign. The caller may need to allow for a brief interval of time, before any other command is

sent to the device. This is to allow the device to run atleast one iteration of the pixel test

without interruption and compile the results of the test.

CHART R3B3 Detailed Design 5-168 12/23/2008

R3B3: All protocolhdlr methods should
use dataportwrapper from now. Use
this diagram as a sample.

DataPortWrapper DataPortFP9500ProtocolHdlrChart2 DMS
Obj ect

Message Selection command
with Pixel test option. Refer to
Pages 22-23 of FP9500 protocol
document

send (pixel test command)

[timedout or bad resp]
DMSProtocolHandlerException

recv

getStatus

Figure 5-130 FP9500ProtocolHdlr:PixelTest (Sequence Diagram)

CHART R3B3 Detailed Design 5-169 12/23/2008

5.5.2.4 NTCIPProtocolHdlr:SetMessage (Sequence Diagram)

This sequence diagram shows the steps involved in setting a message on a NTCIP DMS

sign.

super.handleOpStatus()

complete("failed")

setMessage(dataPortWrapper, multiMsg,
dmsMsg. beaconState)

BAD_PARAM

DMSProtocolHandlerException

Exception

complete("failed")

update("communicating with sign")

 adjustMultiTagsCaseForSign(multiMsg)

CHART2Exception
complete("failed")

NTCIPDMSImpl

fmsSetMsgViaPort(port, dmsMsg,desc,
cmdStat,complete)

CommandStatus

dmsMsgtoMulti(dmsMsg)

[failed to set line spacing]
CHART2Exception

setDefaultFont(dataPortWrapper, fontNumber)

[failed to set default font]
CHART2Exception

NTCIPProtocolHdlr

DataPortWrapper

Figure 5-131 NTCIPProtocolHdlr:SetMessage (Sequence Diagram)

CHART R3B3 Detailed Design 5-170 12/23/2008

5.5.2.5 TS3001ProtocolHdlr:GetStatus (Sequence Diagram)

This sequence shows the processing involved in getting the status from the TS3001 device.

First a Sign Status Enquiry command of enquiry type 'S1' is sent to the device. The

response to this command contains various sign status information including a brief pixel

status and lamp status information. If the response indicates a pixel error, a Sign Status

Enquiry command of enquiry type 'S3' is sent to the device. The device responds with a

pixel status bitmap. If the 'S1' enquiry response also indicated a lamp error, a Sign Status

Enquiry command of enquiry type 'S4' is sent to the device. The device responds with a

lamp status bitmap. On successful completion of all the above command sequences, the

device responses are reformatted and stored in a TS3001DMSDeviceStatus struct and

returned to the caller.

send()

recv()

send()

recv

send()

recv()

DataPort

Refer to Page 70 of protocol
document for response format

Refer to Page 63 of protocol
document for response format

DataPortWrapperTS3001ProtocolHdlr

Chart2 DMS
Object

Refer to Page 76 of protocol
document for response format

Refer to Page 63 of protocol
document for response format

Refer to Page 75 of protocol
document for response format

Refer to Page 63 of protocol
document for response format

recv (Sign status Type 'S3' response)

[pixel error]
send (Sign Status Enquiry command of type 'S3')

recv (Sign status Type 'S1' response)

send (Sign Status Enquiry command of type 'S1')

getStatus

recv (Sign status Type S4' response)

[lamp error]
send (Sign Status Enquiry command of type 'S4')

[timedout or bad resp]
DMSProtocolHandlerException

[timedout or bad resp]
DMSProtocolHandlerException

TS3001DMSDeviceStatus

"Fill the TS3001DMSDeviceStatus
struct"

[timedout or bad resp]
DMSProtocolHandlerException

Figure 5-132 TS3001ProtocolHdlr:GetStatus (Sequence Diagram)

CHART R3B3 Detailed Design 5-171 12/23/2008

5.6 DMSUtilityPkg

5.6.1 Classes

5.6.1.1 DMSUtility (Class Diagram)

This Class Diagram shows classes related to the DMS that are used by both the GUI and the

DMS service. Most of these classes are implementations of value type classes defined in

the system interfaces (IDL).

CHART R3B3 Detailed Design 5-172 12/23/2008

Chart2DMSConfiguration

«valuetype»

FP9500Configuration

FP9500ConfigurationImpl

Chart2DMSConfigurationImpl

Chart2DMSStatusImpl

DMSRPIDataImpl DMSPlanItemDataImpl

DMSRPIData

DMSPlanItemData

FP9500DMSStatus

«valuetype»

FP9500StatusImpl

DMSMessage

«valuetype»

DMSMessageImpl

DictionaryWrapper

Chart2DMSStatus

«valuetype»

DMSConfiguration

«valuetype»

DMSStatus

«valuetype»

Message

«interface»

Dictionary

«interface» 1*

11

factory createFP9500Status() : FP9500DMSStatus

octet m_currentMsgNum
octet m_currentMsgSource

factory createChart2DMSStatus() : Chart2DMSStatus

m_controllingOpCenter: OpCenterInfo
m_travInfoMsgStat: DMSTravInfoMsgStatus

getNetworkConnectionSite():NetworkConnectionSite
factory createChart2DMSConfiguration() :
 Chart2DMSConfiguration

m_dmsModelID: DMSModelID
m_owningOrgID: Identifier
m_networkConnectionSite: NetworkConnectionSite
m_pollingEnabled: boolean
m_pollIntervalMinutes: long
m_portLocationData: PortLocationData[]
m_ipportData: IPPortLocationData[]
m_commPortConfig: CommPortConfig
m_devicePhoneNumber: string
m_deviceDropAddress: long
m_communityString: string
m_deviceResponseTimeout: long
m_shazamMessage: DMSMessage
m_associatedHAR: HAR
m_associatedHARID: Identifier
m_enableDeviceLog: boolean
m_commFailAlertOpCenter: OpCenterInfo
m_hwFailAlertOpCenter: OpCenterInfo
m_commFailNotifGroup: NotificationGroupInfo
m_hwFailNotifGroup: NotificationGroupInfo
m_dmsTravInfoMsgConfig

getDMS() : Chart2DMS
getMessage() : DMSMessage
setDMS(Chart2DMS) : void
setMessage(DMSMessage) : void
factory create DMSRPIData() :
 DMSRPIData

Chart2DMS m_dms
DMSMessage m_message

getDMSID() : Identifier
setDMS(DMS, Identifier) : void
getMessageID(): Identifier
setMessage (StoredMessage, Identifier) : void
factory createDMSPlanItemData():DMSPlanItemData

DMS m_dms
Identifier m_dmsID
StoredMessage m_storedMsg
Identifier m_storedMsgID

get():DictionaryWrapper
setWrapperSettings(ORB, CosTrading.Lookup):void
setMinimumRediscoveryPeriod(long seconds):void
getBannedWords(AccessToken):WordList
removeBannedWordList(AccessToken,WordList):void
addBannedWordList(AccessToken,WordList):void
checkForBannedWords(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):WordList
getApprovedWords(AccessToken):WordList
addApprovedWordList(AccessToken, WordList):void
removeApprovedWordList(AccessToken, WordList):void
performApprovedWordsCheck(string messageToCheck,
 string delimiters,
 DictionaryWordType wordType):SuggestionList
-DictionaryWrapper():DictionaryWrapper
-getDictionary():Dictionary

-CosTrading.Lookup m_trader
-ORB m_orb
-java.util.Vector m_dictionaries
-java.lang.Object m_lock
long m_lastTraderLookupTimestamp

validateMessageContent():void;
matches(Message): boolean

getBeaconState() : boolean
getMessageText():string
isMessageTextMulti():boolean
factory createDMSMessage(MULTIString multiStringMessage,
 boolean beaconState,
 boolean isMessageTextMulti) : DMSMessage

m_dmsMessageString: string
m_dmsMessageBeacon: boolean
m_isMessageTextMulti: boolean

Figure 5-133 DMSUtility (Class Diagram)

5.6.1.1.1 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to Chart II

processing. Such information includes how to contact the sign under Chart II software

control, the default SHAZAM message for using the sign as a HAR Notifier, and the

owning organization. Such data extends beyond what would be industry-standard

configuration information for a DMS. Parameters to support TCP/IP communications,

notifications and more alerts, and traveler information messages were added for R3B3.

CHART R3B3 Detailed Design 5-173 12/23/2008

5.6.1.1.2 Chart2DMSConfigurationImpl (Class)

The Chart2DMSConfigurationImpl class provides an implementation for the abstract

Chart2DMSConfiguration class. It implements get and set methods to access and modify

values of the configuration of a DMS. The configuration information stored here is

normally fairly static: things like the size of the sign in characters and pixels, its name and

location, and how to contact the sign (as opposed to dynamic information like the current

message on the sign, which is stored in an analogous Status object).

5.6.1.1.3 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to

provide status information specific to CHART processing, such as information on the

controlling operations center for the sign. This data extends beyond what would be

industry-standard status information for a DMS. Status information for traveler information

messages was added in R3B3.

5.6.1.1.4 Chart2DMSStatusImpl (Class)

The Chart2DMSStatusImpl class provides an implementation for the abstract

Chart2DMSStatus class. It implements get and set methods to access and modify values of

the status of a DMS. The status information stored here is relatively dynamic: things like

the current message on the sign, its beacon state, its current operational mode (online,

offline, maintenance mode), and current operational status (OK, COMM_FAILURE, or

HARDWARE_FAILURE) and controlling operations center. (More static information

about the sign, such as its size and location, is stored in an analogous Configuration object.)

5.6.1.1.5 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that

are approved or banned from being used in CHART2 messaging devices such as HARs and

DMSs. It also provides functionality to manage pronunciations.

5.6.1.1.6 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic

location of the dictionary and automatic re-discovery should the dictionary reference return

an error. This class also allows for built-in fault tolerance by automatically failing over to a

"working" dictionary without the user of this class being aware that this being done. In

addition, this class defers the discovery of the Dictionary until its first use, thus eliminating

a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently

known good reference to the system dictionary. If the current reference returns a CORBA

failure in the delegated call, this class automatically switches to another reference. When

there are no good references (as is true the first time the object is used), this class issues a

trader query to (re)discover the published Dictionary objects in the system. During a

method call, the trader will be queried at most one time and under normal circumstances

CHART R3B3 Detailed Design 5-174 12/23/2008

(other than the first use) the trader will not be queried at all.

5.6.1.1.7 DMSConfiguration (Class)

The DMSConfiguration class is an abstract valuetype class which describes the

configuration of a DMS device. This configuration information is normally fairly static:

things like the size of the sign in characters and pixels, its name and location, and how to

contact the sign (as opposed to dynamic information like the current message on the sign,

which is defined in an analogous Status object). The font number and line spacing were

added for R3B3, and the location was changed to a ObjectLocation, which contains more

detailed locations fields.

5.6.1.1.8 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It

consists of two elements: a MULTI-formatted message and beacon state information

(whether the message requires that the beacons be on). The DMSMessage is contained

within a DMSStatus object, used to communicate the current message on a sign, and is

stored within a DMSRPIData object, used to specify the message which should be on a sign

when the response plan item is executed.

5.6.1.1.9 DMSMessageImpl (Class)

The DMSMessageImpl class provides an implementation for the abstract DMSMessage

class. It implements get and set methods to access and modify the MULTI-formatted

message and beacon state values which make up a DMS message.

5.6.1.1.10 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a

DMS. It is derived from PlanItemData.

5.6.1.1.11 DMSPlanItemDataImpl (Class)

The DMSPlanItemDataImpl class provides an implementation for the abstract

DMSPlanItemData class. It implements get and set methods to access and modify values

relative to a stored Plan Item for a DMS, which associates a stored message to a specific

DMS it should be placed on.

5.6.1.1.12 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a

DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the

DMSMessage itself.

5.6.1.1.13 DMSRPIDataImpl (Class)

The DMSRPIDataImpl class provides an implementation for the abstract DMSRPIData

class. It implements get and set methods to access and modify values relative to a

CHART R3B3 Detailed Design 5-175 12/23/2008

Response Plan Item for a DMS.

5.6.1.1.14 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a

DMS. This status information is relatively dynamic: things like the current message on the

sign, its beacon state, its current operational mode (online, offline, maintenance mode), and

current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More

static information about the sign, such as its size and location, is defined in an analogous

Configuration object.)

5.6.1.1.15 FP9500Configuration (Class)

The FP9500Configuration class is an abstract class which extends the

Chart2DMSConfiguration class to provide configuration information specific to an FP9500

model of DMS. It is exemplary of potentially a whole suite of subclasses specific to a

specific brand and model of sign for manufacturer-specific configuration information.

5.6.1.1.16 FP9500ConfigurationImpl (Class)

The FP9500ConfigurationImpl class provides an implementation for the abstract

FP9500Configuration class. It implements get and set methods to access and modify values

specific to the static configuration of an FP9500 DMS. It is exemplary of potentially a

whole suite of subclasses specific to a specific brand and model of sign for manufacturer-

specific configuration information.

5.6.1.1.17 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to

the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus

subclasses specific to a specific brand and model of sign.

5.6.1.1.18 FP9500StatusImpl (Class)

The FP9500StatusImpl class provides an implementation for the abstract FP9500Status

class. It implements get and set methods to access and modify values specific to the

dynamic status configuration of an FP9500 DMS. It is exemplary of potentially a whole

suite of subclasses specific to a specific brand and model of sign for manufacturer-specific

status information.

5.6.1.1.19 Message (Class)

This class represents a message that will be used while activating devices. This class

provides a means to check if the message contains any banned words given a Dictionary

object. Derived classes extend this class to provide device specific message data.

CHART R3B3 Detailed Design 5-176 12/23/2008

5.6.1.2 DMSTravInfoMsgFormattingClasses (Class Diagram)

This diagram contains classes used in formatting the MULTI for a

DMSTravInfoMsgTemplate.

getTags() can accept a tagClass of null to return all
tags for the given route number, and a route number
of < 1 to include all routes.

This interface will be implemented by DMSTravInfoMsgHandler
(see DMSControlClassDiagram) and on the GUI side by WebDMSTravInfoMsg.

These methods would throw exceptions to
indicate conditions such as:
- bad route index
- route not discovered
- route data disabled (travel times / toll rates)
- data unavailable

For travel times, it could also have these conditions:
- data quality too low
- travel time too high

All classes are new for R3B3.

DMSTravInfoMsgDataSupplier

«interface»

0..1

1

The formatMulti() method will not enforce that the
MULTI fits within the template dimensions, as that can
be verified later using the output MULTI, and it may be
desirable to allow the template to exceed the dimensions
(i.e., in the template editor).

The data supplier may be null (for example
if a template is being formatted for True Display
in the GUI using dummy data).

TemplateFormatSuppor ter

1

Fixed length of 0 indicates variable length.

Returns 0 for
getRouteNumber().

NOTE: getMulti() is passed the number of columns allocated,
which is only of real interest to variable-length destination tags.
The other elements (including dest tags with fixed length)
already know their size.

"Columns" are used instead of string length because the MULTI fragments
may contain MULTI tags that do not use any columns, but only the amount
of sign size used is of interest for formatting.

1 1

TemplateTravelTimeTag

TemplateTravelTimeRangeTag TemplateTollRateTag

TemplateTollRateTimeTag

TemplateRouteLengthTag

*

1

*1 *1

DMSTravInfoMsgTemplateConfig

«struct»

TemplatePage TemplateRow

TemplateMultiFragmentTemplateTag

TemplateRowElement

«interface»

TemplateDestinationTag

DMSTravInfoMsgTemplateModel

1

These classes probably
deserve to be in their own subpackage
of DMSUtility, not in DMSUtility itself.

getRouteDestinationNames(routeNum : int) : String[]
getRouteTravelTimeMinutes(routeNum : int) : int
getRouteTravelTimeRangeMinutes(routeNum : int) : int[2]
getRouteTollRateCents(routeNum : int) : int
getRouteLengthTenths(routeNum : int) : int
getTollRateTimeSecs() : long

DMSTravInfoMsgTemplateModel(
 templateConfig : DMSTravInfoMsgTemplateConfig,
 msgDataSupplier : DMSTravInfoMsgDataSupplier,
 useDummyDataIfMissing : boolean)
formatMulti(useAutoRowPositioning:boolean) : String {MULTI}
getMaxRouteNumber() : int
getTags(routeNum : int,
 tagClass : Class<? extends TemplateTag>) :
 ArrayList<TemplateTag>
-formatPageMulti(rows : String[],
 useAutoRowPositioning:boolean) : String {MULTI}
formatMulti(
 templateConfig : DMSTravInfoMsgTemplateConfig,
 msgDataSupplier : DMSTravInfoMsgDataSupplier,
 useDummyDataIfMissing : boolean,
 useAutoRowPositioning:boolean) : static String {MULTI}

m_tempateConfig : DMSTravInfoMsgTemplateConfig
m_useDummyDataIfMissing : boolean
m_msgDataSupplier : DMSTravInfoMsgDataSupplier

TemplatePage(multiWithRouteTags : String, numCols : int,
 supporter : TemplateFormatSupporter)
getRows() : ArrayList<TemplateRow>

templateDescription:string
numRows:int
numColumns:int
numPages:int
templateMessage:string
messageTemplateFormats:MessageTemplateFormats
destTagAlignment:MessageTemplateAlignment
missingDataOption:RouteMissingDataOption

useDummyDataIfMssing() : boolean
getDataSupplier() : DMSTravInfoMsgDataSupplier
getDestTagAlignment() : MessageTemplateAlignment
getFormats() : MessageTemplateFormats

TemplateRow(multiWithRouteTags : String, numCols : int,
 supporter : TemplateFormatSupporter)
formatMulti() : String
getMaxRouteNumber() : int
getTags(routeNum : int,
 tagClass : Class<? extends TemplateTag>) :
 ArrayList<TemplateTag>
-allocateColumns() : HashMap<TemplateRowElement, Integer>

m_numCols : int
m_dataSupplier : DMSTravInfoMsgDataSupplier

TemplateDestinationTag(
 fixedLength : int, routeNum : int,
 supporter : TemplateFormatSupporter)
getRouteDestinationNames() : String[]

m_fixedLength : int

TemplateTravelTimeTag(routeNum : int,
 supporter : TemplateFormatSupporter)

TemplateTag(routeNum : int,
 supporter : TemplateFormatSupporter)
getRouteNumber() : int

m_routeNum : int
#m_supporter : TemplateFormatSupporter

getFixedColumnsUsed() : int
getMulti(colsAllocated : int) : String

TemplateTravelTimeRangeTag(routeNum : int,
 supporter : TemplateFormatSupporter)

TemplateRouteLengthTag(routeNum : int,
 supporter : TemplateFormatSupporter)

TemplateMultiFragment(multi : String)

m_multi : String

TemplateTollRateTag(routeNum : int,
 supporter : TemplateFormatSupporter)

TemplateTollRateTimeTag(
supporter : TemplateFormatSupporter)

Figure 5-134 DMSTravInfoMsgFormattingClasses (Class Diagram)

5.6.1.2.1 DMSTravInfoMsgDataSupplier (Class)

This interface provides data for travel routes used in a DMSTravInfoMsg. It will be used to

substitute the template tags with route-specific data, in order to format the template and

produce MULTI. This is needed in the GUI for true display, and is needed in the server for

formatting messages to send to a DMS. The routeNum parameter corresponds to route

numbers contained in the template data tags, and it is a 1-based index. These methods will

throw an exception if the requested data is not available.

5.6.1.2.2 DMSTravInfoMsgTemplateConfig (Class)

This object contains the configuration data for a message template that represents a

CHART R3B3 Detailed Design 5-177 12/23/2008

DMSTravlInfoMsgTemplate in the CHART DB

5.6.1.2.3 DMSTravInfoMsgTemplateModel (Class)

This class contains functionality for formatting and modelling DMS message templates.

During initialization a model of pages, rows, and elements (including the template tags) is

constructed. MULTI fragments (the MULTI outside of the template tags) are stored so that

they can be carried to the formatted MULTI. The tags can also be queried from the model,

which can be used to figure out what data will be required for each route by the template.

5.6.1.2.4 TemplateDestinationTag (Class)

This class represents a route destination data tag within the template. The destination field

can have a fixed or variable size, and the length will be set to 0 to indicate that the size is

variable (if applicable).

5.6.1.2.5 TemplateFormatSupporter (Class)

This interface provides the tag classes with the data they need to format the route data for

the tag into MULTI.

5.6.1.2.6 TemplateMultiFragment (Class)

This class is the portion of a template row between the data tags (if applicable). The

MULTI is kept intact so that MULTI tags such as line justification can be preserved in the

output MULTI.

5.6.1.2.7 TemplatePage (Class)

This class represents a page of the template that has been parsed into model form. It

contains TemplateRow objects which represent the rows of the page.

5.6.1.2.8 TemplateRouteLengthTag (Class)

This class represents a route length tag within the template.

5.6.1.2.9 TemplateRow (Class)

This class represents a row of the template page that has been parsed into model form. It

contains TemplateElement objects which represent the data tags and non-data tag MULTI

fragments of the row.

5.6.1.2.10 TemplateRowElement (Class)

This interface represents an element (component) of the message template row, which can

either be a data tag or a fragment of the MULTI outside of the tags.

5.6.1.2.11 TemplateTag (Class)

This is an abstract base class for template tags. It contains the route number for the tag,

CHART R3B3 Detailed Design 5-178 12/23/2008

which is a number specified in the template tag and is greater than or equal to one. For a

TemplateTollRateTimeTag however, the route number will be zero to indicate that it is not

tied to a specific route.

5.6.1.2.12 TemplateTollRateTag (Class)

This class represents a route toll rate tag within the template.

5.6.1.2.13 TemplateTollRateTimeTag (Class)

This class represents a toll rate time tag within the template.

5.6.1.2.14 TemplateTravelTimeRangeTag (Class)

This class represents a route travel time range tag within the template.

5.6.1.2.15 TemplateTravelTimeTag (Class)

This class represents a route travel time tag within the template.

CHART R3B3 Detailed Design 5-179 12/23/2008

5.6.2 Sequence diagrams

5.6.2.1 DMSTravInfoMsgTemplateModel:formatMulti (Sequence Diagram)

This diagram shows how the MULTI message is formatted using the

DMSTravInfoMsgTemplateFormatter, which has already been set up at construction time

to model the template's pages and rows. Each TemplatePage object is called to get its

TemplateRow objects. The row is called to format its own MULTI, which includes

formatting any data tags (as shown in the TemplateRow:FormatMulti sequence diagram).

If the returned MULTI is null, an error occurred getting the route data and depending on the

missing data option in the template, if the message is to be ignored, it will return an empty

string; otherwise, if the page is to be ignored, it will skip to the next page and avoid

generating MULTI for the current page. Otherwise, if non-empty MULTI is returned, it is

stored in the array of row MULTI strings. The array may contain null values for unused

rows. Next the formatPageMulti() is called to get the MULTI for the page, applying the

automatic row positioning flag if specified. If it's not the first page, the "new page" tag is

added before the page multi is added. Finally the MULTI is returned.

[MULTI not null and is not empty]
Set MULTI Into Array

System

DMSTravInfoMsg
TemplateFormatter TemplatePage TemplateRow

For details about the formatting of
a row, see the TemplateRow:formatMulti
sequence diagram.

StringBuffer

String[NumRows]

formatMulti(
useAutoRowPositioning)

getRows()

formatMulti()

MULTI

MULTI

[MULTI length > 0 and StringBuffer length > 0]
add("[NP]")

[* for
each
row]

[MULTI length > 0]
add(pageMulti)

[MULTI null and missing data
option is ignore message]

empty string

This generates the MULTI for one page, using
auto row positioning (or not) as specified.
See the formatPageMulti sequence diagram for details.

[* for each page]

MULTI String, or null if any tag
in the row had missing data

create()

create()
ArrayList<TemplateRow>

formatPageMulti(rowMultiStrArr, useAutoRowPositioning)

[MULTI null
and missing data

option
is ignore page]

continue

length()

Figure 5-135 DMSTravInfoMsgTemplateModel:formatMulti (Sequence Diagram)

5.6.2.2 DMSTravInfoMsgTemplateModel:formatPageMulti (Sequence Diagram)

This diagram shows how the row MULTI strings are formatted to obtain the MULTI for a

CHART R3B3 Detailed Design 5-180 12/23/2008

DMS page. If the "useAutoRowPositioning" flag is true, a new ArrayList is created and

any non-null elements of the input row string array are added to the list. A new row string

array is created, and the rows are positioned within the array corresponding to the auto

positioning rules in the requirements. The result of autopositioning is that the input array

has been replaced by a new array, with the rows in their new positions. The elements of the

array are then examined to produce the output MULTI. If the array element is not null, it is

appended to the output MULTI. Regardless of whether the element was null or not, a

newline ("[NL]") tag is appended to the MULTI unless it is the last line on the page (i.e.,

the last element in the array). The MULTI is returned to the caller.

[useAutoRowPositioning == false]

[rowStrArr[i] not null]
append(rowStrArr[i])

create

[i < rowStrArr.length - 1]
append("[NL]")

[* for
i = 0;

i < rowStrArr.length;
i++]

toString()
MULTI

MULTI

DMSTravInfoMsg
TemplateModel

ArrayList

Replaces the
array passed in.

rowStrArr :
String[rowStrArr.length]

StringBuffer

create

[size == 1]
rowStrArr[numRows \ 2] = list.get(0)

size()

[size == 2 and numRows == 2]
Set elements 0 and 1 in array

[size == 2 and numRows > 2]
Set elements 0 and 2 in array

[size == 3 and numRows > 2]
Set elements 0, 1, 2 in array

[row MULTI array element not null]
add(rowMulti)

create

[* for each element
of array]

DMSTravInfoMsg
TemplateModel

formatPageMulti(rowStrArr,
useAutoRowPositioning)

Figure 5-136 DMSTravInfoMsgTemplateModel:formatPageMulti (Sequence Diagram)

5.6.2.3 TemplateRow:formatMulti (Sequence Diagram)

This diagram shows how the MULTI for a row of the template is built. Each row element

is called to get its fixed columns used. This will return a positive number except if it is a

variable length tag (i.e., a destination tag that is not fixed width). If the positive value is

found, it's added to the HashMap for the tag, and it is added to the total for fix columns

CHART R3B3 Detailed Design 5-181 12/23/2008

used. If it's a variable length destination tag, the route destination names are retrieved and

stored in a hash map for later use, and the tag is added to a list. Next, the lengths for the

2nd through Nth variable length destination tag for the row are calculated, using the

shortest version of those destination names, and these lengths are stored into the column

length HashMap. (For now only the first variable length destination tag on the row is

allowed to be variable, for simplicity.) The length is then calculated for the first variable

length destination tag on the row. This starts using the shortest destination name for this

tag and uses the longest one that will fit. (Note that even the shortest of the destination tags

may not fit, either). If there is no data supplier, the available columns are divided roughly

evenly. Finally after the length of the variable length tags are calculated, the elements are

called to get their MULTI. If a tag throws an exception or returns null, a null MULTI value

will be returned to the caller, as the row will be discarded using any of the discard policies

(discard row, page, or message).

ArrayLis t
<TemplateDestinationTag> HashMap

<TemplateDestinationTag;
String[]>

create

create

[colsUsed > 0
or not instanceof

TemplateDestinationTag]
add(tag)

put(tag, destNameArr)

MULTI or exception

cols : Integer or null

Template
DestinationTag

Template
FormatSupporter

DMSTravInfoMsg
DataSupplier

formatMulti()

getFixedColumnsUsed()

fixedColsUsed += colsUsed

[* for each elt]

getRouteDestinationNames()
getDataSupplier()

getRouteDestinationNames(m_routeNum)
String[]

String[]

DMSTravInfoMsg
TemplateModel

TemplateRow
Template

RowElement

[* for each elt]

getMulti(cols .intValue())

Start with the shortest destination
name for the firs t variable-length
dest tag, and increase until the proposed
new tag exceeds the number of
columns in the template.

Sum up the minimum s ize for the 2nd through Nth variable s ized
destination tags on the row. A fancier algorithm could allow these
to compete for space, but for s implic ity we'll only allow the firs t dest tag to be expanded.
It is assumed that these names are already sorted in reverse length order.

get(i)
get(tag)

String[]
[* for
i = 1;

i < tagLis t.s ize();
i++]

variableColsUsed += colsUsed

get(0)
get(tag)

[fixedColsUsed + variableColsUsed +
destNameArr[i - 1].length()] > m_numCols

break

[* for
i = destNameArr.length - 1;

i >= 0;
i--]

String[]

[exception caught]
null

Allow at least one column per variable-length
dest tag, even if it wouldl use too many columns.

[null cols]
null

colsUsed = availableCols \ destTags.size() +
(i==0 ? availableCols % destTags.s ize() : 0)

[m_dataSupplier == null]

availableCols = Math.max(m_numCols - fixedColsUsed, destTags.s ize()]

put(tag, new Integer(colsUsed))

[m_dataSupplier != null]

[* for
i=0;

i < destTags.size();
i++]

[m_dataSupplier == null]

[destTags.s ize() == 0]

put(tag, new Integer(colsUsed))

[null]
null

MULTI

HashMap
<TemplateRowElement;

Integer>

Append To Row Multi

create

put(elt, new Integer(colsUsed))

put(tag, new Integer(colsUsed))

colsUsed = destNameArr[destNameArr.length - 1].length()

get(tag)

colsUsed = destNameArr[i].length()

Figure 5-137 TemplateRow:formatMulti (Sequence Diagram)

CHART R3B3 Detailed Design 5-182 12/23/2008

5.7 DeviceUtilityPkg

5.7.1 Classes

5.7.1.1 PortLocatorClasses (Class Diagram)

This class diagram shows utility classes that can be used to get a free port.

R3B3:new

1

1

R3B3:ConnectedPortInfo
is changed. It contains
DataPortWrapper and the new
only toString method.

1

R3B3: DataPortWrapper is
new. It wraps the CORBA
fms port from commservice
or a TCPPort (local java
object) depending on the device
configuration. All the device
calls should go to the dataportwrapper
that redirects the call to the
correct port.

R3B3: Current PortLocator will
become the FMSPortLocator which
finds the CORBA fms ports served
by commservice. New
PortLocator class is a super class
from which TCPPortLocator is
derived to implement TCPPort
locally.

1

DataPortWrapper

TCPPortLocator

FMSPortLocator

CommFailureData

CommFailureCode

Por tLocator

VoicePortLocator ModemPortLocator

PortLocationData

«typedef»

ConnectedPortInfo

PortManagerListEntry

«typedef»

CommFailureDB

1 1

returns connected port in

1 *

1

*

1

*

1 1

TCPPor t

FMSConnectedPor tInfo

TCPPor tInfo

DataPor tWrapper

0..1

1

Por t

«interface»

0..11

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

String portManagerName
PortType portType
String portName
int failureCode
int modemResponseCode
String logText

PortLocator(CommFailureDB):PortLocator
+abstract getConnectedPort(String opDescription,
 CommandStatus):ConnectedPortInfo
+abstract releaseConnectedPort(ConnectedPortInfo):void

static int CONN_RSLT_OK;
static int CONN_RSLT_FAIL_RETRY;
static int CONN_RSLT_FAIL_NO_RETRY;

SOFTWARE_ERROR
ACQUIRE_PORT_MGR_NOT_AVAILABLE
ACQUIRE_PORT_TYPE_NOT_SERVED
ACQUIRE_NO_PORTS_AVAILABLE
CONNECT_GENERAL_FAILURE
CONNECT_MODEM_NOT_RESPONDING
CONNECT_PORT_OPEN_FAILURE
CONNECT_MODEM_CONNECT_FAILURE

FMSPortLocator(portlocationdata,orb,lookup,commfailureDB):FMSPortLocator
+getConnectedPort(opDescription,commandStatus):ConnectedPortInfo
+releaseConnectedPort(connectedPortInfo):void
-getPort(portManagerName):Port
#abstract connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int

m_portManagerRefList:Vector
m_orb:org.om.CORBA.ORB
m_lookup:org.omg.CosTrading.Lookup

+abstract toString():String

m_portWrapper:DataPortWrapper

+VoicePortLocator(portLocationData, orb, traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

+toString():String

m_portName:String
m_portMgr:PortManager
m_portMgrName:String

PortManagerCommsList m_prtManagerList
PortType m_portType;
int m_portWaitTimeSecs;

DataPortWrapper(connectedPortInfo):DataportWrapper
send(dataBytes:byte[])throws DataPortIOException()
receive(timeoutMillis):byte[] throws DataPortIOException

m_tcpPort:TCPPort
m_fmsPort:Port

String m_portMgrName;
PortManager m_portMgrRef;

+toString():String

m_portNumber:int
m_ipAddress:String

+ModemPortLocator(portLocationData,orb,traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

-m_commPortconfig:CommPortconfig

+TCPPortLocator(ipportLocationData):
 TCPLocator
+getConnectedPort(opDescription, commandStatus):
ConnectedPortInfo
+releaseConnectedPort(connectedPortInfo):void
-connectPort(connPortInfo,opDesc,tryNum,cmdStat,
 complete,errorMsgtoAppend):int

getStatus():PortStatus
disconnect():void

TCPPort(ipAddress, tcpPort):TCPPort
+connect(IPPortLocationData):void throws PortOpenFailure,CHART2Exception
+send(dataBytes:byte[])throws DataPortIOException()
+receive(timeoutMillis):byte[] throws DataPortIOException
+disconnect()throws DisconnectException()CHART2Exception()
+getPortType():PortType
+getPortStatus():PortStatus

m_ipAddress:String
m_tcpPort:int
m_socket:Socket
m_inputStream:InputStream
m_outputStream:OutputStream

Figure 5-138 . PortLocatorClasses (Class Diagram)

5.7.1.1.1 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a

CommFailureData object.

CHART R3B3 Detailed Design 5-183 12/23/2008

5.7.1.1.2 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm

failure log in the database.

5.7.1.1.3 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.

This table is used to log details about any comm failure that occurs in the system.

5.7.1.1.4 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the

PortLocator.

5.7.1.1.5 DataPortWrapper (Class)

This class is a wrapper for FMS port objects and TCPPort objects . All device port

communications will be routed through the DataPortWrapper to the correct object

depending on the device configuration.

5.7.1.1.6 FMSConnectedPortInfo (Class)

This class contains the information about the fms port connected through the FMS

portmanager

5.7.1.1.7 FMSPortLocator (Class)

The FMSPortLocator is a utility class that helps one to utilize the fault tolerance provided

by the deployment of many PortManagers. The FMSPortLocator is initialized by

specifying a preferred PortManager and optionally one or more alternate PortManagers

using a PortLocationData object.

When asked to get a connected port, the PortLocator first attempts to acquire a port from

the preferred PortManager and then calls its abstract connectPort() method (implemented by

derived classes) to attempt to connect to the port. If a failure occurs, the FMSPortLocator

retries the sequence using the next PortManager in the list. The list may contain the same

port manager multiple times to have retries occur on the same port manager prior to moving

to another. In the event that the FMSPortLocator will perform a retry on the same port

manager, it holds the previously acquired port while performing the retry to avoid having

the port manager return the same port during the retry. When a different port is acquired

during a retry on the same port manager, the port is released (prior to connecting the 2nd

port).

5.7.1.1.8 ModemPortLocator (Class)

This class implements the methods to enable tcp/ip port communication of devices.

CHART R3B3 Detailed Design 5-184 12/23/2008

5.7.1.1.9 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces

specify various types of ports. All ports must be able to supply their status when requested.

5.7.1.1.10 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to

communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager)

to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem,

POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to

acquire a port from a port manager.

5.7.1.1.11 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device.

The actual implementation of the operations is done by the derived classes depending on

what protocol is used for communication.

5.7.1.1.12 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for

PortManager objects.

5.7.1.1.13 TCPPort (Class)

This class implements the methods to enable tcp/ip port communication of devices.

5.7.1.1.14 TCPPortInfo (Class)

This structure has the information required to enable tcp/ip port communication of devices

5.7.1.1.15 TCPPortLocator (Class)

TCPPortLocator is a utility class that helps to establish and manage connection to a tcpip

port.

5.7.1.1.16 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method

that can connect a VoicePort that has been acquired by the PortLocator base class. This

derived class logs information in the comm failure database table relating to connection

problems that may occur. Since this is a telephony port which is much simpler to connect

than, say, a ModemPort, there will be considerably fewer types of errors which can occur

CHART R3B3 Detailed Design 5-185 12/23/2008

and thus be detected and reported.

5.7.2 Sequence Diagrams

5.7.2.1 PortLocator:ReleasePort (Sequence Diagram)

When the PortLocator releasePort method is called, the PortLocator uses the port manager

reference that it stored in the getPort method to release the port from the correct

PortManager.

See PortLocator:ReleasePort2
f or the TCPPortLocator sequence

PortManagerListEntry
m_currentPortOwner PortManagerFMSPortLocator

releaseConnectedPort()

releasePort

"get port manager object ref "

DeviceObject

Figure 5-139 PortLocator:ReleasePort (Sequence Diagram)

CHART R3B3 Detailed Design 5-186 12/23/2008

5.7.2.2 PortLocator:ReleasePort2 (Sequence Diagram)

The TCPPortLocator deletes the TCPPort.

TCPPortLocator

TCPPort

Dev iceObject

delete

releaseConnectedPort()

Figure 5-140 PortLocator:ReleasePort2 (Sequence Diagram)

CHART R3B3 Detailed Design 5-187 12/23/2008

5.7.2.3 PortLocator:getConnectedPort (Sequence Diagram)

The getConnectedPort method of the PortLocator utility uses the list of PortManager names

and associated connection information (such as phone number to use) to attempt to acquire

a port and connect it to the remote destination. Retry logic exists to try each PortManager

in succession until a port is successfully connected or an attempt to connect fails and the

type of failure is not likely to benefit from a retry on a different port. The list of port

manager names can contain duplicate entries to cause the port locator to use a different port

on the same port manager. When this is the case, the port locator must hold the previously

acquired port while it attempts to get an additional port from the port manager to ensure the

port manager doesn't return the same port twice.

The connection logic is carried out in the derived class connectPort() method, for this logic

varies depending on the type of port requested. A private getPort() method handles logic to

retrieve a port from a single port manager and process errors. Sequences for these methods

exist in the ModemPortLocator:connectPort() sequence and the PortLocator:getPort()

sequence.

If the connection attempt succeeds, the device object creates a DataPortWrapper object

which points to the DataPort (CORBA object served by the fms) . If the connection attempt

fails, appropriate error record is inserted in the CommFailureDB.

CHART R3B3 Detailed Design 5-188 12/23/2008

create(port,PortManagerName,
portName)

DataPortWrapper

getPort()

update("acquiring port")

SeeDeviceUtilityPkg:releasePort

update(msg)

CommandStatus

R3B3:FMSConnectedPortInfo
and dataportwrapper are new

FMSPortLocatorDevice
Object

See the ModemPortLocator:connectPort
sequence diagram for details .

PortLocationData

These c lasses are one in the same.
The ModemPortLocator is derived from
PortLocator. They are shown separately
to highlight base class processing vs.
derived c lass processing

ModemPortLocator

See PortLocator:getPort
sequence for details

FMSConnectedPortInfo

get next PortManagerCommsData entry

[*while more portmanagers
in PortLocationData

and Port not
connected

and retry eligible]

getConnectedPort

[unable to
successfully acquire

and connect port]
CHART2Exception

[CONN_RSLT_FAIL_NO_RETRY]
CHART2Exception

[failure]
CONN_RSLT_FAIL_RETRY or

CONN_RSLT_FAIL_NO_RETRY

[CONN_RSLT_OK]
ConnectedPortInfo

create

[success]
CONN_RSLT_OK

[port retrieved]
connectPort

[previous port (if any) not released]
releasePort

[More entries in port manager lis t
and next entry is different than this

entry]
releasePort

This diagram applies
if the port type is FMS.
Check getConnectedPort2
for tcpip port.

Figure 5-141 PortLocator:getConnectedPort (Sequence Diagram)

CHART R3B3 Detailed Design 5-189 12/23/2008

5.7.2.4 PortLocator:getConnectedPort2 (Sequence Diagram)

The getConnectedPort method of the PortLocator utility gets the port type and if it is a tcp

port it attempts to acquire a port and connect it to the remote destination. If the connection

attempt succeeds, the device object creates a DataPortWrapper which points to the newly

created and connected port.

complete("failed acquiring port")

CHART2Exception or
port open failure

complete("success")

CommandStatusDevice
Object

TCPPortLocator

TCPPort
This diagram applies
if the port type is TCPIP.

getConnectedPort(
opDescription,

commandStatus,complete)

[unable to
successfully acquire
and connect port]
CHART2Exception

[CONN_RSLT_OK]
ConnectedPortInfo

[CONN_RSLT_OK]
create(tcpPort,

portNumber, ipAddress)

[success]
CONN_RSLT_OK

[port retrieved]
connectPort

update("acquiring port")

TCPConnectedPortInfo

DataPortWrappercreate(tcpPort)

Figure 5-142 PortLocator:getConnectedPort2 (Sequence Diagram)

5.7.2.5 PortLocator:getPort (Sequence Diagram)

When a request is made to the PortLocator to get a port, the PortLocator gets the first entry

from its port manager list (which is the preferred port manager) and asks the port manager

for a port. If the getPort call on the port manager fails, the PortLocator consults its retry

settings and may retry the operation depending on the specific failure condition. If all

retries (if any) of the getPort operation on the port manager are exhausted without success,

CHART R3B3 Detailed Design 5-190 12/23/2008

the PortLocator may failover to the next PortManager in the PortLocator's list, depending

on the specific error condition encountered and the settings for failover in the PortLocator.

Because the PortLocator is initialized with only object identifiers for the preferred and

fallback port managers, a Trader query is made to obtain an object reference the first time a

PortManager is to be accessed.

[lis t entry 's object ref is null]
findObjectByID

get

getPort

[port retrieved]
Port

CHART2
Device Object

We store the lis t entry
for the port manager that
served us the port so we
can go back to the same
port manager to release
the port.

PortManager org.omg.CosTrading.LookupCorbaUtilitiesPortManagerLis tEntry
java.util.Vector

m_portManagerList

[port not retrieved]
CHART2Exception

[*while more port managers
in lis t and port not retrieved]

[port retrieved]
"s tore lis t entry

as current port owner"

[Error AND
Retries enabled for

specific error condition AND
more retries]

[port not retrieved AND
failover not enabled

for specific error
condition]

CHART2Exception

FMSPortLocator

getPort

PortManager

query

Figure 5-143 PortLocator:getPort (Sequence Diagram)

CHART R3B3 Detailed Design 5-191 12/23/2008

5.8 External Interface Module

5.8.1 Classes

5.8.1.1 DMSImportAcquireClasses (Class Diagram)

DMSImportModuleProperties DMSImportModule

EITaskHandler

EIForwarder

«interface»

DMSImportAcquireTask
DMSImportAcquireHandler

1 1

QueableCommand

EIMessageReceived

ExternalSystemConnectionImpl

EIAcquirer

«interface»

DMSImportRITISAcquirer

java.jms.MessageListener

java.util.Timerjava.util.TimerTask

ConnectionTimerTask

Periodically call
DMSImportRITISAcquirer.
connectIfNecessary()

1

1

1 1

1

1

* *creates
and

processes

1

1
1

1

11

ctor(props:Properties)
+getExternalSystemID(): String

-acquirerClassName
-connectionCheckInterval
-connectionCheckStartupDelay
-connectionStaleTimeout
-externalSystemID
-importDirectory
-importFilePattern
-importHostIP
-importMode
-importPassword
-importPort
-importQueue
-importUserName
-ritisXsdFileName
-translationStepClassName
-testFileNamePattern
-opCenterID
-opCenterName
-userName
-externalSystemID
-retryCount

+initialize(ServiceApplication)
+shutdown(ServiceApplication)
+getExtDMSFactoryWrapper()
+getExtDMSDataList()
+getProperties()
+getPushEventSupplier()
+restart()

-m_app: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extDMSFactoryWrapper :
 ExternalDMSFactoryWrapper
-m_externalDMSList :
 HashTable<String
/ ProxyExternalDMS>

ctor(String)
+isShutdown() : boolean
+shutdown() : void
+queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue
-m_handlerName : String

+execute()
+interupted()

-m_msgReceived : XmlMessage
-m_handler : DMSImportAcquireHandler

+ctor(ExternalSystem config:ConnectionConfig,
 pushSup:PushEventSupplier, pushIntervalMins int,
 pushEveryChange boolean)
+getConfig() : ExternalSysteConfig
+getStatus() : ExternalSystemStatus
+setStatus(status:SimpleStatus, desc:String)
+setWarningIfOK()
+shutdown()
-sendNotificationsIfNecessary()
-sendNotification()
-sendExternalConnectionAlert()

-m_pushEventSupplier
-m_config
-m_status
-m_eventPushIntervalMins: int
-m_pushEveryChangeFlag: boolean
-m_alertFactory: AlertFactoryWrapper
-m_notificationMgr: NotificationManagerWrapper
-m_sysProfileProps: SystemProfileProperties.
-m_timer : Timer
-m_failWarnStatusChangeTime : long

ctor(messageText, Origin)
+cleanup()
+finalize()
+getMessageText() : String
+getOrigin() : String

-m_origin : String
-m_messageText : String

+prepare(EIlMessageReceived) : boolean
+forward(ArrayList) : boolean

+createDMSImportAcquireTask(
 EIMessageReceived) : DMSImportAcquireTask
+handleReceipt(EIMessageReceived)
+initialize(translationHandler : DMSImportTranslationHandler,
 props : DMSImportModuleProperties, ExternalSystemConnectionImpl)
+setDataLog(logFileName : String, logFileKeepDays : int)

-m_incomingLog : LogFile
-m_initialized : boolean
-m_props : DMSImportModuleProperties
-m_subscriber :
-m_translationHandler
: DMSImportTranslationHandler

+cleanup()
+decode(EIMessageReceived)
+initialize(EIForwarder, EIProperties, LogFile)
+receive(EIMessageReceived)

ctor(ExternalSystemConnectionImpl)
+onMessage(textMessage : javax.jms.Message)
+connectIfNecessary()

-m_connectionString : String
-m_connectionImpl : ExternalSystemConnectionImpl
-m_expectRefresh : boolean
-m_forwarder : EIForwarder
-m_password : String
-m_subscriber : javax.jms.QueueReceiver
-m_refreshPending : boolean
-m_queueName : String
-m_queueConnection : javax.jms.QueueConnection
-m_session : javax.jms.QueueSession
-m_userName : String
-m_props : DMSImportModuleProperties
-m_validator : java.xml.validation.Validator
m_validate : boolean

Figure 5-144 DMSImportAcquireClasses (Class Diagram)

5.8.1.1.1 ConnectionTimerTask (Class)

This class periodically checks the RITIS connection and reconnects if it's failed or stale (no

activity for a period of time).

5.8.1.1.2 DMSImportAcquireHandler (Class)

This class handles data acquisition from the external source. It inherits CommandQueue

processing functionality from the EITaskHandler. The custom Acquirer class, which

CHART R3B3 Detailed Design 5-192 12/23/2008

implements the EIAcquirer interface and is specified in the props, receives messages from

the external system. When a message is received from the external system a

DMSImportAcquireTast task is created and placed on a CommandQueue. When the

CommandQueue executes the task it calls DMSImportAcquireHandler.handleReceipt() to

process the message. The message is processed using the EIAcquirer interface and is

forwarded for translation to the DMSImportTranslationHandler.

5.8.1.1.3 DMSImportAcquireTask (Class)

This class wraps an external DMS message so it can be put on a command queue. When

the command queue calls the execute() method, this class invokes the

DMSImportAcquireHandler to handle the message and prepare it for further processing

(translation).

5.8.1.1.4 DMSImportModule (Class)

This module imports DMS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external DMS objects in chart and allows for ongoing

updates to those objects.

5.8.1.1.5 DMSImportModuleProperties (Class)

This class holds all properties needed by the DMSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external DMS data into

CHART DMS data.

5.8.1.1.6 DMSImportRITISAcquirer (Class)

This class knows how to connect to RITIS and obtain data on external DMS devices. It

breaks the composite RITIS message into separate DMS inventory and DMS status

messages and puts them on the translation command queue for processing. It obtains

connection information from the DMSImportModuleProperties class.

5.8.1.1.7 EIAcquirer (Class)

Any class wishing to import data into CHART must support this EIAcquirer interface. The

initialize method is called when the class wants to set up an external connection. The

receive method is called when an external message is received for processing. The receive

method should immediately place the external message on the acquirer command queue and

be ready to take in the next external message. The decode method is called by the

command queue to transform the external format into an internal format suitable for

translation. The cleanup method is called before shutdown to give the implementing class

an opportunity for a clean disconnect from the external source.

CHART R3B3 Detailed Design 5-193 12/23/2008

5.8.1.1.8 EIForwarder (Class)

This interface is implemented by classes that wish to process and forward messages for

translation.

5.8.1.1.9 EIMessageReceived (Class)

This class holds the incoming message from the external source. Its associated task is

quickly put on a command queue so the listener can get back to listening for new messages.

5.8.1.1.10 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.1.11 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to

the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as

configured by the admin.

5.8.1.1.12 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.8.1.1.13 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.8.1.1.14 QueableCommand (Interface)

This interface is implemented by objects that can be placed on a command queue.

CHART R3B3 Detailed Design 5-194 12/23/2008

5.8.1.2 DMSImportChartClasses (Class Diagram)

This diagram shows the classes used to import external DMSs into CHART.

-m_commandQueue : CommandQueue
-m_handlerName : String

ctor(String)
+isShutdown() : boolean
+shutdown() : void
+queueMsgTask(QueuableCommand) : boolean

EITaskHandler

QueableCommand

+execute()
+interrupted()

DMSImportTask

-m_app: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extDMSFactoryWrapper :
 ExternalDMSFactoryWrapper
-m_externalDMSList :
 HashTable<String
/ ProxyExternalDMS>

+initialize(ServiceApplication)
+shutdown(ServiceApplication)
+getExtDMSFactoryWrapper()
+getExtDMSDataList()
+getProperties()
+getPushEventSupplier()
+restart()

DMSImportModule

+create()
+add(String, Object)
+get(String):AVElement
+get() : AVElement[]
+clear()

AVList

-m_extDMSFactory :
 ExternalDMSFactoryWrapper
-m_candidates :
 Hashtable<String
/ ExternalDMSCandidate>
-m_externalDMSList :
 HashTable<String
/ ProxyExternalDMS>
-m_excludedDMSList :
 HashTable<String
/ ExternalObjectIdentificationData>
-m_extDMSManagerImpl :
 ExternalDMSManagerImpl

+ctor(DMSImportModule)
+initialize(DiscoveryManager)
+createDMSImportTask(AVList[])
+handleDMSImport(AVList[])
+shutdown()
+removeDMSFromExclusionList()

DMSImportHandler

-m_attributeName : String
-m_value : Object

+create(String name, Object value)
+getName() : String
+getValue() : Object

AVElement

DMSImportModuleProperties

+get() : ExternalDMSFactoryWrapper
+initialize(TBD)
+createExternalDMS(TBD)

ExternalDMSFactoryWrapper

Note: the HashTable of ProxyExternalDMS objects
is managed to a certain extent by the DiscoveryManager.
The DiscoveryManager (using the
DiscoveryExternalDMSClassesCmd object will discover
and update (via Event Channel) ProxyExternalDMS objects
 in its ObjectCache as well as keep the HashTable updated.

+m_id :
 ExternalObjectIdentificationData
+m_name: string
+m_dmsLocation: ObjectLocation
+m_dmsSignType: SignType
+m_signMetrics: SignMetrics
+m_fontMetrics: FontMetrics
+m_pages: long
+m_dmsTimeCommLoss: long
+m_dmsBeaconType: BeaconType
+m_defaultJustificationLine: long
+m_defaultPageOnTime: long
+m_defaultPageOffTime: long
+m_fontNumber: short
+m_lineSpacing: short
+m_direction : CommonDirection

ExternalDMSCandidate

DiscoverExternalDMSClassesCmd

-m_externalDMS : ExternalDMS
-m_config : ExternalDMSConfiguration
-m_status : DMSStatus

+getID() : Identifier
+getConfig() : ExternalDMSConfiguration
+getStatus() : DMSStatus.
+setConfig(ExternalDMSCofiguration)
+setStatus(DMSStatus)

ProxyExternalDMS

+getCandidateInfo(type : ExternalDeviceType) :
 ExternalDeviceCandidateInfo[]
+setCandidateInfo(candidates :
 ExternalDeviceCandidateInfo[])
+getExternalDeviceTypeSupported() :
 ExternalDeviceType

«interface»
ExternalDeviceCandidateSupporter

+ctor(extDevMgrConfig : ExternalDeviceManagerConfig,
 candidateSupporter : ExternalDeviceCandidateSupporter,
 gafw : GeoAreaFactoryWrapper)

ExternalDMSManagerImpl

See ExternalDeviceManagerClasses.

externalDMSRemoved(
 id:ExternalObjectIdentificationData)

«interface»
ExternalDeviceEventsCallback

11

1

*

1

1

1

1

1

1

11

*

1

creates and
processes

**
creates and
processes

11

QueableCommand

Figure 5-145 DMSImportChartClasses (Class Diagram)

5.8.1.2.1 AVElement (Class)

One element of an AVList containing an attribute and a big-O-Object for storing/retrieving

objects easily

5.8.1.2.2 AVList (Class)

Generic collection of attribute and big-O-Object pairs used to move around the application.

CHART R3B3 Detailed Design 5-195 12/23/2008

5.8.1.2.3 DiscoverExternalDMSClassesCmd (Class)

This class is used by the DiscoveryManager to maintian the cache of ProxyExternalDMS

objects used by the DMSImportModule.

5.8.1.2.4 DMSImportHandler (Class)

This class handles the actual import of the data into the CHART system proper. It inheirits

CommandQueue processing functionality from the EITaskHandler. This class maintains a

cache of candidate DMSs from the external source and keeps a cache of references to

ExternalDMS objects in CHART. The two caches are maintained via messages received

from the external system and translated for CHART.

5.8.1.2.5 DMSImportModule (Class)

This module imports DMS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external DMS objects in chart and allows for ongoing

updates to those objects.

5.8.1.2.6 DMSImportModuleProperties (Class)

This class holds all properties needed by the DMSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external DMS data into

CHART DMS data.

5.8.1.2.7 DMSImportTask (Class)

This class is the command to process the external DMS import request received from the

translation process and bound for CHART. It is executed by the CommandQueue

asynchronously.

5.8.1.2.8 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.2.9 ExternalDeviceCandidateSupporter (Class)

This interface is implemented by classes that are capable of supplying external device

candidate data for the purposes of configuring external devices within CHART. Classes

implementing this interface will also be capable of accepting administator directives as to

the disposition of external device candidates (i.e. specifically excluding or including

candidate devices as "external" devices in CHART.

CHART R3B3 Detailed Design 5-196 12/23/2008

5.8.1.2.10 ExternalDeviceEventsCallback (Class)

This interface is used in conjunction with the DiscoveryExternalDMSClassCmd class

which calls the appropriate interface method when certain corba events are received by the

DiscoveryManager. Currently, only one method is supported. The

externalDMSRemoved() method is call when a DMSRemoved corba event is received for

an ExternalDMS object.

5.8.1.2.11 ExternalDMSCandidate (Class)

This class represents candidate DMS data from an external data source. It is populated

with external data that has been translated into a CHART-centric structure.

5.8.1.2.12 ExternalDMSFactoryWrapper (Class)

This class finds a DMS Service and provides a facade for the creation of external DMS

devices within CHART.

5.8.1.2.13 ExternalDMSManagerImpl (Class)

This class implements the ExternalDMSManager corba interface (which extends the

ExternalDeviceManger corba interface). It extends the ExternalDeviceManagerImpl class

and inherits most of its functionality from that base class.

5.8.1.2.14 ProxyExternalDMS (Class)

This class is used to cache external DMS device information. It holds and provides access

to basic configuration and status data specific to an ExternalDMS type.

5.8.1.2.15 QueableCommand (Interface)

This interface is implemented by objects that can be placed on a command queue.

.

CHART R3B3 Detailed Design 5-197 12/23/2008

5.8.1.3 DMSImportModuleClasses (Class Diagram)

This diagram shows the implementation classes used to import external DMSs into
CHART.

«interface»
ServiceApplication

ServiceApplication m_svcApp;
DefaultServiceApplicationProperties m_props;

initialize(ServiceApplication app):boolean
getVersion() : ComponentVersion
traderGroupUpdated() : void
shutdown(ServiceApplication app):boolean

«interface»
ServiceApplicationModule

getExcludedDMSList()

DMSImportDB

DBConnectionManager

-m_app: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extDMSFactoryWrapper :
 ExternalDMSFactoryWrapper
-m_externalDMSList :
 HashTable<String
/ ProxyExternalDMS>

+initialize(ServiceApplication)
+shutdown(ServiceApplication)
+getExtDMSFactoryWrapper()
+getExtDMSDataList()
+getProperties()
+getPushEventSupplier()
+restart()

DMSImportModule

-acquirerClassName
-connectionCheckInterval
-connectionCheckStartupDelay
-connectionStaleTimeout
-externalSystemID
-importDirectory
-importFilePattern
-importHostIP
-importMode
-importPassword
-importPort
-importQueue
-importUserName
-ritisXsdFileName
-translationStepClassName
-testFileNamePattern
-opCenterID
-opCenterName
-userName
-externalSystemID
-retryCount

ctor(props:Properties)
+getExternalSystemID(): String

DMSImportModuleProperties

+ctor(extDevMgrConfig : ExternalDeviceManagerConfig,
 candidateSupporter : ExternalDeviceCandidateSupporter,
 gafw : GeoAreaFactoryWrapper)

ExternalDMSManagerImpl

-m_incomingLog : LogFile
-m_initialized : boolean
-m_props : DMSImportModuleProperties
-m_subscriber :
-m_translationHandler
: DMSImportTranslationHandler

+createDMSImportAcquireTask(
 EIMessageReceived) : DMSImportAcquireTask
+handleReceipt(EIMessageReceived)
+initialize(translationHandler : DMSImportTranslationHandler,
 props : DMSImportModuleProperties, ExternalSystemConnectionImpl)
+setDataLog(logFileName : String, logFileKeepDays : int)

DMSImportAcquireHandler

«interface»
UniquelyIdentifiable

getConfig(): ExternalSystemConnectionConfig
getStatus(): ExternalSystemConnectionStatus

«interface»
ExternalSystemConnection

Implements Corba interface
for managing external DMS
devices. See
ExternalDeviceManagerClasses.

Corba Interface for
reporting status for
an External System's
Connection to Chart.

-m_pushEventSupplier
-m_config
-m_status
-m_eventPushIntervalMins: int
-m_pushEveryChangeFlag: boolean
-m_alertFactory: AlertFactoryWrapper
-m_notificationMgr: NotificationManagerWrapper
-m_sysProfileProps: SystemProfileProperties.
-m_timer : Timer
-m_failWarnStatusChangeTime : long

+ctor(ExternalSystem config:ConnectionConfig,
 pushSup:PushEventSupplier, pushIntervalMins int,
 pushEveryChange boolean)
+getConfig() : ExternalSysteConfig
+getStatus() : ExternalSystemStatus
+setStatus(status:SimpleStatus, desc:String)
+setWarningIfOK()
+shutdown()
-sendNotificationsIfNecessary()
-sendNotification()
-sendExternalConnectionAlert()

ExternalSystemConnectionImpl

EITaskHandler

-m_translationSteps : EITranslationStep[]

-createTranslationSteps(DMSImportModuleProperties)
+initialize(DMSImportHandler, DMSImportModuleProperties)
+createDMSTranslationTask(AVList) : DMSImportTranslationTask
+handleTranslation(AVList)
+shutdown()

DMSImportTranslationHandler

PushEventSupplier

-m_extDMSFactory :
 ExternalDMSFactoryWrapper
-m_candidates :
 Hashtable<String
/ ExternalDMSCandidate>
-m_externalDMSList :
 HashTable<String
/ ProxyExternalDMS>
-m_excludedDMSList :
 HashTable<String
/ ExternalObjectIdentificationData>
-m_extDMSManagerImpl :
 ExternalDMSManagerImpl

+ctor(DMSImportModule)
+initialize(DiscoveryManager)
+createDMSImportTask(AVList[])
+handleDMSImport(AVList[])
+shutdown()
+removeDMSFromExclusionList()

DMSImportHandler

1

1

1

1
1 1

11

1

1

1

1

1

1

11

Figure 5-146 DMSImportModuleClasses (Class Diagram)

5.8.1.3.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

CHART R3B3 Detailed Design 5-198 12/23/2008

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.8.1.3.2 DMSImportAcquireHandler (Class)

This class handles data acquisition from the external source. It inherits CommandQueue

processing functionality from the EITaskHandler. The custom Acquirer class, which

implements the EIAcquirer interface and is specified in the props, receives messages from

the external system. When a message is received from the external system a

DMSImportAcquireTast task is created and placed on a CommandQueue. When the

CommandQueue executes the task it calls DMSImportAcquireHandler.handleReceipt() to

process the message. The message is processed using the EIAcquirer interface and is

forwarded for translation to the DMSImportTranslationHandler.

5.8.1.3.3 DMSImportDB (Class)

This class provides a database interface for the DMSImportModule. It includes methods

needed to store and retrieve external DMS related information. In particular, a list of

excluded external DMS devices is kept.

5.8.1.3.4 DMSImportHandler (Class)

This class handles the actual import of the data into the CHART system proper. It inheirits

CommandQueue processing functionality from the EITaskHandler. This class maintains a

cache of candidate DMSs from the external source and keeps a cache of references to

ExternalDMS objects in CHART. The two caches are maintained via messages received

from the external system and translated for CHART.

5.8.1.3.5 DMSImportModule (Class)

This module imports DMS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external DMS objects in chart and allows for ongoing

updates to those objects.

5.8.1.3.6 DMSImportModuleProperties (Class)

This class holds all properties needed by the DMSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external DMS data into

CHART DMS data.

5.8.1.3.7 DMSImportTranslationHandler (Class)

This class creates and handles DMSImportTranslationTasks. It inherits CommandQueue

CHART R3B3 Detailed Design 5-199 12/23/2008

processing functionality from the EITaskHandler. It handles translation step classes that

are specified in the props file and customized for the specific translation needed for the data

provided by the external system. After translation the data is forwarded to the

DMSImportHandler for import into CHART.

5.8.1.3.8 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.3.9 ExternalDMSManagerImpl (Class)

This class implements the ExternalDMSManager corba interface (which extends the

ExternalDeviceManger corba interface). It extends the ExternalDeviceManagerImpl class

and inherits most of its functionality from that base class.

5.8.1.3.10 ExternalSystemConnection (Class)

This interface defines external connections and provides status reporting.

5.8.1.3.11 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to

the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as

configured by the admin.

5.8.1.3.12 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.8.1.3.13 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.8.1.3.14 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

CHART R3B3 Detailed Design 5-200 12/23/2008

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.8.1.3.15 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

.

CHART R3B3 Detailed Design 5-201 12/23/2008

5.8.1.4 DMSImportTranslationClasses (Class Diagram)

DMSImportTranslationHandler

EITaskHandler

DMSImportModule

DMSImportModuleProperties

EIProperties

DMSImportTranslationTask

AVList AVElement

EITranslationStep
«interface»

DmsTmddTranslationStep1

1

1

11

For R3B3 In the context of the
DMSImportModule the lis t of
EITranslationSteps are
specific to TMDD with RITIS
extens ions. Trans lation s tep
class names are specified in
the DMSImportModuleProperties.

* *
creates and
processes

*1

1

1

1,0..*1

QueableCommand

ctor(String)
+isShutdown() : boolean
+shutdown() : void
+queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue
-m_handlerName : String

+initialize(Serv iceApplication)
+shutdown(Serv iceApplication)
+getExtDMSFactoryWrapper()
+getExtDMSDataLis t()
+getProperties()
+getPushEventSupplier()
+restart()

-m_app: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extDMSFactoryWrapper :
 ExternalDMSFactoryWrapper
-m_externalDMSLis t :
 HashTable<String
/ ProxyExternalDMS>

+execute()
+interrupted()

+create()
+add(String, Object)
+get(String):AVElement
+get() : AVElement[]
+clear()

-createTrans lationSteps(DMSImportModuleProperties)
+initialize(DMSImportHandler, DMSImportModuleProperties)
+createDMSTranslationTask(AVLis t) : DMSImportTrans lationTask
+handleTranslation(AVList)
+shutdown()

-m_translationSteps : EITranslationStep[]

+create(String name, Object value)
+getName() : String
+getValue() : Object

-m_attributeName : String
-m_value : Object

+initialize(EIProperties)
+trans late(inLis ts:ArrayList, outLists :ArrayLis t)
+cleanup()

+initialize(DMSImportModuleProperties)

-m_transformer : javax.xml.transform.Transformer

Figure 5-147 DMSImportTranslationClasses (Class Diagram)

5.8.1.4.1 AVElement (Class)

One element of an AVList containing an attribute and a big-O-Object for storing/retrieving

objects easily

5.8.1.4.2 AVList (Class)

Generic collection of attribute and big-O-Object pairs used to move around the application.

5.8.1.4.3 DMSImportModule (Class)

This module imports DMS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external DMS objects in chart and allows for ongoing

updates to those objects.

CHART R3B3 Detailed Design 5-202 12/23/2008

5.8.1.4.4 DMSImportModuleProperties (Class)

This class holds all properties needed by the DMSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external DMS data into

CHART DMS data.

5.8.1.4.5 DMSImportTranslationHandler (Class)

This class creates and handles DMSImportTranslationTasks. It inherits CommandQueue

processing functionality from the EITaskHandler. It handles translation step classes that

are specified in the props file and customized for the specific translation needed for the data

provided by the external system. After translation the data is forwarded to the

DMSImportHandler for import into CHART.

5.8.1.4.6 DMSImportTranslationTask (Class)

This class wraps an external DMS inventory or status message so it can be put on a

command queue. When the command queue calls the execute() method, this class invokes

the DMSImportTranslationHandler to translate it into CHART-centric DMS data. .

5.8.1.4.7 DmsTmddTranslationStep1 (Class)

This class represents step one of a one step translation which will translate TMDD DMS

inventory and DMS status messages to CHART-centric terms. An example of when a

multiple step translation may be needed is when a complex message needs to be simplified

before further translation can be done. Multiple simple steps may be able to accomplish

what one complex step could. For ease of maintenance, multiple steps may be better in

that case.

5.8.1.4.8 EIProperties (Class)

This class supports properties that are generic to all External Interface modules such as log

filenames.

5.8.1.4.9 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.4.10 EITranslationStep (Class)

An EITranslationStep is the base class for all translations. Implementing translations define

how to translate from a particular type of AVList to another particular type of AVList.

5.8.1.4.11 QueableCommand (Interface)

This interface is implemented by objects that can be placed on a command queue.

CHART R3B3 Detailed Design 5-203 12/23/2008

5.8.1.5 EventAtisImportChartClasses (Class Diagram)

EventImportModule

11

TrafficEventFactoryWrapper

11

EventImportModuleProperties

1

1

ProxyBasicTrafficEvent

DataModel

1

1

EventImportHandler
EventImportTask

AVList

AVElement

* *creates and processes

1
1

*1

QueableCommand

EITaskHandler

1

1

Duplicatable
«interface»

1

1

1

*

TrafficEvent
«interface»

ObjectCache

1

Reference to the remote
TrafficEvent served by
a TrafficEventModule
all external and internal
traffic events are cached
 here without prejudice.

1

ctor(String)
+isShutdown() : boolean
+shutdown() : void
+queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue
-m_handlerName : String

+execute()
+interrupted()

+initialize(ServiceApplication)
+shutdown(ServiceApplication)
+getTrafficEventFactoryWrapper()
+getExtEventDataList()
+getProperties()
+getPushEventSupplier()
+restart()

-m_svcApp: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_subscriptionHandler
-m_pushEventSupplier
-m_startupThread
-m_externalSysConn
-m_trafficEventFactoryWrapper
-m_extEventDataList

+create()
+add(String, Object)
+get(String):AVElement
+get() : AVElement[]
+clear()

+get() : TrafficEventFactoryWrapper
+initialize(ORB, TraderGroup,
 MinDiscoveryIntervalSeconds,
 MaxRemoteServiceUseMins)
+createExternalTrafficEvent(
 byte[] token,
 EventInitiator evInitiator,
 short type,
 BasicEventData eventData,
 ResponsePartic ipationData[] rpData,
 ResponsePlanItemData[] rpiData,
 LogEntry[] initialEntries,
 boolean markAsInteres ting)

+ctor(EventImportModule)
+initialize(DiscoveryManager)
+createEventImportTask(AVList[])
+handleEventImport(AVList[])
+shutdown()

-m_trafficEventFactoryWrapper

ctor(props:Properties)
+getExternalSystemID(): String

-acquirerClassName
-connectionCheckInterval
-connectionCheckStartupDelay
-connectionStaleTimeout
-externalSystemID
-importDirectory
-importFilePattern
-importHostIP
-importMode
-importPassword
-importPort
-importQueue
-importUserName
-maxEventsInMessage
-owningOpCenter
-ritisXsdFileName
-translationStepClassName
-testFileName
-opCenterID
-opCenterName
-userName
-externalSystemID
-retryCount
-maxEventsCount

+create(String name, Object value)
+getName() : String
+getValue() : Object

-m_attributeName : String
-m_value : Object

+getID() : Identifier
+getTrafficEvent() : TrafficEvent
+getBasicEventData() : BasicEventData
+setBasicEventData(data : BasicEventData
+addEventAssociation(
 associatedEventId :Identifier) :void
+getOpenedTime() : long
+removeEventAssociation(
 associatedEventId :Identifier) :void
+updateAssocatedEvents() : void
+isAssociatedWith(EventId : Identifier) : boolean
+isClosed() : boolean
getEventTypeString() : string

m_trafficEvent : TrafficEvent
m_basicEventData : BasicEventData
m_associatedEventsHash : Hashtable
m_associatedEvents : Identifier[]

Figure 5-148 EventAtisImportChartClasses (Class Diagram)

5.8.1.5.1 AVElement (Class)

One element of an AVList containing an attribute and a big-O-Object for storing/retrieving

objects easily

5.8.1.5.2 AVList (Class)

Generic collection of attribute and big-O-Object pairs used to move around the application.

5.8.1.5.3 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

CHART R3B3 Detailed Design 5-204 12/23/2008

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

5.8.1.5.4 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated"

within the CHART system. This allows the ObjectCache to search for duplicates of any

Duplicatable object. This is different from "equals()" or "compareTo()". To cite two

examples: Alerts within CHART are duplicates if they refer to the same objects within

CHART (but do not have the same Alert ID, which is more closely associated with

"equals()"). Traffic Events within CHART are duplicates if they have the same location

(but do not have the same Traffic Event ID).

5.8.1.5.5 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.5.6 EventImportHandler (Class)

This class is responsible for handling EI tasks representing external CHART events. It is

called when an EventImportTask is put on its queue. It then converts the AVList to the

CHART event components needed to create a CHART event.

5.8.1.5.7 EventImportModule (Class)

This module imports traffic events from an external source by loading the class specified in

its props file. The class knows how to connect to an external traffic event source and how

to prepare it for translation. A separate property tells the module how to translate the

external traffic event into an AVList that directly maps to a CHART traffic event.

5.8.1.5.8 EventImportModuleProperties (Class)

This class holds all properties needed by the ExternalImportModule including the name of

the class to be loaded to make the external connection and the steps needed to translate the

external traffic event into an internal traffic event.

5.8.1.5.9 EventImportTask (Class)

This class is the command to process the event import request received from the translation

process and bound for CHART. It is executed by the CommandQueue asynchronously.

5.8.1.5.10 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

CHART R3B3 Detailed Design 5-205 12/23/2008

5.8.1.5.11 ProxyBasicTrafficEvent (Class)

This class is used as a proxy for traffic events existing in all traffic event services (including

the local service). The proxy traffic events cached are not complete copies of the traffic

events, because the full range of data is not needed. The ProxyBasicTrafficEvent data

consists of BasicEventData and associated events only (this is why the names of these

objects contain the word "Basic", e.g., DiscoverBasicTrafficEventClassesCommand. These

proxy traffic events allow every traffic event service in the system to have some knowledge

of every traffic event in the entire system, for the purpose of detecting duplicate traffic

events.

5.8.1.5.12 QueableCommand (Interface)

This interface is implemented by objects that can be placed on a command queue.

5.8.1.5.13 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.8.1.5.14 TrafficEventFactoryWrapper (Class)

This class finds a Traffic Event Service and provides a facade to it for the creation of

external traffic events.

CHART R3B3 Detailed Design 5-206 12/23/2008

5.8.1.6 ExternalDeviceManagerClasses (Class Diagram)

ExternalDeviceManagerConfig

«struct»

GeoAreaFactoryWrapper

11

ExternalDeviceCandidateInfo
and ExternalDeviceType are
specified in
ExternalSystem IDL..

1

1

ExternalDMSManager Impl

ExternalDMSManager

«interface»

ExternalDMSCandidate

ExternalTSSManagerImpl

ExternalTSSManager

«interface»

ExternalTSSCandidate

ExternalDeviceCandidateSupporter

«interface»

1

1

ExternalDeviceManager Impl

ExternalDeviceManager

«interface»
CORBA interface.
See SystemInterfaces.

getConfig() : ExternalDeviceManagerConfig
searchForCandidateDevices(criteria : CandidateSearchCriteria) :
 CandidateGroup
setCandidateDevices(candidates : CandidateGroup)

+ctor(extDevMgrConfig : ExternalDeviceManagerConfig,
 candidateSupporter : ExternalDeviceCandidateSupporter,
 gafw : GeoAreaFactoryWrapper)
+setSupporter(ExternalDeviceCandidateSupporter)

-m_candidateSupporter :
 ExternalDeviceCandidateSupporte
-m_geoAreaFactoryWrapper : GeoAreaFactoryWrapper
-m_config : ExternalDeviceManagerConfig

+ctor(extDevMgrConfig : ExternalDeviceManagerConfig,
 candidateSupporter : ExternalDeviceCandidateSupporter,
 gafw : GeoAreaFactoryWrapper)

id : Identifier
extSystemIDString : string
extDeviceType :ExternalDeviceType

+ctor(extDevMgrConfig : ExternalDeviceManagerConfig,
 candidateSupporter : ExternalDeviceCandidateSupporter,
 gafw : GeoAreaFactoryWrapper)

+getGeoAreas() : GeoArea[]
...()

-m_geoAreaFactory

+getCandidateInfo(type : ExternalDeviceType) :
 ExternalDeviceCandidateInfo[]
+setCandidateInfo(candidates :
 ExternalDeviceCandidateInfo[])
+getExternalDeviceTypeSupported() :
 ExternalDeviceType

+m_id :
 ExternalObjectIdentificationData
+m_name: string
+m_dmsLocation: ObjectLocation
+m_dmsSignType: SignType
+m_signMetrics: SignMetrics
+m_fontMetrics: FontMetrics
+m_pages: long
+m_dmsTimeCommLoss: long
+m_dmsBeaconType: BeaconType
+m_defaultJustificationLine: long
+m_defaultPageOnTime: long
+m_defaultPageOffTime: long
+m_fontNumber: short
+m_lineSpacing: short
+m_direction : CommonDirection

+m_id : ExternalObjectIdentificationData
+extTssConfig : ExternalTSSContiguration

Figure 5-149 ExternalDeviceManagerClasses (Class Diagram)

5.8.1.6.1 ExternalDeviceCandidateSupporter (Class)

This interface is implemented by classes that are capable of supplying external device

candidate data for the purposes of configuring external devices within CHART. Classes

implementing this interface will also be capable of accepting administator directives as to

the disposition of external device candidates (i.e. specifically excluding or including

candidate devices as "external" devices in CHART.

5.8.1.6.2 ExternalDeviceManager (Class)

This interface defines operations used for configuring External Devices in CHART. Each

ExternalDeviceManager manages external devices of a specific type (DMS, TSS, ...) for a

specific External System (i.e. data source).

CHART R3B3 Detailed Design 5-207 12/23/2008

5.8.1.6.3 ExternalDeviceManagerConfig (Class)

This struct defines the configuration for an ExternalDeviceManager in CHART.

5.8.1.6.4 ExternalDeviceManagerImpl (Class)

This class implements the ExternalDeviceManager corba interface. It provides the

functionality used by the GUI to allow administrators to configure external devices in

CHART. It provides for the searching of external data source's candidate devices. It also

provides the interface, thru the GUI, for administrators to select candidate devices for

inclusion in CHART (I.E. import the device into CHART).

5.8.1.6.5 ExternalDMSCandidate (Class)

This class represents candidate DMS data from an external data source. It is populated

with external data that has been translated into a CHART-centric structure.

5.8.1.6.6 ExternalDMSManager (Class)

This is a naming interface (empty interface) used to specify a external device manager

specific to DMS devices. Its used as a convenience when querying traders and to clarify

implementation.

5.8.1.6.7 ExternalDMSManagerImpl (Class)

This class implements the ExternalDMSManager corba interface (which extends the

ExternalDeviceManger corba interface). It extends the ExternalDeviceManagerImpl class

and inherits most of its functionality from that base class.

5.8.1.6.8 ExternalTSSCandidate (Class)

This class represents candidate TSS data from an external data source. It is populated with

external data that has been translated into a CHART-centric structure.

5.8.1.6.9 ExternalTSSManager (Class)

This is a naming interface (empty interface) used to specify a external device manager

specific to TSS devices. Its used as a convenience when querying traders and to clarify

implementation.

5.8.1.6.10 ExternalTSSManagerImpl (Class)

This class implements the ExternalTSSManager corba interface (which extends the

ExternalDeviceManger corba interface). It extends the ExternalDeviceManagerImpl class

and inherits most of its functionality from that base class.

5.8.1.6.11 GeoAreaFactoryWrapper (Class)

This singleton class presents the same interface as the GeoAreaFactory, but uses a

FirstAvailableOfferWrapper to provide fault tolerant access to the methods.

CHART R3B3 Detailed Design 5-208 12/23/2008

5.8.1.7 ExternalSystemConnectionClasses (Class Diagram)

The ExternalSystemConnection class diagram list classes involved with External System

Connection monitoring and status reporting. The ExternalSystemConnectionImpl

implements the ExternalSystemConnection interface allowing clients to retrieve

configuration and status info for the connection being represented. An

AlertFactoryWrapper and NotificationManagerWrapper are used to send

ExternalSystenConnection Alerts as configured to do so. Access to

SystemProfileProperties is provided by the SystemProfileProperties class.

SystemProfileProperties

UPDATED FOR R3B3:
added m_alertFactory ,
m_notificationFacotry,
m_systemProfileProps.

11

1

1

1

1

ExternalSystemConnectionImpl

ExternalSystemConnection

«interface»

AlertFactoryWrapper

java.util.Timer 1

1

UniquelyIdentifiable

«interface»

Corba Interface for
reporting status for
an External Sys tem's
Connection to Chart.

NotificationManagerWrapper

getConfig(): ExternalSystemConnectionConfig
getStatus(): ExternalSystemConnectionStatus

+ctor(ExternalSys tem config:ConnectionConfig,
 pushSup:PushEventSupplier, pushIntervalMins int,
 pushEveryChange boolean)
+getConfig() : Ex ternalSys teConfig
+getStatus() : Ex ternalSys temStatus
+setStatus(s tatus:SimpleStatus, desc:String)
+setWarningIfOK()
+shutdown()
-sendNotifications IfNecessary()
-sendNotification()
-sendExternalConnectionAlert()

-m_pushEventSupplier
-m_config
-m_status
-m_eventPushIntervalMins: int
-m_pushEveryChangeFlag: boolean
-m_alertFactory : AlertFactoryWrapper
-m_notificationMgr: NotificationManagerWrapper
-m_sysProfileProps: SystemProfileProperties .
-m_timer : Timer
-m_failWarnStatusChangeTime : long

AlertFactoryWrapper()
get() : AlertFactoryReferenceData
createAlertFactoryReferenceData(AlertFactoryReferenceData[]):Set
c reateDev iceFailureAlert(token : AccessToken, deviceId : Identifier, desc string,
 initialVisibility : AlertManagementGroup[]) :AlertCreationResult
c reateDuplicateEventAlert(token : AccessToken, olderEventId : Identifier, newerEventId : Identifier,
 desc s tring, initialVis ibility : AlertManagementGroup[]) :AlertCreationResult
c reateEventStillOpenAlert(token : AccessToken, eventId : Identifier, desc string,
 initialVisibility : AlertManagementGroup[]) :AlertCreationResult
c reateGenericAlert(token : AccessToken, desc string,
 initialVisibility : AlertManagementGroup[]) :AlertCreationResult
c reateUnhandledResourceAlert(token : AccessToken, deviceId : Identifier, desc string,
 initialVisibility : AlertManagementGroup[]) :AlertCreationResult
c reateExecuteScheduledActionsAlert(token : AccessToken, scheduleId : Identifier,
 execActionDataLis t:Ac tionData[] , desc string,
 initialVisibility : AlertManagementGroup[]) :AlertCreationResult

AlertFactoryReferenceData m_alertFactoryRefData[]

get():Sys temProfileProperties
getAlertArchiveTimeMinutes() : int
getAlertAudibleReminderInterval() : int
getAlertDefaultAcceptTimeMinutes(type:WebAlertType) : int
getAlertDefaultDelayTimeMinutes(type:WebAlertType) : int
getAlertDeviceFailureAudio() : byte[]
getAlertDuplicateEventAudio() : by te[]
getAlertEscalationTimeMinutes(type:WebAlertType) : int
getAlertEventStillOpenAudio() : byte[]
getAlertGenericAudio() : byte[]
getAlertMaxAcceptTimeMinutes(type:WebAlertType) : int
getAlertMaxDelayTimeMinutes(type:WebAlertType) : int
getAlertReminderAudio() : byte[]
getAlertUnhandledRsrcAudio() : byte[]
getNotificationProperties() : SystemProfileNotificationProperties
getScheduleRemovalTimeMinutes() : int
getScheduleActivationSuppress ionTimeMinutes() : int
getMissedActivationGracePeriodMinutes()
getDefaultEventNearbyDev icesRadiusTenths() : int

get():NotificationManagerWrapper
getNotifications(token : AccessToken):NotificationIDInfo[]
getGroups(token : AccessToken) : NotificationRecipientData[]
getIndividuals(token : AccessToken) : NotificationRec ipientData[]
getMembers(token : AccessToken, NotificationGroupInfo[]) : NotificationMemberInfo[]
sendNotification(token : AccessToken,
 ni : NotificationCreationInfo[],
 nrl : NotificationRecipientData[],
 message : String) : NotificationInfo
getNotificationRecords(token: AccessToken,
 filter : NotificationRecordFilter,
 maxCount : long) : NotificationRecordQueryResults

Figure 5-150 ExternalSystemConnectionClasses (Class Diagram)

5.8.1.7.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

CHART R3B3 Detailed Design 5-209 12/23/2008

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.8.1.7.2 ExternalSystemConnection (Class)

This interface defines external connections and provides status reporting.

5.8.1.7.3 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to

the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as

configured by the admin.

5.8.1.7.4 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.8.1.7.5 NotificationManagerWrapper (Class)

This singleton class presents the same interface as the NotificationManager, but uses a

FirstAvailableOfferWrapper to provide fault tolerant access to the methods.

5.8.1.7.6 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is

also used to interact with the server to change system profile settings.

5.8.1.7.7 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-210 12/23/2008

5.8.1.8 TSSImportAcquireClasses (Class Diagram)

TSSImportModuleProperties TSSImportModule

EITaskHandler

TSSImportAcquireTask

QueableCommand

TSSImportAcquireHandler

TSSImportRITISAcquirer

Periodically call
TSSImportRITISAcquirer.
connectIfNecessary()

ConnectionTimerTask

1

1
1

1

* creates
and

processes

1

1

1

1

1

1

*

1

1

1

ExternalSystemConnectionImpl

EIMessageReceived

EIForwarder

«interface»

EIAcquirer

«interface»

java.jms.MessageListener

java.util.TimerTask java.util.Timer

1

ctor(props:Properties)
+getExternalSystemID(): String

-acquirerClassName
-connectionCheckInterval
-connectionCheckStartupDelay
-connectionStaleTimeout
-externalSystemID
-importDirectory
-importFilePattern
-importHostIP
-importMode
-importPassword
-importPort
-importQueue
-importUserName
-ritisXsdFileName
-trans lationStepClassName
-tes tFileNamePattern
-opCenterID
-opCenterName
-userName
-externalSystemID
-retryCount

+initialize(Serv iceApplication)
+shutdown(ServiceApplication)
+getTSSFactoryWrapper()
+getExtTSSDataList()
+getProperties()
+getPushEventSupplier()
+res tart()

-m_app: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extTSSFactoryWrapper :
 ExternalTSSFactoryWrapper
-m_externalTSSList :
 HashTable<String
/ ProxyExternalTSS>

ctor(String)
+isShutdown() : boolean
+shutdown() : void
+queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue
-m_handlerName : String

+execute()
+interupted()

-m_msgReceived : XmlMessage
-m_handler : TSSImportAcquireHandler

+c tor(ExternalSystem config:ConnectionConfig,
 pushSup:PushEventSupplier, pushIntervalMins int,
 pushEveryChange boolean)
+getConfig() : Ex ternalSysteConfig
+getStatus() : ExternalSystemStatus
+setStatus(s tatus:SimpleStatus, desc:String)
+setWarningIfOK()
+shutdown()
-sendNotificationsIfNecessary()
-sendNotification()
-sendExternalConnectionAlert()

-m_pushEventSupplier
-m_config
-m_status
-m_eventPushIntervalMins: int
-m_pushEveryChangeFlag: boolean
-m_alertFactory: AlertFactoryWrapper
-m_notificationMgr: NotificationManagerWrapper
-m_sysProfileProps: SystemProfileProperties.
-m_timer : Timer
-m_failWarnStatusChangeTime : long

ctor(messageText, Origin)
+c leanup()
+finalize()
+getMessageText() : String
+getOrigin() : String

-m_origin : String
-m_messageText : String

+prepare(EIlMessageReceived) : boolean
+forward(ArrayList) : boolean

+createTSSImportAcquireTask(
 EIMessageReceived) : TSSImportAcquireTask
+handleReceipt(EIMessageReceived)
+initialize(translationHandler : TSSImportTranslationHandler,
 props : TSSImportModuleProperties, Ex ternalSystemConnectionImpl)
+setDataLog(logFileName : String, logFileKeepDays : int)

-m_incomingLog : LogFile
-m_initialized : boolean
-m_props : TSSImportModuleProperties
-m_subscriber :
-m_translationHandler
: TSSImportTranslationHandler

+cleanup()
+decode(EIMessageReceived)
+initialize(EIForwarder, EIProperties, LogFile)
+receive(EIMessageReceived)

c tor(ExternalSystemConnectionImpl)
+onMessage(tex tMessage : javax.jms.Message)
+connectIfNecessary()

-m_connectionString : String
-m_connectionImpl : ExternalSystemConnectionImpl
-m_expectRefresh : boolean
-m_forwarder : EIForwarder
-m_password : String
-m_subscriber : javax.jms.QueueReceiver
-m_refreshPending : boolean
-m_queueName : String
-m_queueConnection : javax.jms.QueueConnection
-m_session : javax.jms.QueueSession
-m_userName : String
-m_props : TSSImportModuleProperties
-m_validator : java.xml.validation.Validator
m_validate : boolean

Figure 5-151 TSSImportAcquireClasses (Class Diagram)

5.8.1.8.1 ConnectionTimerTask (Class)

This class periodically checks the RITIS connection and reconnects if it's failed or stale (no

activity for a period of time).

5.8.1.8.2 EIAcquirer (Class)

Any class wishing to import data into CHART must support this EIAcquirer interface. The

initialize method is called when the class wants to set up an external connection. The

receive method is called when an external message is received for processing. The receive

method should immediately place the external message on the acquirer command queue and

be ready to take in the next external message. The decode method is called by the

command queue to transform the external format into an internal format suitable for

CHART R3B3 Detailed Design 5-211 12/23/2008

translation. The cleanup method is called before shutdown to give the implementing class

an opportunity for a clean disconnect from the external source.

5.8.1.8.3 EIForwarder (Class)

This interface is implemented by classes that wish to process and forward messages for

translation.

5.8.1.8.4 EIMessageReceived (Class)

This class holds the incoming message from the external source. Its associated task is

quickly put on a command queue so the listener can get back to listening for new messages.

5.8.1.8.5 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.8.6 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to

the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as

configured by the admin.

5.8.1.8.7 java.jms.MessageListener (Interface)

The MessageListener class is an interface that supports the receipt of messages from a JMS

queue. Implementers must handle the onMessage() method for all messages and optionally

support the onException() method when there is a problem with the JMS connection.

5.8.1.8.8 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.8.1.8.9 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.8.1.8.10 QueableCommand (Interface)

This interface is implemented by objects that can be placed on a command queue.

5.8.1.8.11 TSSImportAcquireHandler (Class)

This class handles data acquisition from the external source. It inherits CommandQueue

processing functionality from the EITaskHandler. The custom Acquirer class, which

implements the EIAcquirer interface and is specified in the props, receives messages from

the external system. When a message is received from the external system a

CHART R3B3 Detailed Design 5-212 12/23/2008

TSSImportAcquireTast task is created and placed on a CommandQueue. When the

CommandQueue executes the task it calls TSSImportAcquireHandler.handleReceipt() to

process the message. The message is processed using the EIAcquirer interface and is

forwarded for translation to the TSSImportTranslationHandler.

5.8.1.8.12 TSSImportAcquireTask (Class)

This class wraps an external TSS message so it can be put on a command queue. When the

command queue calls the execute() method, this class invokes the

TSSImportAcquireHandler to handle the message and prepare it for further processing

(translation).

5.8.1.8.13 TSSImportModule (Class)

This module imports TSS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external TSS objects in chart and allows for ongoing updates

to those objects.

5.8.1.8.14 TSSImportModuleProperties (Class)

This class holds all properties needed by the TSSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external TSS data into

CHART TSS data.

5.8.1.8.15 TSSImportRITISAcquirer (Class)

This class knows how to connect to RITIS and obtain data on external TSS devices. It

breaks the composite RITIS message into separate TSS inventory and TSS status messages

and puts them on the translation command queue for processing. It obtains connection

information from the TSSImportModuleProperties class.

CHART R3B3 Detailed Design 5-213 12/23/2008

5.8.1.9 TSSImportChartClasses (Class Diagram)

This diagram shows the classes used to import external TSSs into CHART.

-m_commandQueue : CommandQueue
-m_handlerName : String

ctor(String)
+isShutdown() : boolean
+shutdown() : void
+queueMsgTask(QueuableCommand) : boolean

EITaskHandler

QueableCommand

+execute()
+interrupted()

TSSImportTask

-m_app: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extTSSFactoryWrapper :
 ExternalTSSFactoryWrapper
-m_externalTSSList :
 HashTable<String
/ ProxyExternalTSS>

+initialize(ServiceApplication)
+shutdown(ServiceApplication)
+getTSSFactoryWrapper()
+getExtTSSDataList()
+getProperties()
+getPushEventSupplier()
+restart()

TSSImportModule

+create()
+add(String, Object)
+get(String):AVElement
+get() : AVElement[]
+clear()

AVList

-m_extTSSFactory : ExternalTSSFactoryWrapper
-m_candidates : Hashtable<String
/ ExternalTSSCandidate>
-m_externalTSSList : HashTable<String
/ ProxyExternalTSS>
-m_excludedTSSList : HashTable<String
/ ExternalObjectIdentificationData>
-m_extTSSManagerImpl : ExternalTSSManagerImpl

+ctor(TSSImportModule)
+initialize(DiscoveryManager)
+createTSSImportTask(AVList[])
+handleTSSImport(AVList[])
+shutdown()
+removeTSSFromExclusionList()

TSSImportHandler

TSSImportModuleProperties

-m_attributeName : String
-m_value : Object

+create(String name, Object value)
+getName() : String
+getValue() : Object

AVElement

+get() : ExternalTSSFactoryWrapper
+initialize(TBD)
+createExternalTSS(TBD)

ExternalTSSFactoryWrapper

Note: The HashTable of ProxyExternalTSS objects
is managed to a certain extent by the DiscoveryManager.
The DiscoveryManager will discover and update (via the
Event Channel) ProxyExternalTSS objects in its
ObjectCache as well as keep the HashTable updated.

+m_id : ExternalObjectIdentificationData
+extTssConfig : ExternalTSSContiguration

ExternalTSSCandidate

+getID() : Identifier
+getConfig() : ExternalTSSConfiguration
+getStatus() : TSSStatus.
+setConfig(ExternalTSSCofiguration)
+setStatus(TSSStatus)

ProxyExternalTSS

+getCandidateInfo(type : ExternalDeviceType) :
 ExternalDeviceCandidateInfo[]
+setCandidateInfo(candidates :
 ExternalDeviceCandidateInfo[])
+getExternalDeviceTypeSupported() :
 ExternalDeviceType

«interface»
ExternalDeviceCandidateSupporter

+ctor(extDevMgrConfig : ExternalDeviceManagerConfig,
 candidateSupporter : ExternalDeviceCandidateSupporter,
 gafw : GeoAreaFactoryWrapper)

ExternalTSSManagerImpl

See ExternalDeviceManagerClasses.

1

1

1

1

1 1

11

creates and
processes

* *
creates and
processes

1

*

1 1

1

1

1

*

QueableCommand

Figure 5-152 TSSImportChartClasses (Class Diagram)

5.8.1.9.1 AVElement (Class)

One element of an AVList containing an attribute and a big-O-Object for storing/retrieving

objects easily

5.8.1.9.2 AVList (Class)

Generic collection of attribute and big-O-Object pairs used to move around the application.

CHART R3B3 Detailed Design 5-214 12/23/2008

5.8.1.9.3 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.9.4 ExternalDeviceCandidateSupporter (Class)

This interface is implemented by classes that are capable of supplying external device

candidate data for the purposes of configuring external devices within CHART. Classes

implementing this interface will also be capable of accepting administator directives as to

the disposition of external device candidates (i.e. specifically excluding or including

candidate devices as "external" devices in CHART.

5.8.1.9.5 ExternalTSSCandidate (Class)

This class represents candidate TSS data from an external data source. It is populated with

external data that has been translated into a CHART-centric structure.

5.8.1.9.6 ExternalTSSFactoryWrapper (Class)

This class finds a TSS Service and provides a facade for the creation of external TSS

devices within CHART.

5.8.1.9.7 ExternalTSSManagerImpl (Class)

This class implements the ExternalTSSManager corba interface (which extends the

ExternalDeviceManger corba interface). It extends the ExternalDeviceManagerImpl class

and inherits most of its functionality from that base class.

5.8.1.9.8 ProxyExternalTSS (Class)

This class is used to cache external TSS device information. It holds and provides access to

basic configuration and status data specific to an ExternalTSS type.

5.8.1.9.9 QueableCommand (Interface)

This interface is implemented by objects that can be placed on a command queue.

5.8.1.9.10 TSSImportHandler (Class)

This class handles the actual import of the data into the CHART system proper. It inherits

CommandQueue processing functionality from the EITaskHandler. This class maintains a

cache of candidate TSSs from the external source and keeps a cache of references to

ExternalTSS objects in CHART. The two caches are maintained via messages received

from the external system and translated for CHART.

5.8.1.9.11 TSSImportModule (Class)

This module imports TSS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

CHART R3B3 Detailed Design 5-215 12/23/2008

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external TSS objects in chart and allows for ongoing updates

to those objects.

5.8.1.9.12 TSSImportModuleProperties (Class)

This class holds all properties needed by the TSSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external TSS data into

CHART TSS data.

5.8.1.9.13 TSSImportTask (Class)

This class is the command to process the external TSS import request received from the

translation process and bound for CHART. It is executed by the CommandQueue

asynchronously.

CHART R3B3 Detailed Design 5-216 12/23/2008

5.8.1.10 TSSImportModuleClasses (Class Diagram)

1

1

1

ServiceApplication
«interface»

ServiceApplicationModule
«interface»

Implements Corba interface
for managing external TSS
devices. See
ExternalDeviceManagerClasses.

TSSImportModule

1
1

TSSImportDB

TSSImportModuleProperties

ExternalTSSManagerImpl

TSSImportAcquireHandler

UniquelyIdentifiable
«interface»

ExternalSystemConnection
«interface»

Corba Interface for
reporting status for
an External System's
Connection to Chart.

ExternalSystemConnectionImpl

EITaskHandler

TSSImportTranslationHandler

PushEventSupplier

TSSImportHandler

1

1

1

1

1 1
1

1

1 1

1
DBConnectionManager

initialize(ServiceApplication app):boolean
getVers ion() : ComponentVers ion
traderGroupUpdated() : void
shutdown(Serv iceApplication app):boolean

ServiceApplication m_svcApp;
DefaultServ iceApplicationProperties m_props;

getExcludedTSSList()

+initialize(ServiceApplication)
+shutdown(Serv iceApplication)
+getTSSFactoryWrapper()
+getExtTSSDataList()
+getProperties()
+getPushEventSupplier()
+restart()

-m_app: Serv iceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extTSSFactoryWrapper :
 ExternalTSSFactoryWrapper
-m_externalTSSList :
 HashTable<String
/ ProxyExternalTSS>

ctor(props:Properties)
+getExternalSystemID(): String

-acquirerClassName
-connectionCheckInterval
-connectionCheckStartupDelay
-connectionStaleTimeout
-externalSystemID
-importDirectory
-importFilePattern
-importHostIP
-importMode
-importPassword
-importPort
-importQueue
-importUserName
-ritisXsdFileName
-translationStepClassName
-testFileNamePattern
-opCenterID
-opCenterName
-userName
-externalSystemID
-retryCount

+ctor(extDevMgrConfig : ExternalDeviceManagerConfig,
 candidateSupporter : ExternalDeviceCandidateSupporter,
 gafw : GeoAreaFactoryWrapper)

+createTSSImportAcquireTask(
 EIMessageReceived) : TSSImportAcquireTask
+handleReceipt(EIMessageReceived)
+initialize(translationHandler : TSSImportTranslationHandler,
 props : TSSImportModuleProperties, ExternalSystemConnectionImpl)
+setDataLog(logFileName : String, logFileKeepDays : int)

-m_incomingLog : LogFile
-m_initialized : boolean
-m_props : TSSImportModuleProperties
-m_subscriber :
-m_translationHandler
: TSSImportTranslationHandler

getConfig(): ExternalSystemConnectionConfig
getStatus(): ExternalSystemConnectionStatus

+ctor(ExternalSystem config:ConnectionConfig,
 pushSup:PushEventSupplier, pushIntervalMins int,
 pushEveryChange boolean)
+getConfig() : ExternalSysteConfig
+getStatus() : ExternalSystemStatus
+setStatus(status:SimpleStatus, desc:String)
+setWarningIfOK()
+shutdown()
-sendNotificationsIfNecessary()
-sendNotification()
-sendExternalConnectionAlert()

-m_pushEventSupplier
-m_config
-m_status
-m_eventPushIntervalMins: int
-m_pushEveryChangeFlag: boolean
-m_alertFactory: AlertFactoryWrapper
-m_notificationMgr: NotificationManagerWrapper
-m_sysProfileProps: SystemProfileProperties.
-m_timer : Timer
-m_failWarnStatusChangeTime : long

-createTranslationSteps(TSSImportModuleProperties)
+initialize(TSSImportHandler, TSSImportModuleProperties)
+createTSSTranslationTask(AVList) : TSSImportTranslationTask
+handleTranslation(AVList)
+shutdown()

-m_translationSteps : EITranslationStep[]

+ctor(TSSImportModule)
+initialize(DiscoveryManager)
+createTSSImportTask(AVList[])
+handleTSSImport(AVList[])
+shutdown()
+removeTSSFromExclus ionList()

-m_extTSSFactory : ExternalTSSFactoryWrapper
-m_candidates : Hashtable<String
/ ExternalTSSCandidate>
-m_externalTSSList : HashTable<String
/ ProxyExternalTSS>
-m_excludedTSSList : HashTable<String
/ ExternalObjectIdentificationData>
-m_extTSSManagerImpl : ExternalTSSManagerImpl

Figure 5-153 TSSImportModuleClasses (Class Diagram)

5.8.1.10.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

CHART R3B3 Detailed Design 5-217 12/23/2008

5.8.1.10.2 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.10.3 ExternalSystemConnection (Class)

This interface defines external connections and provides status reporting.

5.8.1.10.4 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to

the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as

configured by the admin.

5.8.1.10.5 ExternalTSSManagerImpl (Class)

This class implements the ExternalTSSManager corba interface (which extends the

ExternalDeviceManger corba interface). It extends the ExternalDeviceManagerImpl class

and inherits most of its functionality from that base class.

5.8.1.10.6 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.8.1.10.7 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.8.1.10.8 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

CHART R3B3 Detailed Design 5-218 12/23/2008

5.8.1.10.9 TSSImportAcquireHandler (Class)

This class handles data acquisition from the external source. It inherits CommandQueue

processing functionality from the EITaskHandler. The custom Acquirer class, which

implements the EIAcquirer interface and is specified in the props, receives messages from

the external system. When a message is received from the external system a

TSSImportAcquireTast task is created and placed on a CommandQueue. When the

CommandQueue executes the task it calls TSSImportAcquireHandler.handleReceipt() to

process the message. The message is processed using the EIAcquirer interface and is

forwarded for translation to the TSSImportTranslationHandler.

5.8.1.10.10 TSSImportDB (Class)

This class provides a database interface for the TSSImportModule. It includes methods

needed to store and retrieve external TSS related information. In particular, a list of

excluded external TSS devices is kept.

5.8.1.10.11 TSSImportHandler (Class)

This class handles the actual import of the data into the CHART system proper. It inherits

CommandQueue processing functionality from the EITaskHandler. This class maintains a

cache of candidate TSSs from the external source and keeps a cache of references to

ExternalTSS objects in CHART. The two caches are maintained via messages received

from the external system and translated for CHART.

5.8.1.10.12 TSSImportModule (Class)

This module imports TSS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external TSS objects in chart and allows for ongoing updates

to those objects.

5.8.1.10.13 TSSImportModuleProperties (Class)

This class holds all properties needed by the TSSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external TSS data into

CHART TSS data.

5.8.1.10.14 TSSImportTranslationHandler (Class)

This class creates and handles TSSImportTranslationTasks. It inherits CommandQueue

processing functionality from the EITaskHandler. It handles translation step classes that

are specified in the props file and customized for the specific translation needed for the data

provided by the external system. After translation the data is forwarded to the

TSSImportHandler for import into CHART.

CHART R3B3 Detailed Design 5-219 12/23/2008

5.8.1.10.15 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.8.1.11 TSSImportTranslationClasses (Class Diagram)

EITaskHandler

TSSImportModule

TSSImportTranslationTask

QueableCommand

AVList

TSSImportTranslationHandler

EIProperties

TSSImportModuleProperties

AVElement
For R3B3 In the context of the
TSSImportModule the lis t of
EITranslationSteps are
specific to TMDD with RITIS
extensions. Translation step
c lass names are specified in
the TSSImportModuleProperties.

EITranslationStep
«interface»

TssTmddTranslationStep1

11

*1

1,0..*1

1

1

1

1

* *
creates and
processes

ctor(String)
+isShutdown() : boolean
+shutdown() : void
+queueMsgTask(QueuableCommand) : boolean

-m_commandQueue : CommandQueue
-m_handlerName : String

+initialize(ServiceApplication)
+shutdown(ServiceApplication)
+getTSSFactoryWrapper()
+getExtTSSDataList()
+getProperties()
+getPushEventSupplier()
+restart()

-m_app: ServiceApplication
-m_acquireHandler
-m_externalSystemConn
-m_importHandler
-m_translationHandler
-m_db
-m_pushEventSupplier
-m_startupThread
-m_extTSSFactoryWrapper :
 ExternalTSSFactoryWrapper
-m_externalTSSList :
 HashTable<String
/ ProxyExternalTSS>

+execute()
+interrupted()

+create()
+add(String, Object)
+get(String):AVElement
+get() : AVElement[]
+clear()

-createTranslationSteps(TSSImportModuleProperties)
+initialize(TSSImportHandler, TSSImportModuleProperties)
+createTSSTranslationTask(AVList) : TSSImportTranslationTask
+handleTranslation(AVList)
+shutdown()

-m_translationSteps : EITranslationStep[]

+create(String name, Object value)
+getName() : String
+getValue() : Object

-m_attributeName : String
-m_value : Object

+initialize(EIProperties)
+translate(inLists:ArrayList, outLists:ArrayList)
+cleanup()

+initialize(TSSImportModuleProperties)

-m_transformer : javax.xml.transform.Transformer

Figure 5-154 TSSImportTranslationClasses (Class Diagram)

5.8.1.11.1 AVElement (Class)

One element of an AVList containing an attribute and a big-O-Object for storing/retrieving

objects easily

5.8.1.11.2 AVList (Class)

Generic collection of attribute and big-O-Object pairs used to move around the application.

5.8.1.11.3 EIProperties (Class)

This class supports properties that are generic to all External Interface modules such as log

filenames.

CHART R3B3 Detailed Design 5-220 12/23/2008

5.8.1.11.4 EITaskHandler (Class)

This class is the base class for the EI Task Handlers. It manages a command queue that is

used to process EI tasks (CommandQueable) objects.

5.8.1.11.5 EITranslationStep (Class)

An EITranslationStep is the base class for all translations. Implementing translations define

how to translate from a particular type of AVList to another particular type of AVList.

5.8.1.11.6 QueableCommand (Interface)

This interface is implemented by objects that can be placed on a command queue.

5.8.1.11.7 TSSImportModule (Class)

This module imports TSS data from an external source. The module allows for

customizable (data source specific) data acquisition and translation using custom classes

implementing generic interfaces). The module provides an ExternalDeviceManager

interface used for configuring external TSS objects in chart and allows for ongoing updates

to those objects.

5.8.1.11.8 TSSImportModuleProperties (Class)

This class holds all properties needed by the TSSImportModule including the name of the

customized class used to acquire data from the external data source. Also, the name of the

customized classes used to define the steps needed to translate the external TSS data into

CHART TSS data.

5.8.1.11.9 TSSImportTranslationHandler (Class)

This class creates and handles TSSImportTranslationTasks. It inherits CommandQueue

processing functionality from the EITaskHandler. It handles translation step classes that

are specified in the props file and customized for the specific translation needed for the data

provided by the external system. After translation the data is forwarded to the

TSSImportHandler for import into CHART.

5.8.1.11.10 TSSImportTranslationTask (Class)

This class wraps an external TSS inventory or status message so it can be put on a

command queue. When the command queue calls the execute() method, this class invokes

the TSSImportTranslationHandler to translate it into CHART-centric TSS data. .

5.8.1.11.11 TssTmddTranslationStep1 (Class)

This class represents step one of a one step translation which will translate TMDD TSS

inventory and TSS status messages to CHART-centric terms. An example of when a

multiple step translation may be needed is when a complex message needs to be simplified

CHART R3B3 Detailed Design 5-221 12/23/2008

before further translation can be done. Multiple simple steps may be able to accomplish

what one complex step could. For ease of maintenance, multiple steps may be better in

that case.

5.8.2 Sequence Diagrams

5.8.2.1 DMSImportAcquireTask:execute (Sequence Diagram)

This diagram depicts the behavior of the execute() method of the DMSImportAcquireTask.

It is called when this task reaches the head of the Acquire command queue. This method is

responsible for breaking the external message into individual DMS messages (inventory

and status). A special case it handles is that it must place a marker in the message stream

after the complete set of refresh events are received after a reconnect with RITIS. After the

Translation Handler passes this marker to the DMS Import handler, the DMS Import

handler knows that all external DMS objects have recently been refreshed and it should

close all events whose last update time is older than the time in the marker message.

CHART R3B3 Detailed Design 5-222 12/23/2008

Acquire
Command

Queue TSSImportAcquireTask TSSImportAcquireHandler TSSImportRitisAcquirer

Validate XML if configured to.

TSSAtisImportTranslationHandler

puts TSS translation task on
translation queue

TranslationTask

puts TSS translation task on
translation queue

TranslationTask

tell downstream a refresh
was received so delete the TSS
candidate list and start a new one

TranslationTask

log error if bad extraction or
error creating task or

error queuing task

log error if bad extraction or
error creating task or

error queuing task

voidvoid

execute(EIMessage)execute(EIMessage)

[* for each dmsStatus
in EIMessage]

[* for each dmsStatus
in EIMessage]

voidvoid

else [MSG_NAME == "TSS_REFRESH"]else [MSG_NAME == "TSS_REFRESH"]

m_forwarder.forward(task)m_forwarder.forward(task)
ImportTSSTranslationTaskImportTSSTranslationTask

extract next tssInventory
from EIMessage

extract next tssInventory
from EIMessage

createcreate

queueMsgTask(task)queueMsgTask(task)

voidvoid

[* for each dmsInventory
in EIMessage]

[* for each dmsInventory
in EIMessage]

voidvoid

task = createTSSTranslationTask(tssRefresh)task = createTSSTranslationTask(tssRefresh)

queueMsgTask(task)queueMsgTask(task)

decode(EIMessage)decode(EIMessage)

ImportTSSTranslationTaskImportTSSTranslationTask
m_forwarder.forward(task)m_forwarder.forward(task)

voidvoid

elseelse

createcreate

ImportTSSTranslationTaskImportTSSTranslationTask

log unknown msglog unknown msg

booleanboolean

queueMsgTask(task)queueMsgTask(task)

voidvoid

task = createTSSTranslationTask(tssInventory)task = createTSSTranslationTask(tssInventory)

voidvoid

voidvoid
log error if bad extraction or

error creating task or
error queuing task

log error if bad extraction or
error creating task or

error queuing task

extract tssStatus
from EIMessage
extract tssStatus
from EIMessage

else [MSG_NAME == "TSS_STATUS"]else [MSG_NAME == "TSS_STATUS"]

task = createTSSTranslationTask(tssStatus)task = createTSSTranslationTask(tssStatus)

[MSG_NAME == "TSS_INVENTORY"][MSG_NAME == "TSS_INVENTORY"]

m_forwarder.forward(task)m_forwarder.forward(task)

handleReceipt(EIMessage)handleReceipt(EIMessage)

createcreate

Figure 5-155 DMSImportAcquireTask:execute (Sequence Diagram)

CHART R3B3 Detailed Design 5-223 12/23/2008

5.8.2.2 DMSImportHandler:getCandidates (Sequence Diagram)

The DMSImportHandler.getCandidates() method is part of the

ExternalDeviceCandidateSupporter interface and is called by the

ExternalDeviceManagerImpl. The collection of ExternalDMSCandidates if traversed to

created a list of ExternalDeviceCandidate objects used by the ExternalDeviceMangerImpl.

It the candidate is in the list of ExternalDMS objects know to Chart, the candidates

INCLUDED flag is set. It the candidate is in the excluded list, the candidate's

EXCLUDED flag is set. Note: if the candidate is in both lists, we assume the Include list is

correct and remove it from the excluded list. Only one flag should be set. The Correctly

populated list of ExternalDeviceCandidates is then returned to the caller.

ExternalDeviceManagerImpl

m_excludedDMSList:
Hashtable

{ *m_candidates]

DMSImportHandler

getCandidates()

Loop thru m_candidates
which is a collection of
ExternalDMSCandidate
objects .

If candidate is in both lis ts ,
this is a mistake. Trust that
the m_externalDMSList is
correct and remove it from
the Exclus ion list.

Note: the exc lusion list will need
to be persisted when
changed.

Called as part of the
ExternalDeviceCandidateSupporter
interface.

m_externalDMSList:
Hashtable

returnCandidates:
ArrayLis t

<ExternalDeviceCandidateInfo>

included:boolean =
contains(candidate key)

[inc luded &&
excluded]

exc luded = false

create()

add(extDeviceCandidate)

create(candidate.m_id,, excluded, inc luded)

returnCandidates

remove(candidate key)

exc luded:boolean =
contains(candidate key)

extDeviceCandidate:
ExternalDeviceCandidateInfo

Figure 5-156 DMSImportHandler:getCandidates (Sequence Diagram)

CHART R3B3 Detailed Design 5-224 12/23/2008

5.8.2.3 DMSImportRitisAcquirer:connectIfNecessary (Sequence Diagram)

 This diagram depicts the connectIfNecessary() method of the DMSImportRitisAcquirer

class. This method is called at initiation and periodically after that. When invoked, if the

RITIS connection is failed or stale (no activity on the connection for while - see properties),

it attempts a reconnection. Its primary duty is to rebuild the JMS connection with RITIS by

registering to have the OnMessage() method called whenever RITIS has a message to send.

It is expected that the stale connection value will be large enough to not present a

performance problem for either CHART or RITIS but small enough to be responsive to

users if the connection is temporarily lost. The RITIS connection status is updated if a

reconnect is attempted.

ConnectionTimerTask
or

DMSImportRitisAcquirer.initialize()

DMSImportRitisAcquirer

ActiveMQConnectionFactory

ExternalSystemConnectionImpl

javax.jms.QueueConnection

All this to register
DMSImportRitisAcquirer's
onMessage method as a
receiver of a JMS queue

javax.jms.QueueSession

set m_receiver,
m_session, and
m_queueConnection
to null if not null

ActiveMQQueue

QueueReceiver

cleanupConnection()

setExceptionListener(this)

create

m_subscriber : QueueReceiver =
createReceiver(topic)

topic : ActiveMQQueue = ctor(queueName)

[invalid queue] throw InvalidDestinationException

connStat = getStatus()
ExternalConnectionStatus

setMessageListener(this)

[not in test mode] setStatusFail()

QueueReceiver

ctor(activeMQConnection)

m_queueConnection = createQueueConnection
(m_userName, m_password)

QueueConnection

[queue fails to start] throw JMSException

[internal error] throw JMSException

[not in test mode] setStatusOK()

create

start()

QueueSession

obtain RITIS-specific userName, password,
queueName, and JMS connection string from props

cleanupConnection()

create

[transaction or acknowledgement modes not supported
or internal error] throw JMSException

[connStat.statusvalue == FAILED OR
now - connStat.statusTime > PROP_KEY_max_stale]

try

connectIfNecessary(
ExternalSystemConnectionImpl)

m_session = createQueueSession(NOT_TRANSACTED,
Session.AUTO_ACKNOWLEDGE)

void

[errors] throws JMSException

m_connectionLastUseTime = now

catch

Figure 5-157 DMSImportRitisAcquirer:connectIfNecessary (Sequence Diagram)

CHART R3B3 Detailed Design 5-225 12/23/2008

CHART R3B3 Detailed Design 5-226 12/23/2008

5.8.2.4 DMSImportRitisAcquirer:initialize (Sequence Diagram)

 This diagram depicts the initialize() method of the DMSImportRitisAcquirer class. After

attempting to connect to RITIS and updating the connection status, it kicks off a periodic

task that checks the connection status (see connectIfNecessary()) and reconnects, if

necessary.

DMSImportAcquireHandlerDMSImportModuleProperties

Created us ing
Class.forName(c lassName),
newInstance()

If configured to validate XML,
create validator and set
m_validateXML = true. Details
left for implementation.

DMSImportRitisAcquirer

set other member varriables: m_forwarder, m_acquirerLogFile'
m_extSysConnImpl.

Cast EIProperties to
DMSImportModuleProperties

m_timer:
java.util.Timer

m_timer:
java.util.Timer

StaleConnectionTimerTask

Timer task periodically
 reads DMS status and
configuration data from
files.

sometime later on
scheduled intervals ...

testTimerTask:
TestFileTimerTask

m_props = (DMSImportModuleProperties)props

connectIfNecessary()
run()

ctor(TRUE)

newInstance()

c lassName:String =
getAcquireClassName()

schedule(connectionTask,
PROP_KEY_connectionCheckStartupDelay,

PROP_KEY_connectionCheckInterval)

connectionTask = ctor(this)

initialize(
DMSImportTrans lationHandler,
DMSImportModuleProperties,

ExternalSystemConnectionImpl)

initialize(EIForwarder, props:EIProperties, LogFile,
ExternalSystemConnectionImpl)

[m_props.validateEvents()]

m_initialized = true

create(true)

create(this , m_props)

m_validateXML = true

m_initialized

[m_props.getTestMode]

schedule(testTimerTask,
m_props.getTestFileIntervalMillis,
m_props.getTestFileIntervalMiliits)

m_validator = new java.xml.validation.Validator

Figure 5-158 DMSImportRitisAcquirer:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-227 12/23/2008

5.8.2.5 DMSImportRitisAcquirer:onMessage (Sequence Diagram)

 This diagram depicts the onMessage() method of the DMSImportRitisAcquirer class. This

method is called when RITIS has a DMS inventory or status message for CHART. To

ensure CHART is responsive to RITIS, the onMessage() method's only job is to create an

Acquire task containing the external message and put it on the Acquire command queue in

the proper format and be ready for the next message from RITIS.

RITIS queue

message:
javax.jms.Message

For lab testing: create a timer task that
periodically looks for a file (spec ified pattern in
props like "*.xml") containing RITIS xml messages, calls
DMSImportRitisAcquirer.onMessage(message),
then deletes the file

DMSImportRitisAcquirer ExternalSystemConnectionImpl

acknowledge() tells
jms queue not to resend
this javax.jms.Message

DMSImportAcquireHandler

put message task
on acquire queue

DMSImportAcquireTask

m_connectionLastUseTime = now

boolean

acknowledge()

try
convert message to javax.jms.TextMessage

finally

queueMsgTask(task) : boolean

onMessage(message : javax.jms.Message

catch
setStatusFailed("Error receiving RITIS Message")

task = ctor(msg, this)

convert TextMessage to msg : EIMessage

m_forwarder.prepare(EIMessage)

Figure 5-159 DMSImportRitisAcquirer:onMessage (Sequence Diagram)

CHART R3B3 Detailed Design 5-228 12/23/2008

5.8.2.6 EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)

This diagram depicts the setStatus() method for the ExternalSystemConnectionImpl. If

the state changes a CORBA event is pushed with the current status. An event is pushed on

any update, if configured to do so.

Store original status
value for later.

For the purpose of sending notificatsion /
ExtSysConn alerts for failure/warning states,
time spent in Failure OR Warning state counts
toward our threshold waiting period before
notification/alert is sent.

[status == SimpleStatus.OK]

origiStatus:SimpleStatus =
m_status.statusValue

m_failWarnStatusChangeTime = 0

[(status == FAILURE &&
origStatus == OK) | |

(status == WARNING &&
origStatus == OK)]

m_failWarnStatusChangeTime = NOW

setStatus(SimpleStatus.WARNING, desc)

[m_status.statusVaule ! = status
| | desc ! = m_status.statusDesc]

m_status.statusDesc = desc

pushStatusEvent()

Note: Any acces to m_status
should be synchronized in
the ExternalSystemConnection
class.

Note: An optional timer task will
push Corba status events based on a
configurable interval.

Note: At construction the status
will be set to FAILED with the assumption
that one of these methods will
be called shortly after this object
is registered in the trader.

Push event if state had changed
OR configured to push on
every status update

[stateChanged | m_pushEveryChangeFlag]

if desc is NULL,
set statusDesc to
empty string.

ExternalSystemConnectionImpl

setStatus(status:SimpleStatus,
desc:String)

m_status.statusChangeTIme = NOW

m_status.statusValue = status

m_status.statusConfirmTime = NOW

setWarningIfOK(
desc:String)

stateChanged:boolean = true

[m_status.statusValue == SimpleStatus.OK]

Figure 5-160 EventImportModule:ExtSysConnStatusUpdate (Sequence Diagram)

CHART R3B3 Detailed Design 5-229 12/23/2008

5.8.2.7 EventImportRitisAcquirer:connectIfNecessary (Sequence Diagram)

[connStat.statusvalue == FAILED OR
now - connStat.statusTime > PROP_KEY_max_stale]

try

connectIfNecessary(
ExternalSystemConnectionImpl)

m_session = createQueueSession(NOT_TRANSACTED,
Session.AUTO_ACKNOWLEDGE)

void

[errors] throws JMSException

m_connectionLastUseTime = now

catch

ConnectionTimerTask
or

EventImportRitisAcquirer.initialize()

EventImportRitisAcquirer

ActiveMQConnectionFactory

ExternalSystemConnectionImpl

javax.jms.QueueConnection

All this to register
EventImportRitisAcquirer's
OnMessage method as a
receiver of a JMS queue

javax.jms.QueueSession

set m_receiver,
m_session, and
m_queueConnection
to null if not null

ActiveMQQueue

QueueReceiver

cleanupConnection()

setExceptionListener(this)

create

m_subscriber : QueueReceiver =
createReceiver(topic)

topic : ActiveMQQueue = ctor(queueName)

[invalid queue] throw InvalidDestinationException

connStat = getStatus()
ExternalConnectionStatus

setMessageListener(this)

[not in test mode] setStatusFail()

QueueReceiver

ctor(activeMQConnection)

m_queueConnection = createQueueConnection
(m_userName, m_password)

QueueConnection

[queue fails to start] throw JMSException

[internal error] throw JMSException

[not in test mode] setStatusOK()

create

start()

QueueSession

obtain RITIS-specific userName, password,
queueName, and JMS connection string from props

cleanupConnection()

create

[transaction or acknowledgement modes not supported
or internal error] throw JMSException

Figure 5-161 EventImportRitisAcquirer:connectIfNecessary (Sequence Diagram)

CHART R3B3 Detailed Design 5-230 12/23/2008

5.8.2.8 ExternalDeviceManagerImpl:searchCandidates (Sequence Diagram)

This sequence diagram depicts the processing involved when a client requests a search of

external device candidates. The ExternalDeviceManagerImpl utilized a

ExternalDeviceCandidateSupporter to retrieve a list of ExternalDeviceCandidates. The

ExternalDeviceCandidateSupporter interface is implemented by either the

DMSImportModule's DMSImportHandler or the TSSImportModule's TSSImportHandler.

If the search criteria passed in from the client contains GeoAreas to search, a list of

Polygons representing the GeoAreas to be searched is created. The search criteria is

applied to the candidates in order to build a list of candidates meeting the search criteria.

This result is returned to the client after being wrapped in a CandidateGroup object.

returnGroup:
CandidateGroup

create(m_config.id, returnCandidates)

[candidate.agency NOT IN criteria.agencyNames]

[criteria's Chart Applicability Flags don't match
candidate]

[candidate does not match criteria.searchText

found:boolean =
isPointInPolygon(candidate.location.geoLocation.point, polygons)

[!found]

Doesn't meet criteria.
Continue with next candidate.

Search for candidates to
return based on the
criteria passed in.
Agency, Chart Applicability
Flags, Search Text,
GeoArea.

add(candidate)

returnGroup

[criteria.geoAreaNames.size() > 0]

area:GeoArea[] = getGeoAreas()
Build an array of
GeoAreas to be
searched based
on the criteria.
geoAreasToSearch:
GeoArea[].

If criteria contains
GeoAreas to
Search, build a list
of Polygons used
for searching.

polygons:java.awt.Polygon[] = createPolygonsFromGeoAreas(geoAreasToSearch)

[*candidates]

GeoAreaUtil

getCandidateInfo(
m_config.extDeviceType)

create()

ExternalDeviceManagerImp
m_candidateSupporter:

ExternalDeviceCandidateSupporter

The ExternalDeviceCandidateSupporter
will return a correctly populated array of
ExternalDeviceCandidateInfo objects based
on its current state.

returnCandidates:
ArrayList

GeoAreaFactoryWrapper

searchForCandidateDevices(
criteria:CandidateSearchCriteria)

candidates:ExternalDeviceCandidateInfo[]

Create an ArrayList of
ExternalDeviceCandidateInfo
objects to return.

Figure 5-162 ExternalDeviceManagerImpl:searchCandidates (Sequence Diagram)

CHART R3B3 Detailed Design 5-231 12/23/2008

5.8.2.9 ExternalDeviceManagerImpl:setCandidates (Sequence Diagram)

The sequence diagram depicts the ExternalDeviceManagerImpl.setCandidates() method.

This method is called by the gui to apply directives for configuring External Devices. The

method will validate the data passed from the gui and throw an exception if invalid data is

found. After validation the ExternaDeviceManagerImpl will call the

ExternalDeviceSupporter interface (implemented by the DMSImportHandler in this

diagram) to set the external device candidate directives. For each

ExternalDeviceCandidateInfo object passed in, follow the directives in each object to

maintain the lists of include ExternalDMS objects as well as excluded ext devices.

[included == TRUE]

If directed not to include
the dms and it does exist,
get the ProxyExtDMS from
the cache and use the
wrapped ExtDMS
reference to remove the dms. extDMSProxy:ProxyExternalDMS = get(key)

removeExtDMS(
extDMSProxy)

[directive.exclude == TRUE]

excluded:boolean = contains(key)

[excluded == FALSE

put(key, directive.extId)

setCandidates() is
part of the
ExternalDeviceManager
Corba Interface.

Pass the array of
ExternalDeviceCandidateInfo
objects wrapped inside the
CandidateGroup to the
ExternalDeviceCandidateSupporter.
In the context of this diagram,
the ExternalDeviceCandidateSupporter
interface is implemented by the
DMSImportHandler.

setCandidates(group:CandidateGroup)

remove(key)

If directed to exclude the
dms and it is not in the
exclusion list already, add it.
Note: the exclusion list will
need to be persisted when
changed.

If directed not to exclude
the dms and it exists in
the exclusion list, remove
it from the list.

Note the exclusion list
will need to be persisted
when changed.

ExternalDeviceManagerImpl
m_candidateSupporter:

ExternalDeviceCandidateSupporter

For this diagram this supporter is the DMSImportHandler.
Similar activites will be done by the TSSImportHandler.

setCandidates(
group.candidates)

[*group.candidates]

directive:
ExternalDeviceCandidateInfo

Validate candidates in CandidateGroup.
If group.extDeviceManagerId !=
m_config.id OR and candidate in
group.candidates has both the exclusion
flag and includsion flag set, the data is
considered to be INVALID.

validateData(
group:CandidateGroup)

[dataIsInvalid]

InvalidDataException

m_candidates:
Hashtable

m_externalDMSList:
Hashtable

m_excludedDMSList:
Hashtable

build String key for
candidate to access
hashtables.

key:String =
directive.extID.system +
directive.extID.agency +

directive.extId.extId

included:boolean = contains(key)

[directive.include == TRUE]

[included == FALSE]

dmsCandidate:ExternalDMSCandidate =
get(key)createExtDMS(

dmsCandidate)

If directed to include the
dms and it does not
already exist,create a
new ExternalDMS using
cached candidate data.

else

else

Loop thru collection of
ExternalDeviceCandidateInfo
objects passed in (candidates).
These are the directives for each
candidate specified by the admin
during external device configuration.

[excluded == TRUE]

Figure 5-163 ExternalDeviceManagerImpl:setCandidates (Sequence Diagram)

CHART R3B3 Detailed Design 5-232 12/23/2008

5.8.2.10 ExternalInterfaceModule:dmsTranslationStep1Translate (Sequence Diagram)

 This diagram depicts the translation of external event messages into Chart Event data. The

DMSAtisTranslationStep1.translate() method is called by the

DMSImportTranslationHandler.handleTranslation() method. It takes in a AVList

and based on the message name processes it accordingly. For EVENT related messages it

pulls the XML string from the first element in the AVList. This xml string contains

information for one specific event or incident. It transforms the XML into a CHART-

specific XML string using XSL Transformation. The resulting XML string is then added

the outbound AVList and the method returns. For REFRESH messages no translation is

done. The message is just added to the outbound AVList and the method returns.

Use DMS Status XML string from
inlist to create a
StringBufferInputStream (inXML).
Create a new StringWriter object
to be used to capture the translated
XML (outXML)..

Create an AVList with an
element containing the
translated XML string and
add it to outLis t

Process DMS Status Message
else [av l.getMessageName() ==

ExtDMSConstants.DMS_STATUS_MSG]

try

transform(new StreamSource(inXML), new StreamResult(outXML)

add(outAVL)

catch
bReturn = false

DMSImport
TranslationHandler

Use DMS Inventory XML string from
inlist to create a
StringBufferInputStream (inXML).
Create a new StringWriter object
to be used to capture the translated
XML (outXML)..

Create an AVList with an
element containing the
translated XML string and
add it to outLis t

DMSAtisTranslationStep1

For the
DMS_REFRESH_MSG
message no
translation is done.
It is just passed
through.

ArrayList of
AVLists

ArrayList:
inLis t

ArrayList:
outLis t

Process DMS Inventory Message

Created when step
class is constructed using
xsl file specified in props..

javax.xml.transform.Transformer:
m_xmlTransformer

Process DMS Refresh Message

Log

try

translate(inLis t:ArrayList,
outList:ArrayList)

[*inLis t]

add(avl)

catch

transform(new StreamSource(inXML), new StreamResulf(outXML)

else [av l.getMessageName() ==
ExtDMSConstants.DMS_REFRESH_MSG]

[av l.getMessageName() ==
ExtDMSConstants.DMS_INVENTORY_MSG]

c lear()

add(outAvl)

bReturn:boolean = true

bReturn = false

else

bReturn = false

log("unkown message type")

[bReturn]
TRANSLATION_SUCCESS

else

avl:AVList = inLis t.iterator.next()

TRANSLATION_ERROR

Figure 5-164 ExternalInterfaceModule:dmsTranslationStep1Translate (Sequence

Diagram)

CHART R3B3 Detailed Design 5-233 12/23/2008

5.8.2.11 ExternalInterfaceModule:handleDITranslationTask (Sequence Diagram)

 This diagram depicts how each DMS message is iterated on as it is translated from the

external XML format into the internal format. The result is put on the

DMSImportHandler’s command queue for use as a candidate object and possibly to update

the status or configuration of an external DMS that has already been imported.

[retCode ==
TRANSLATION_STOP]

add(inAvl)

[x > 0]

[retCode !=
TRANSLATION_SUCCESS]

task:DMSImportTask = createDMSImportTask(outList.toArray())

void

CommandQueue

DMSImportTranslationTask DMSImportTranslationHandler

Reset inList and outList
between steps.,
inList.clear();
inList = outList;
outList = new ArrayList()

Break out
of loop

ArrayList:
inList

DMSImportTranslationStep

ArrayList:
outList

Log that translation was
stopped prematurely.
More for debugging.

DMSImportHandler

Log that translation
returned an Error.

handleTranslation(
inAvl:AVList)

create()

[*m_translationSteps]

retCode:int = translate(inList, outList)

[retCode ==
TRANSLATION_SUCCESS]

queueMsgTask(task)

[retCode ==
TRANSLATION_ERROR]

void

execute()

create()

Figure 5-165 ExternalInterfaceModule:handleDITranslationTask (Sequence Diagram)

CHART R3B3 Detailed Design 5-234 12/23/2008

5.8.2.12 ExternalInterfaceModule:handleDMSImportTask (Sequence Diagram)

 This diagram depicts how the translated DMS inventory and status messages are used to

update an external candidate DMS (in case an administrator wishes to import that object)

and to update the inventory or status of an external DMS that has already been imported.

setStatus(byte[], defaultExtDMSStatus)

defaultExtDMSStatus: ExternalDMSStatus = createDefaultDMSStatus()

add(key, extDMSConfiguration)

setStatus(byte[], ex tDMSStatus)

[found]

* for each
element Ii

in the AVList[]

Receiv ing an exception indicating the failure
to find the ExternalDMSFactoryWrapper class
three consecutive times on these operations
results in a call to the ExternalDMSModule for
a module restart(). This retry limit of three can
be set through the properties file.

else [msgName == DMS_STATUS_MSG]

 found: boolean = contains(key)

m_externalDMSLis t:
Hashtable

xmlString: String = element.getValueAsString()
element = list.get(DMS_XML_ELEMENT)

element: AVElement = create()

setStatus(byte[],
extDMSStatus)

AVElement

else

msgName:String = list.getMsgName()

AVList

m_candidates:
Hashtable

setConfig(byte[], extDMSConfiguration)

AccessDeniedException

setConfig(byte[],
ex tDMSConfiguration)

throw
CHART2Exception

CHART2Exception

lis t: AVLis t = create(extDMSData[ii])

DMSImportTask.
execute()

DMSImportHandler

extDMSConfiguration:ExternalDMSConfiguration = setDMSConfiguration(temp)

ExternalDMSFactoryWrapper

ExternalDMSFactory Impl

else [msgName == DMS_INVENTORY_MSG
|| msgName == DMS_STATUS_MSG]

[msgName == DMS_REFRESH_MSG]

return

extDMSStatus: ExternalDMSStatus:= setDMSStatus(temp)

refresh()

The DMS_REFRESH_MSG triggers the rebuilding of the
candidate lis t m_candidates. refresh() deletes
all current members of the list. It is then created from
scratch using the inventory messages that follow it.

handleExternalImport
(extDMSData: AVLis t[])
[ex ternalDMSData == null]
throw CHART2Exeption

!found

[msgName == DMS_INVENTORY_MSG]

key: DMSDeviceKey = getDMSKey()

temp: AVLis t = convertToAVList(xmlString)

Figure 5-166 ExternalInterfaceModule:handleDMSImportTask (Sequence Diagram)

CHART R3B3 Detailed Design 5-235 12/23/2008

5.8.2.13 ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

This diagram shows how the EventImportHandler class imports external events. After

copying the XML from the translation handler into an AVList, it validates the data. If

invalid it logs that it is ignoring the event. If valid, it populates the BasicEventData

structure. It then looks for the external event in the ObjectCache based on the agency

identification and event Identification. If the event exists it updates the event using the

TrafficEventFactoryWrapper. If the event is new, it calls TrafficEventFactoryWrapper's

createExternalTrafficEvent() method to add the new event to the factory which, in turn,

updates the Object Cache.

EventImportTesk.
execute()

EventImportHandler

if ExternalTrafficEvent is new
call createTrafficEvent and add
newly created event to hashTable.
If not call updateTrafficEvent.

this is a field-by-field
conversion
from XML to AVList

EventImportRules

if name of the AVList is Refresh
we call fullRefresh() method.

TrafficEventFactoryWrapper

 minimum data needed to
 create an externalTrafficEvent :
 external agency, externalID,
description, eventName..

For each AVList call
setBasicEventData.
This call will set owning
org id based on ext
agency mapping.

numberOfTry++

Only apply import
rules on the creation
of a new traffic event

Sets the value for the
BasicEventData's
 isInteresting flag.

Look for event key in Object cache
based on agencyIdentification,
and eventIdentification

If event exist we get reference to
TrafficEvent from Object cache

TrafficEventFactoryImpl

Do not apply import
rules to traffic event
updates

AlertFactoryWrapper

NotificationFactoryWrapper

TrafficEvent

EventImportModule

New for R3B3

includeEvent: boolean = includeEvent(BasicEventData)includeEvent: boolean = includeEvent(BasicEventData)
[includeEvent][includeEvent]

sendNotificationsIfNecessary(BasicEventData)sendNotificationsIfNecessary(BasicEventData)
createExternalEventAlert()createExternalEventAlert()

createExternalEventNotification()createExternalEventNotification()

sendNotificationsIfNecessary(Basic EventData)sendNotificationsIfNecessary(Basic EventData)
createExternalEventAlert()createExternalEventAlert()

createExternalEventNotification()createExternalEventNotification()

catchcatch

returnreturn

elseelse

if return = traficEventInfo]if return = traficEventInfo]

shutdown()shutdown()

[*for each
avList in AVList[]]

[*for each
avList in AVList[]]

returnreturn

addToTrafficEventList(key, TrafficEvent)addToTrafficEventList(key, TrafficEvent)

isChartEvent
(eventType)
isChartEvent
(eventType)

getEventType(avList)getEventType(avList)

If not EventExist(key)If not EventExist(key)

validate AVList()validate AVList()

fullRefresh()fullRefresh()

restart()restart()

buildAVList(String xmlData)buildAVList(String xmlData)

getEventInitiator(avList)getEventInitiator(avList)

handleExternalImport
(AVList[])

handleExternalImport
(AVList[])

[extEventData = null]
throw CHART2Exeption

[extEventData = null]
throw CHART2Exeption

createExternalTrafficEvent
(byte[], EventInitiator, eventType, BasicEventData,

null,null,LaneConfig,false)

createExternalTrafficEvent
(byte[], EventInitiator, eventType, BasicEventData,

null,null,LaneConfig,false)

AccessDeniedExceptionAccessDeniedException

elseelse

createExternalTrafficEvent
(byte[], EventInitiator, eventType, BasicEventData,

null,null,LaneConfig,false)()

createExternalTrafficEvent
(byte[], EventInitiator, eventType, BasicEventData,

null,null,LaneConfig,false)()

setBasicEventData(AVList)setBasicEventData(AVList)

trafficEvent:updateTrafficEventData(BasicEventData)trafficEvent:updateTrafficEventData(BasicEventData)

for * numberOfTryfor * numberOfTry

throw
UnknownEventType exception

throw
UnknownEventType exception

if(numberOfTry =
 property.retryNumber

if(numberOfTry =
 property.retryNumber

trytry

throw
CHART2Exception

throw
CHART2Exception

CHART2ExceptionCHART2Exception

createChartToken(AVList)createChartToken(AVList)

UnknownEventType exceptionUnknownEventType exception

Figure 5-167 ExternalInterfaceModule:handleExternalImport (Sequence Diagram)

CHART R3B3 Detailed Design 5-236 12/23/2008

5.8.2.14 ExternalInterfaceModule:handleTITranslationTask (Sequence Diagram)

 This diagram depicts how each TSS message is iterated on as it is translated from the

external XML format into the internal format. The result is put on the TSSImportHandler’s

command queue for use as a candidate object and possibly to update the status or

configuration of an external TSS that has already been imported.

[x > 0]

task:TSSImportTask = createTSSImportTask(outList.toArray())

handleTranslation(
inAvl:AVList)

[*m_translationSteps]

[retCode ==
TRANSLATION_SUCCESS]

[retCode ==
TRANSLATION_ERROR]

execute()

[retCode ==
TRANSLATION_STOP]

CommandQueue

TSSImportTranslationTask TSSImportTranslationHandler

Reset inList and outList
between steps.,
inList.clear();
inList = outList;
outList = new ArrayList()

Break out
of loop

ArrayList:
inList

TSSImportTranslationStep

ArrayList:
outList

Log that translation was
stopped prematurely.
More for debugging.

TSSImportHandler

Log that translation
returned an Error.

add(inAvl)

[retCode !=
TRANSLATION_SUCCESS]

void

create()

retCode:int = translate(inList, outList)

queueMsgTask(task)

void

create()

Figure 5-168 ExternalInterfaceModule:handleTITranslationTask (Sequence Diagram)

CHART R3B3 Detailed Design 5-237 12/23/2008

5.8.2.15 ExternalInterfaceModule:handleTSSImportTask (Sequence Diagram)

 This diagram depicts how the translated TSS inventory and status messages are used to

update an external candidate TSS (in case an administrator wishes to import that object) and

to update the inventory or status of an external TSS that has already been imported.

refresh()

[externalTSSData == null]
throw CHART2Exeption

AccessDeniedException

key: TSSDeviceKey = getTSSKey()

defaultExtTSSStatus: ExternalTSSStatus = createDefaultExtTSSStatus()

TSSImportTask.
execute()

TSSImportHandler

AVLis t

m_externalTSSList:
Hashtable

AVElement

The TSS_REFRESH_MSG triggers the rebuilding of the
candidate lis t m_candidates. refresh() deletes
all current members of the list. It is then created from
scratch us ing the inventory messages that follow it.

m_candidates:
Hashtable

ExternalTSSFactoryWrapper

Receiv ing an exception indicating the failure
to find the ExternalTSSFactoryWrapper class
three consecutive times on these operations
results in a call to the ExternalTSSModule for
a module restart(). This retry limit of three can
be set through the properties file.

ExternalTSSFactoryImpl

setStatus(byte[],
extTSSStatus)

add(key, extTSSConfiguration)

extTSSStatus: ExternalTSSStatus:= setTSSStatus(temp)

setStatus(byte[], ex tTSSStatus)

element = list.get(TSS_XML_ELEMENT)

else

element: AVElement = create()

 found: boolean = contains(key)

list: AVList = create(extTSSData[ii])

temp: AVList = convertToAVList(xmlString)

[msgName == TSS_INVENTORY_MSG]

xmlString: String = element.getValueAsString()

msgName:String = list.getMsgName()

[found]

throw
CHART2Exception

CHART2Exception

else [msgName == TSS_STATUS_MSG]

extTSSConfiguration:ExternalTSSConfiguration = setTSSConfiguration(temp)

* for each
element Ii

in the AVLis t[]

else [msgName == TSS_INVENTORY_MSG
|| msgName == TSS_STATUS_MSG]

[msgName == TSS_REFRESH_MSG]

return

setStatus(byte[], defaultExtTSSStatus)

!found
setConfig(byte[], ex tTSSConfiguration)

handleExternalImport
(extTSSData: AVLis t[])

setConfig(byte[],
ex tTSSConfiguration)

Figure 5-169 ExternalInterfaceModule:handleTSSImportTask (Sequence Diagram)

CHART R3B3 Detailed Design 5-238 12/23/2008

5.8.2.16 ExternalInterfaceModule:initializeDMSImportModule (Sequence Diagram)

 This diagram depicts the initialization of the DMSImportModule. After the props file is

read the ExternalSystemInterface is created and activated with the ORB. The Handlers are

created and then initialized in this order: DMSImportHandler,

DMSImportTranslationHandler, DMSImportAcquireHandler. Note that the

DMSImportHandler may wait forever looking for a valid DMSFactory. This is intentional

because without the factory, the other handlers have nothing to do.

create()

maintainSystemProfileProperties()

initialize(m_app.getORB(), m_app.getTraderGroup(),
m_props.getDMSFactory(), m_app.getMaxRemoteTraderSourceUseMins())

ExternalDMSFactoryWrapper

create()

getDiscoveryManager()

[error creating
ExternalDMSFactoryWrapperl]

false

add(ddCmd)

create()

DiscoveryManager

This starts discovery of External DMS Event Channels
and External DMSs from other External DMS Modules.

ddCmd : DiscoverExternalDMSClassesCommand

DMSImportDB

defProps:Properties =
getDefaultProperties()

m_pushEventSupplier =
createEventChannel.

extSysIdString:String = getExtSysIdString()

create(extSystemConfig, m_pushSupplier)

start()

create(extSysConnId, extSysIdString, ExternalDataType.DMS)

void

t:Runnable = create(this)

create(t)

[error creating
extSysConnImpl]

false

m_props = create(props, defProps)

extSysConnId:Identifier = getPersistentObjectId("DMSImpModuleExtSysConnId.id",
m_app.getIdentifierGenerator)

Default
Service

Application

Create and register event channel
ExternalSystem.
EVENT_CHANNEL_EXT_SYSTEM_CONN

Activate m_extSysConn, register
its service type and register object
with service app.

DMSImportModule

ServiceApplication:
m_app DMSImportModuleProperties

HandlerStartupThread

Assume only one
DMSImportModule
per service.

This class implements
the Runnable interfacem_startupThread:

Thread.

CorbaUtilities

This method asynchronously
returns after starting a thread
to start the Acquirer, Translate,
and DMSImport handlers.

ExternalSystemConnectionConfig:
extSystemConfig

ExternalSystemConnectionImp:
m_extSysConn

initialize()

props:Properties =
getProperties()

Figure 5-170 ExternalInterfaceModule:initializeDMSImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-239 12/23/2008

5.8.2.17 ExternalInterfaceModule:initializeEventImportModule (Sequence Diagram)

This diagram depicts the initialization of the EventImportModule. After the props file is

read the ExternalSystemInterface is created and activated with the ORB. The Handlers are

created and then initialized in this order: EventImportHandler,

EventImportTranslationHandler, EventImportAcquireHandler. Note that the

EventImportHandler may wait forever looking for a valid TrafficEventFactory. This is

intentional because without the factory, the other handlers have nothing to do.

defProps: Properties =
getDefaultProperties()

m_pushEventSupplier =
createEventChannel.

extSysIdString:String = getExtSysIdString()

create(extSystemConfig, m_pushSupplier)

Default
Service

Application

ServiceApplication:
m_app

Create and register event channel
ExternalSystem.
EVENT_CHANNEL_EXT_SYSTEM_CONN Assume only one

EventImportModule
per Service.

Activate m_extSysConn, register
its service type and register object
with service app. Left for
implementation. Probably combined
with extSysConnImpl creation in its
own method.

create(t)

NotificationFactoryWrapper

initialize(m_app)

create()

initialize(m_app.getORB(), m_app.getTraderGroup(),
 m_app.getMaxRemoteTraderSourceUseMins(), m_props.getTrafficEventFactory())

getDiscoveryManager()
DiscoveryManager

maintainSystemProfileProperties()

[error creating
TrafficEventFactoryWrapper]

false

t:Runnable = create(this)

start()

HandleStartupThread

[error creating
extSysConnImpl]

false

This class implements
the Runnable interface
(poorly named).

[error creating
AlertFactoryWraper]

false create()

AlertFactoryWrapper

TrafficEventFactoryWrapper

create()

initialize(m_app.getORB(), m_app.getTraderGroup(), 300, 30)

ExternalSystemConnectionImp:
m_extSysConn

initialize()
props: Properties =

getProperties()

m_props = create(props, defProps)

extSysConnId:Identifier = getPersistentObjectId("EventImpModuleExtSysConnId.id",
m_app.getIdentifierGenerator)

create(extSysConnId, extSysIdString, ExternalDataType.TRAFFIC_EVENT)

void

EventImportModule EventImportModuleProperties CorbaUtilities

ExternalSystemConnectionConfig:
extSystemConfig

m_startupThread:
Thread.

This method will
return asynchronously
after starting a thread
to start the Acqure, Translate,
and EventImport handlers.

Figure 5-171 ExternalInterfaceModule:initializeEventImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-240 12/23/2008

5.8.2.18 ExternalInterfaceModule:initializeTSSImportModule (Sequence Diagram)

 This diagram depicts the initialization of the TSSImportModule. After the props file is

read the ExternalSystemInterface is created and activated with the ORB. The Handlers are

created and then initialized in this order: TSSImportHandler,

TSSImportTranslationHandler, TSSImportAcquireHandler. Note that the

TSSImportHandler may wait forever looking for a valid TSSFactory. This is intentional

because without the factory, the other handlers have nothing to do.

DiscoveryManager

HandlerStartupThread

ExternalSystemConnectionConfig:
extSystemConfig

m_startupThread:
Thread.

ExternalSystemConnectionImp:
m_extSysConn

initialize(m_app.getORB(), m_app.getTraderGroup(),
m_props.getTSSFactory(), m_app.getMaxRemoteTraderSourceUseMins())

create()

add(ddCmd)

defProps:Properties =
getDefaultProperties()

extSysIdString:String = getExtSysIdString()

start()

void

create(t)

m_props =
create(props, defProps)

initialize()

create()

CorbaUtilities

dtCmd : DiscoverExternalTSSClassesCommand

TSSImportDB

This class implements
the Runnable interface

This method asynchronously
returns after starting a thread
to start the Acquirer, Translate,
and TSSImport handlers.

ExternalTSSFactoryWrapper
create()

Default
Service

Application

Create and register event channel
ExternalSystem.
EVENT_CHANNEL_EXT_SYSTEM_CONN

Activate m_extSysConn, register
its service type and register object
with service app.

TSSImportModule
ServiceApplication:

m_app TSSImportModuleProperties

Assume only one
TSSImportModule
per service.

This starts discovery of External TSS Event Channels
and External TSSs from other External TSS Modules.

t:Runnable = create(this)

props:Properties =
getProperties()

maintainSystemProfileProperties()

[error creating
ExternalTSSFactoryWrapperl]

false

getDiscoveryManager()

m_pushEventSupplier =
createEventChannel.

create(extSystemConfig, m_pushSupplier)

create(extSysConnId, extSysIdString, ExternalDataType.TSS)

[error creating
extSysConnImpl]

false

extSysConnId:Identifier = getPersistentObjectId("TSSImpModuleExtSysConnId.id",
m_app.getIdentifierGenerator)

Figure 5-172 ExternalInterfaceModule:initializeTSSImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-241 12/23/2008

5.8.2.19 ExternalInterfaceModule:restartDMSImportModule (Sequence Diagram)

 This diagram depicts the restart process of the DMSImportModule. It begins with the

creation of a restart task that manages the restart process independent of the calling method.

It is important to point out that the module itself does not restart as the method name might

imply. Rather, the three event import data handlers, the DMSImportHandler, the

DMSSImportTranslationHandler, and the DMSImportAcquireHandler, are each shutdown

and restarted with the intent of purging and resetting the data import queue. Order matters

and the handlers are stopped in the reverse order from their original startup. During the

time in which the data handlers are shutdown, the external connection status is forced to

"failed" to bring about a connection reset with the external data source. Once this is

complete, the restart task creates the event import data handlers anew. All three handlers

being successfully created, they are, in turn, initialized so that they begin the external event

import processing.

shutdown()

create()

create()

shutdown()

shutdown()

create()

initialize(m_props)

initialize(m_translationHandler,
m_props, m_extSysConn)

Default
Service

Application

DMSImportModule

Shutdown handlers
in order from external
side to chart side.

DMSImportModuleRestartTask

Restart handlers in
reverse order from
chart side to external
side

DMSImportAcquireHandler
:m_acquireHandler

DMSImportTranslationHandler
:m_translationHandler

DMSImportHandler
m_importHandler

DMSImportAcquireHandler
:m_acquireHandler

DMSImportTranslationHandler
:m_translationHandler

DMSImportHandler
m_importHandler

connectionStatus=failed

void

create()

create()

create()

initialize(m_props)

initialize(m_importHandler, m_props)

create()

initialize(m_translationHandler,
m_props, m_extSysConn)

restart()

shutdown()

shutdown()

shutdown()

initialize(m_importHandler,
m_props)

Figure 5-173 ExternalInterfaceModule:restartDMSImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-242 12/23/2008

5.8.2.20 ExternalInterfaceModule:restartDMSImportModule (Sequence Diagram)

 This diagram depicts the restart process of the TSSImportModule. It begins with the

creation of a restart task that manages the restart process independent of the calling method.

It is important to point out that the module itself does not restart as the method name might

imply. Rather, the three event import data handlers, the TSSImportHandler, the

TSSImportTranslationHandler, and the TSSImportAcquireHandler, are each shutdown and

restarted with the intent of purging and resetting the data import queue. Order matters and

the handlers are stopped in the reverse order from their original startup. During the time in

which the data handlers are shutdown, the external connection status is forced to "failed" to

bring about a connection reset with the external data source. Once this is complete, the

restart task creates the event import data handlers anew. All three handlers being

successfully created, they are, in turn, initialized so that they begin the external event

import processing.

shutdown()

create()

create()

shutdown()

shutdown()

create()

initialize(m_props)

initialize(m_translationHandler,
m_props, m_extSysConn)

Default
Service

Application

DMSImportModule

Shutdown handlers
in order from external
side to chart side.

DMSImportModuleRestartTask

Restart handlers in
reverse order from
chart side to external
side

DMSImportAcquireHandler
:m_acquireHandler

DMSImportTranslationHandler
:m_translationHandler

DMSImportHandler
m_importHandler

DMSImportAcquireHandler
:m_acquireHandler

DMSImportTranslationHandler
:m_translationHandler

DMSImportHandler
m_importHandler

connectionStatus=failed

void

create()

create()

create()

initialize(m_props)

initialize(m_importHandler, m_props)

create()

initialize(m_translationHandler,
m_props, m_extSysConn)

restart()

shutdown()

shutdown()

shutdown()

initialize(m_importHandler,
m_props)

Figure 5-174 ExternalInterfaceModule:restartDMSImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-243 12/23/2008

5.8.2.21 ExternalInterfaceModule:restartTSSImportModule (Sequence Diagram)

 This diagram depicts the restart process of the TSSImportModule. It begins with the

creation of a restart task that manages the restart process independent of the calling method.

It is important to point out that the module itself does not restart as the method name might

imply. Rather, the three event import data handlers, the TSSImportHandler, the

TSSImportTranslationHandler, and the TSSImportAcquireHandler, are each shutdown and

restarted with the intent of purging and resetting the data import queue. Order matters and

the handlers are stopped in the reverse order from their original startup. During the time in

which the data handlers are shutdown, the external connection status is forced to "failed" to

bring about a connection reset with the external data source. Once this is complete, the

restart task creates the event import data handlers anew. All three handlers being

successfully created, they are, in turn, initialized so that they begin the external event

import processing.

TSSImportAcquireHandler
:m_acquireHandler

TSSImportHandler
m_importHandler

create()

shutdown()

initialize(m_props)

connectionStatus=failed

create()

create()

initialize(m_importHandler, m_props)

initialize(m_translationHandler,
m_props, m_extSysConn)

shutdown()

shutdown()

initialize(m_importHandler,
m_props)

Default
Service

Application

TSSImportModule

Shutdown handlers
in order from external
side to chart side.

Restart handlers in
reverse order from
chart side to external
side

initialize(m_translationHandler,
m_props, m_extSysConn)

void

shutdown()

shutdown()

create()

initialize(m_props)

restart()

TSSImportHandler
m_importHandler

TSSImportTranslationHandler
:m_translationHandler

TSSImportModuleRestartTask

TSSImportAcquireHandler
:m_acquireHandler

TSSImportTranslationHandler
:m_translationHandler

create()

create()

shutdown()

create()

Figure 5-175 ExternalInterfaceModule:restartTSSImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-244 12/23/2008

5.8.2.22 ExternalInterfaceModule:shutdownDMSImportModule (Sequence Diagram)

 This diagram depicts the shutdown of the DMSImportModule. The startup thread is

shutdown if for some reason it is still running. The ExtSysConnImpl is cleaned up

accordingly. Note: in the shutdownTSSHandlers() method, handlers are shutdown in the

reverse order they were originally initialized in.

else

Default
Service

Application

DMSImportModule HandlerStartupThread POA PushEventSupplier

boolean

shutdown()

interrupt()

Thread.sleep(50)

shutdownDMSHandlers()

disconnectPushConsumer()

deactivate()

[m_startupThread != null]

m_startupThread.isAlive()

m_externalSystemConn
!= null

else

Figure 5-176 ExternalInterfaceModule:shutdownDMSImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-245 12/23/2008

5.8.2.23 ExternalInterfaceModule:shutdownTSSImportModule (Sequence Diagram)

 This diagram depicts the shutdown of the TSSImportModule. The startup thread is

shutdown if for some reason it is still running. The ExtSysConnImpl is cleaned up

accordingly. Note: in the shutdownTSSHandlers() method, handlers are shutdown in the

reverse order they were originally initialized in.

else

Default
Service

Application

TSSImportModule HandlerStartupThread POA PushEventSupplier

boolean

shutdown()

interrupt()

Thread.sleep(50 msec)

shutdownTSSHandlers()

disconnectPushConsumer()

deactivate()

[m_startupThread != null]

m_startupThread.isAlive()

m_externalSystemConn
!= null

else

Figure 5-177 ExternalInterfaceModule:shutdownTSSImportModule (Sequence Diagram)

CHART R3B3 Detailed Design 5-246 12/23/2008

5.8.2.24 ExternalInterfaceModule:tssTranslationStep1Translate (Sequence Diagram)

 This diagram depicts the translation of external TSS messages into Chart TSS data. The

TssTmddTranslationStep1.translate() method is called by the

TSSImportTranslationHandler.handleTranslation() method. It takes in a AVList and based

on the message name processes it accordingly. For TSS related messages it pulls the XML

string from the first element in the AVList. This xml string contains information for one

specific TSS (inventory or status). It transforms the XML into a CHART-specific XML

string using XSL Transformation. The resulting XML string is then added the outbound

AVList and the method returns. For REFRESH messages no translation is done. The

message is just added to the outbound AVList and the method returns.

TSSImport
TranslationHandler

Use TSS Inventory XML string from
inlist to c reate a
StringBufferInputStream (inXML).
Create a new StringWriter object
to be used to capture the translated
XML (outXML)..

Create an AVList with an
element containing the
trans lated XML string and
add it to outList

Use TSS Status XML string from
inlist to c reate a
StringBufferInputStream (inXML).
Create a new StringWriter object
to be used to capture the translated
XML (outXML)..

TSSAtisTranslationStep1

ArrayList of
AVLists

Create an AVList with an
element containing the
trans lated XML string and
add it to outList

For the
TSS_REFRESH_MSG
message no
trans lation is done.
It is just passed
through.

ArrayList:
inList

ArrayList:
outList

Created when step
class is cons tructed using
xs l file specified in props..

Process TSS Inventory Message

javax.xml.transform.Transformer:
m_xmlTransformer

Process TSS Status Message

Log

Process TSS Refresh Message

else [avl.getMessageName() ==
ExtTSSConstants.TSS_STATUS_MSG]

try

trans form(new StreamSource(inXML), new StreamResult(outXML)

add(outAVL)

catch
bReturn = false

try

translate(inLis t:ArrayLis t,
outLis t:ArrayLis t)

[*inList]

add(avl)

catch

trans form(new StreamSource(inXML), new StreamResulf(outXML)

else [avl.getMessageName() ==
ExtTSSConstants .TSS_REFRESH_MSG]

bReturn:boolean = true

else

log("unkown message type")

TRANSLATION_SUCCESS

[avl.getMessageName() ==
ExtTSSConstants.TSS_INVENTORY_MSG]

clear()

add(outAvl)

bReturn = false

bReturn = false

[bReturn]

else
TRANSLATION_ERROR

avl:AVList = inList.iterator.next()

Figure 5-178 ExternalInterfaceModule:tssTranslationStep1Translate (Sequence Diagram)

CHART R3B3 Detailed Design 5-247 12/23/2008

CHART R3B3 Detailed Design 5-248 12/23/2008

5.8.2.25 ExternalSystemConnectionImpl:init (Sequence Diagram)

This diagram depicts the initialization of the ExternalSystemConnectionImpl. First, the

AlertFactoryWrapper, NotificationManagerWrapper , and SystemProfileProperties private

members populated along with the remain members which are passed in as arguments. A

java.util.Timer object is created to support one or more TimerTasks. A TimerTask is

created/sceduled to push out ExternalSystemConnection status events on a regular interval

if configured to do so (configured statically in props file). A TimerTask is

created/schedule to monitor external system connection alert/notification setting (System

Profile Properites) and conditionally create notifications and ExternalSystemConnection

alerts if connection goes in to a Failure or Warning state for a configurable amount of time.

UPDATED FOR R3B3.

ExternalSystemConnectionImpl

Create TimerTask
to push ext sys conn
status corba events
on regular interval if
configured to do so. The
task will call the
pushStatusUpdate()
method.

Create TimerTask
to check current
settings for ExtSysConn
allerts and notifications
and send alerts and
notifications if
necessary. The task
will call the
sendNotificationsIfNecessary()
method.

m_alertFactory :
AlertFactoryWrapper

java.util.Timer

m_notificationMgr:
NotificationFactoryWapper

java.util.TImerTask

m_sysProps:
SystemProfileProperties

java.util.TImerTask

init(c:ExtSysConfig,
p:PushEventSupplier,
s :Serv iceApplication,

pushOnEveryUpdate:boolean,
pushIntMins:int)

get()

get()

get()

init the rest of
the member from

arguments.

m_timer = create(true)

[m_pushIntervalMins > 0]

task:TimerTask = create()

scedule(task, m_pushIntervalMins * 60000,
m_pushIntervalMins * 60000)

task:TimerTask = create()

schedule(task, 60000, 60000)

Figure 5-179 ExternalSystemConnectionImpl:init (Sequence Diagram)

CHART R3B3 Detailed Design 5-249 12/23/2008

5.8.2.26 ExternalSystemConnectionImpl:sendNotificationsIfNecessary (Sequence

Diagram)

The ExternalSystemConnectionImpl.sendNotificationsIfNecessary() method is called from

a TimerTask every minute to determine if notifications / alerts need to be created to convey

Failure/Warning information about the connection represented by the impl.

[s tatus.statusValue != SImpleStatsus.OK]

AlertFactoryWrapperNotificationManagerWrapper

[alertOpCtrID != NULL ||
notificationGroupID != NULL]

[s taus == SimpleStatus.FAILURE ||
notifyOnWarning == TRUE]thresholdMins defines a

status change look back
window from NOW. I.E.
(NOW - thresholdMins).

If the time we originally went
into the Failure or Warning
state is outs ide of the look
back window then send
alerts/notifications.

[m_failWarnStatusChangeTime != 0 &&
outs ide the statusChange lookback

window]

[alertOpCtr != NULL]

[notificationGroupID != NULL]

Details of how to send a
generic notification
are left for implementation

getStatus()

sendNotification(...)

notificationGroupID:byte[] =:
getNotificationGroupForExtSysConn(config.connID)

ExternalSystemConnectionImpl

sendNotificationsIfNecessary()

These methods return NULL if
alerts or notifications are not
configured. Otherwise valid
IDs (byte[]).

notifyOnWarning:boolean =
getNotifSendWarningFlagForExtSysConn(config.connID)

If alerts and/or
notifc iations are
enabled......

TimerTask

Details of how to create
an ExternalSystemConnection
alert are left for implementation.

sendExtSysConnAlert()

createExternalConnectionAlert(...)

sendNotification()

status:
ExternalSystemConnectionStatuscreate()

The getStatus() method
creates a deep copy of the
ExtSysConnStatus which
contains a public
Chart2.Common.SImpleStatus
enum and a statusChangeTime
timestamp.

thresholdMins:int =
getNotifFailureThresholdMinsForExtSysConn(config.connID)

m_sysProps:
SystemProfileProperties

alertOpCtrID:byte[] =:
getAlertOpCtrForExtSysConn(config.connID)

Figure 5-180 ExternalSystemConnectionImpl:sendNotificationsIfNecessary (Sequence

Diagram)

CHART R3B3 Detailed Design 5-250 12/23/2008

5.8.2.27 TSSImportAcquireTask:execute (Sequence Diagram)

 This diagram depicts the behavior of the execute() method of the EventImportAcquireTask.

It is called when this task reaches the head of the Acquire command queue. This method is

responsible for breaking the external message into individual traffic event messages. A

special case it handles is that it must place a marker message in the message stream after the

complete set of refresh events are received after a reconnect with RITIS. After the

Translation Handler passes this marker to the Event Import handler, the Event Import

handler knows that all traffic events have recently been refreshed and it should close all

events whose last update time is older than the time in the marker message

Acquire
Command

Queue TSSImportAcquireTask TSSImportAcquireHandler TSSImportRitisAcquirer

Validate XML if configured to.

TSSAtisImportTranslationHandler

puts TSS translation task on
translation queue

TranslationTask

puts TSS translation task on
translation queue

TranslationTask

tell downstream a refresh
was received so delete the TSS
candidate list and start a new one

TranslationTask

log error if bad extraction or
error creating task or

error queuing task

log error if bad extraction or
error creating task or

error queuing task

voidvoid

execute(EIMessage)execute(EIMessage)

[* for each dmsStatus
in EIMessage]

[* for each dmsStatus
in EIMessage]

voidvoid

else [MSG_NAME == "TSS_REFRESH"]else [MSG_NAME == "TSS_REFRESH"]

m_forwarder.forward(task)m_forwarder.forward(task)
ImportTSSTranslationTaskImportTSSTranslationTask

extract next tssInventory
from EIMessage

extract next tssInventory
from EIMessage

createcreate

queueMsgTask(task)queueMsgTask(task)

voidvoid

[* for each dmsInventory
in EIMessage]

[* for each dmsInventory
in EIMessage]

voidvoid

task = createTSSTranslationTask(tssRefresh)task = createTSSTranslationTask(tssRefresh)

queueMsgTask(task)queueMsgTask(task)

decode(EIMessage)decode(EIMessage)

ImportTSSTranslationTaskImportTSSTranslationTask
m_forwarder.forward(task)m_forwarder.forward(task)

voidvoid

elseelse

createcreate

ImportTSSTranslationTaskImportTSSTranslationTask

log unknown msglog unknown msg

booleanboolean

queueMsgTask(task)queueMsgTask(task)

voidvoid

task = createTSSTranslationTask(tssInventory)task = createTSSTranslationTask(tssInventory)

voidvoid

voidvoid
log error if bad extraction or

error creating task or
error queuing task

log error if bad extraction or
error creating task or

error queuing task

extract tssStatus
from EIMessage
extract tssStatus
from EIMessage

else [MSG_NAME == "TSS_STATUS"]else [MSG_NAME == "TSS_STATUS"]

task = createTSSTranslationTask(tssStatus)task = createTSSTranslationTask(tssStatus)

[MSG_NAME == "TSS_INVENTORY"][MSG_NAME == "TSS_INVENTORY"]

m_forwarder.forward(task)m_forwarder.forward(task)

handleReceipt(EIMessage)handleReceipt(EIMessage)

createcreate

Figure 5-181 TSSImportAcquireTask:execute (Sequence Diagram)

CHART R3B3 Detailed Design 5-251 12/23/2008

5.8.2.28 TSSImportRitisAcquirer:connectIfNecessary (Sequence Diagram)

 This diagram depicts the connectIfNecessary() method of the TSSImportRitisAcquirer

class. This method is called at initiation and periodically after that. When invoked, if the

RITIS connection is failed or stale (no activity on the connection for while - see properties),

it attempts a reconnection. Its primary duty is to rebuild the JMS connection with RITIS by

registering to have the OnMessage() method called whenever RITIS has a message to send.

It is expected that the stale connection value will be large enough to not present a

performance problem for either CHART or RITIS but small enough to be responsive to

users if the connection is temporarily lost. The RITIS connection status is updated if a

reconnect is attempted.

CHART R3B3 Detailed Design 5-252 12/23/2008

ConnectionTimerTask
or

TSSImportRitisAcquirer.initialize()

TSSImportRitisAcquirer

ActiveMQConnectionFactory

ExternalSystemConnectionImpl

javax.jms.QueueConnection

All this to register
TSSImportRitisAcquirer's
onMessage method as a
receiver of a JMS queue

javax.jms.QueueSession

set m_receiver,
m_session, and
m_queueConnection
to null if not null

ActiveMQQueue

QueueReceiver

cleanupConnection()

setExceptionListener(this)

create

m_subscriber : QueueReceiver =
createReceiver(topic)

topic : ActiveMQQueue = ctor(queueName)

[invalid queue] throw InvalidDestinationException

connStat = getStatus()
ExternalConnectionStatus

setMessageListener(this)

[not in test mode] setStatusFail()

QueueReceiver

ctor(activeMQConnection)

m_queueConnection = createQueueConnection
(m_userName, m_password)

QueueConnection

[queue fails to start] throw JMSException

[internal error] throw JMSException

[not in test mode] setStatusOK()

create

start()

QueueSession

obtain RITIS-specific userName, password,
queueName, and JMS connection string from props

cleanupConnection()

create

[transaction or acknowledgement modes not supported
or internal error] throw JMSException

[connStat.statusvalue == FAILED OR
now - connStat.statusTime > PROP_KEY_max_stale]

try

connectIfNecessary(
ExternalSystemConnectionImpl)

m_session = createQueueSession(NOT_TRANSACTED,
Session.AUTO_ACKNOWLEDGE)

void

[errors] throws JMSException

m_connectionLastUseTime = now

catch

Figure 5-182 TSSImportRitisAcquirer:connectIfNecessary (Sequence Diagram)

CHART R3B3 Detailed Design 5-253 12/23/2008

5.8.2.29 TSSImportRitisAcquirer:initialize (Sequence Diagram)

 This diagram depicts the initialize() method of the TSSImportRitisAcquirer class. After

attempting to connect to RITIS and updating the connection status, it kicks off a periodic

task that checks the connection status (see connectIfNecessary()) and reconnects, if

necessary.

TSSImportAcquireHandler TSSImportModuleProperties

Created using
Class.forName(c lassName),
newInstance()

If configured to validate XML,
create validator and set
m_validateXML = true. Details
left for implementation.

TSSImportRitisAcquirer

set other member varriables: m_forwarder, m_acquirerLogFile'
m_extSysConnImpl.

Cast EIProperties to
TSSImportModuleProperties

m_timer:
java.util.Timer

m_timer:
java.util.Timer

StaleConnectionTimerTask

sometime later on
scheduled intervals ...

Timer task periodically
 reads TSS status and
configuration data from
files.

testTimerTask:
TestFileTimerTask

m_props = (TSSImportModuleProperties)props

connectIfNecessary()
run()

ctor(TRUE)

newInstance()

c lassName:String =
getAcquireClassName()

schedule(connectionTask,
PROP_KEY_connectionCheckStartupDelay,

PROP_KEY_connectionCheckInterval)

connectionTask = c tor(this)

initialize(
TSSImportTranslationHandler,
TSSImportModuleProperties,

ExternalSystemConnectionImpl)

initialize(EIForwarder, props:EIProperties, LogFile,
ExternalSystemConnectionImpl)

[m_props.validateEvents()]

m_initialized = true

create(true)

create(this , m_props)

m_validateXML = true

m_initialized

[m_props.getTestMode]

schedule(testTimerTask,
m_props.getTestFileIntervalMillis,
m_props.getTestFileIntervalMiliits)

m_validator = new java.xml.validation.Validator

Figure 5-183 TSSImportRitisAcquirer:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-254 12/23/2008

5.8.2.30 TSSImportRitisAcquirer:onMessage (Sequence Diagram)

 This diagram depicts the onMessage() method of the TSSImportRitisAcquirer class. This

method is called when RITIS has a TSS related message for CHART. To ensure CHART

is responsive to RITIS, the onMessage() method's only job is to create an Acquire task

containing the external message and put it on the Acquire command queue in the proper

format and be ready for the next message from RITIS.

RITIS queue

message:
javax.jms.Message

For lab testing: create a timer task that
periodically looks for a file (specified pattern in
props like "*.xml") containing RITIS xml messages, calls
TSSImportRitisAcquirer.onMessage(message),
then deletes the file

TSSImportRitisAcquirer ExternalSystemConnectionImpl

acknowledge() tells
jms queue not to resend
this javax.jms.Message

TSSImportAcquireHandler

put message task
on acquire queue

TSSImportAcquireTask

m_connectionLastUseTime = now

boolean

acknowledge()

try
convert message to javax.jms.TextMessage

finally

queueMsgTask(task) : boolean

onMessage(message : javax.jms.Message

catch
setStatusFailed("Error receiv ing RITIS Message")

task = ctor(msg, this)

convert TextMessage to msg : EIMessage

m_forwarder.prepare(EIMessage)

Figure 5-184 TSSImportRitisAcquirer:onMessage (Sequence Diagram)

CHART R3B3 Detailed Design 5-255 12/23/2008

5.9 GeoAreaModulePkg

5.9.1 Classes

5.9.1.1 GeoAreaModulePkg (Class Diagram)

This class diagram identifies the classes in the GeoAreaModule package. There are

dependencies on CHART utility classes as well as code generated from CHART IDL

1

1

1

1
DBConnectionManager

1

1

1

ServiceApplicationModule

«interface»

GeoAreaModulePkg

PushEventSupplier

GeoAreaFactoryImpl

UniquelyIdentifiable
«interface»

GeoAreaModuleProperties

11

1

1

GeoAreaFactory
«interface»

GeoAreaDB
1

getID()
getName()

+initialize(ServiceApplication) : boolean
+shutdown(ServiceApplication) : boolean
-createEventChannel(String) : PushEventSupplier
-createEventLocation(int) : boolean
-addEventLocationTypeToTrader() : void
+getVers ion() : ComponentVersion

-m_svcApp : Serv iceApplication
-m_db : GeoAreaDB
-m_geoAreaEventSupplier : PushEventSupplier
-m_geoAreaFactory Impl : GeoAreaFactoryImpl
-m_props : GeoArealModuleProperties

getGeoAreas() : GeoArea[]
addGeoArea(token AccessToken,
 newGeoArea : GeoAreaData) : GeoArea
updateGeoArea(token AccessToken,
 geoArea : GeoArea)
removeGeoArea(token AccessToken,
 id : Identifier)

Properties m_props;
Serv iceApplication m_serv iceApp;

getGeoAreas() : GeoArea[]
addGeoArea() : boolean
removeGeoArea() : boolean

Figure 5-185 GeoAreaModulePkg (Class Diagram)

CHART R3B3 Detailed Design 5-256 12/23/2008

5.9.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.9.1.1.2 GeoAreaDB (Class)

The GeoAreaDB class provides database access for creating, removing and updating

GeoArea's in the Chart2 System.

5.9.1.1.3 GeoAreaFactory (Class)

This interface defines a factory responsible for managing GeoAreas with the CHART

system.

5.9.1.1.4 GeoAreaFactoryImpl (Class)

This is the implementation of the GeoAreaFactory interface. It is responsible for handling

requests related to GeoAreas within the CHART system.

5.9.1.1.5 GeoAreaModulePkg (Class)

This class provides the resources and support functionality necessary to serve

GeoAreaFactory objects in a service application. It implements the

ServiceApplicationModule interface which allows it to be installed as part of a

DefaultServiceApplication.

5.9.1.1.6 GeoAreaModuleProperties (Class)

This class represents the configurable properties of the GeoAreaModule.

5.9.1.1.7 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

CHART R3B3 Detailed Design 5-257 12/23/2008

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.9.1.1.8 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.9.1.1.9 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-258 12/23/2008

5.9.2 Sequence Diagrams

5.9.2.1 GeoAreaFactoryImpl:addGeoArea (Sequence Diagram)

This sequence diagram depicts the IDL method addGeoArea(). If the user does not have

functional rights to perform the action an AccessDenied exception is thrown. The GeoArea

is then persisted and a GeoAreaAdded event is pushed. An Operations Log Record is

added for this operation.

void

TokenManipulator PushEventSupplier

checkAccess()

addGeoArea(
token,

GeoAreaData)

GeoAreaDB OperationsLog

[no rights]
AccessDenied

addGeoArea(GeoAreaData)

CHART2Exception

[db_error]
DBException

ORB

GeoAreaFactoryImpl

push(GeoAreaAdded)

log(GeoAreaData)

Figure 5-186 GeoAreaFactoryImpl:addGeoArea (Sequence Diagram)

CHART R3B3 Detailed Design 5-259 12/23/2008

5.9.2.2 GeoAreaFactoryImpl:getGeoAreas (Sequence Diagram)

This sequence diagram depicts the IDL method getGeoAreas(). If the user does not have

functional rights to perform the action an AccessDenied exception is thrown. All of the

GeoArea's in the database are depersisted and returned to the ORB

[db_error]
DBException

GeoArea[]

TokenManipulator

ORB

getGeoAreas(token)

[no rights]
AccessDenied

GeoAreaFactoryImpl

checkAccess()

GeoAreaDB

getGeoAreas()

CHART2Exception

Figure 5-187 GeoAreaFactoryImpl:getGeoAreas (Sequence Diagram)

CHART R3B3 Detailed Design 5-260 12/23/2008

5.9.2.3 GeoAreaFactoryImpl:removeGeoArea (Sequence Diagram)

This sequence diagram depicts the IDL method removeGeoArea(). If the user does not

have functional rights to perform the action an AccessDenied exception is thrown. The

GeoArea is then deleted from the database and a GeoAreaRemoved event is pushed. An

Operations Log Record is added for this operation.

void

TokenManipulator GeoAreaDB PushEventSupplier

ORB

GeoAreaFactoryImpl OperationsLog

removeGeoArea(
token, id)

[no rights]
AccessDenied

removeGeoArea(id)

CHART2Exception

checkAccess()

push(GeoAreaRemoved)

[db_error]
DBException

log(id)

Figure 5-188 GeoAreaFactoryImpl:removeGeoArea (Sequence Diagram)

CHART R3B3 Detailed Design 5-261 12/23/2008

5.9.2.4 GeoAreaFactoryImpl:updateGeoArea (Sequence Diagram)

This sequence diagram depicts the IDL method updateGeoArea(). If the user does not have

functional rights to perform the action an AccessDenied exception is thrown. The GeoArea

is then persisted and a GeoAreaUpdated event is pushed. An Operations Log Record is

added for this operation.

void

GeoAreaDB

ORB

OperationsLog

checkAccess()

push(GeoAreaUpdated)

[db_error]
DBException

log(GeoArea)

PushEventSupplierGeoAreaFactoryImpl

updateGeoArea(
token,

GeoArea)

[no rights]
AccessDenied

updateGeoArea(GeoArea)

CHART2Exception

TokenManipulator

Figure 5-189 GeoAreaFactoryImpl:updateGeoArea (Sequence Diagram)

CHART R3B3 Detailed Design 5-262 12/23/2008

5.9.2.5 GeoAreaModulePkg:Initialize (Sequence Diagram)

This diagram shows what happens when the GeoAreaModule is initialized. The

ServiceApplication calls the GeoAreaModule to initialize, which reads in the properties

from a file, overriding the default properties. It creates an event channel for GeoAreas and

publishes the channel in the trading service so that other applications can see it. It creates a

GeoAreaDB object to handle all of the database calls, and a GeoAreaFactoryImpl object to

manage the GeoAreas. The GeoAreaFactory is exported to the trading service and the

GeoAreaModule initialize method returns.

void

ServiceApplication
GeoAreaModule ServiceApplication

GeoAreaModuleProperties

PushEventSupplier

POA

GeoAreaDB

GeoAreaFactoryImpl

create

register_object(GeoAreaFactory)

initialize

getDefaultProperties()

getProperties()

create

getEventChannelFactory()

create

getDBConnectionManager()

activate_object(GeoAreaFactory)

getOpLog()

getEventChannel()

create

registerEventChannel()

Figure 5-190 GeoAreaModulePkg:Initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-263 12/23/2008

5.9.2.6 GeoAreaModulePkg:Shutdown (Sequence Diagram)

When the GeoAreaModule is shut down by the ServiceApplication, it disconnects its

objects from the ORB, and releases any resources it is using.

v oid

ServiceApplication

GeoAreaModule POA

deactiv ate_object(GeoAreaFactory)

delete

shutdown()

GeoAreaFactory Impl

shutdown

delete

Figure 5-191 GeoAreaModulePkg:Shutdown (Sequence Diagram)

CHART R3B3 Detailed Design 5-264 12/23/2008

5.10 HARControlModulePkg

5.10.1 Classes

5.10.1.1 HARControlModule (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR)

devices in the Chart II system. Details are only shown for classes that exist specifically for

HAR control. Auxiliary classes used from other various utility or system interface

packages are shown by name only.

CHART R3B3 Detailed Design 5-265 12/23/2008

R3B3:
Added setLocation()

**

1

1

1

waits for SHAZAM and
constituent HAR cmds to
complete using

1

1

HARImpl may be ISSAP55HARImpl,
HISDR1500HARImpl, or SyncHARImpl.
HARProtocolHdlr may be
ISSAP55HARProtocolHdlr or
HISDR1500HARProtocolHdlr (or none).
HARDeviceConfiguration is a union which
may be ISSAP55HARConfig,
HISDR1500HARConfig, or SyncHARConfig.
HARSlotManager present only for
ISSAP55HARImpl and HISDR1500HARImpl.
See HARControlModule2 class diagram.

1

1 or 2 locators -
Maybe 1 for monitor
port, depending on HAR
type.

SyncCommandStatus

SlotClipAudioData

ArbQueueEntry

«valuetype»

HARRecoveryTimerTask

1 or 2 cmd queues -
May be 1 just for
MonitorBraodcast,
depending on HAR model

SharedResourceManager

«interface»

HARFactory

«interface»

HARData

«type»

SharedResource

«interface»

HAR

«interface»

AudioPushConsumer

«interface»

AudioDataCollector

NoSpaceAvailableException

«exception»

java.util.TimerTask

RefreshDateStampsTask

CheckForAbandonedHARTask

HARProtocolHdlr

ArbitrationQueueEnabled

HARSlotManager

CommandQueue

AudioClipManager

«interface»

HARMsgNotifierWrapper

HARMessageNotifier

«interface»

QueueableCommand

«interface»

HARControlDB

PushEventSupplier

ServiceApplication

«interface»

java.util.Timer

HARControlModuleProperties

HARControlModule

ServiceApplicationModule

«interface»

HARImpl

HARFactoryImpl

UniquelyIdentifiable

«interface»

MessageQueue

CommEnabled

«interface»

GeoLocatable

«interface»

HARDeviceConfig

«typedef»

HARStatus

«typedef»

DBConnectionManager

MuxWaitSem

CommandStatus

«interface»

VoicePortLocator

VoicePort

«interface»

HAR holds
VoicePort
temporarily
while
communicating
with device.

NotifierTfcEvtList

«typedef»

1

0..1

1

1

1

*

*

1

1

*

1

1

1

1

11

* 1

1

1

*

*

1

1

1

1 1

*1

1

1
1

1

*

*

1

0..1

1 1

1

1

1

marks SHAZAM
and constituent
HAR cmds
complete with

1

0..2

0..1

1

1

1

1

1

*

1

1

1

1

1

*
1

1

1

1

0..1

0..1

0..1

0..1

*

*

1

ReadWriteLock m_rwLock
POA m_poa

String reason

blankImpl(AccessToken, boolean mode, CommandStatus) : void
checkDateTimeFields() : void
checkRecoveryTime(int timeDown): boolean
monitorSlotImpl(AccessToken, long seconds, long slot,
 AudioPushConsumer, CommandStatus): void
putInMaintModeImpl(AccessToken, CommandStatus) : void
putInMaintModeWithSHAZAMsImpl(AccessToken, CommandStatus,
 HARMessageNotifierList): void
putOfflineImpl(AccessToken, CommandStatus) : void
setConfigurationImpl(AccessToken, HARConfiguration,
 CommandStatus) : void
setMessageImpl(AccessToken, HARMessage, boolean mode,
 CommandStatus, HARMessageNotifierList,
 ArbQueueEntryList, HARSetMsgCmd) : void
setOneUpNum(long oneUpNumber): void
setTransmitterState(desiredState:boolean, forceFlag:boolean): void
takeOfflineImpl(AccessToken, CommandStatus) : void
setLocation(token:byte[], location:objectLocation):void
-activateNotifiersMaint(HARMessageNotifierIDList): void
-activateNotifiersOnline(NotifierTfcEvtList[]): void
-deactivateNotifiersMaint(HARMessageNotifierIDList): void
-deactivateNotifiersOnline(NotifierTfcEvtList[]): void
-doChildStatusUpdate(): void
-evaluateQueue(): void
-fmsGetConnectedPort(boolean pgm, CommandStatus): ConnectedPortInfo
-fmsReleasePort(ConnectedPortInfo, boolean pgm): void
-handleMaintNotifierActivation(MsgNotifier[]): void
-handleMaintNotifierDeactivation(MsgNotifier[]): void
-handleOnlineNotifierActivation(MsgNotifier[], TfcEvt[]):void
-handleOnlineNotifierDeactivation(MsgNotifier[], TfcEvt[]):void
-handleOpStatus(OperationalStatus, CommandStatus,
 boolean complete): boolean
-modifyNotifiers(NotifierTfcEvList[]): void
-persistAndPushHARConfig():void
-persistAndPushHARStatus():void
-removalCleanupImpl(): void
-requestFailed(ArbQueueEntry[] newEntries, boolean oldMsgStillUp): void
-requestSucceeded(ArbQueueEntry[] newEntries): void
-setupHAR(Port, CommandStatus) : boolean
-verifyNoResourceConflict(AccessToken, CommandStatus): void

m_activeEntries:ArbQueueEntry[]
m_recoveryMode:boolean
:boolean
m_updateDateTimeFailed
m_lastQueuedSetMsgCmd:QueueableCommand

HARFactoryImpl m_factory

getTimeDown()

HARFactoryImpl m_factory

long m_interMessageSpacing
boolean m_shouldBeReevaluated
HARMessageNotifierIDList m_NotifiersCurrentlyActive
ArbQueueEntry[] m_activeEntries
long m_lastDateStampUpdateTime

HARFactoryImpl m_factory

Identifier m_notifierID
ArbQueueEntryIndicator m_primeEntry
HashSet m_tfcEvts

HARSlotData slotData
AudioDataClip audio
boolean alreadyStored
String errorText

checkForAbandonedHAR(): void
removeHAR(Identifier id):void
shutdown():void
checkForAbandonedResources():void
checkDateTimeFieldUpdates():void
checkHARRecovery(): void
getFirstImmediateSlotNumber(): int
getHARRuntimeSafetyMarginSecs():int
getMaxMsgRunTimeSecs(): int
getPollPortWaitTimeSecs(): int
getRecoveryPeriodMins(): int
getSHAZAMActivateTimeoutSecs():int
getSHAZAMDeactivateTimeoutSecs():int
getSHAZAMOfflineTimeoutSecs(): int
getSHAZAMOnlineTimeoutSecs(): int
getSHAZAMMaintTimeoutSecs(): int
getTotalCombinedMsgRunTime(): int

java.lang.Vector m_harList;

getDictionary():Dictionary
-registerTraderTypes():void

changeDescriptionOfSlotData(oldClip:HARMessageClip,
 newClip:HARMessageClip):void
storeClip(ConnectedPortInfo, desc, SlotClipAudioData, cmdStat,
 completeOnFailure:boolean, warnTxt:StringBuffer):void
storeClips(ConnectedPortInfo, desc, SlotClipAudioData[], cmdStat,
 completeOnFailure:boolean, warnTxt:StringBuffer):void
storeMsg(ConnectedPortInfo, SlotClipAudioData[], desc, cmdStat,
 completeOnFailure:boolean, warnTxt:StringBuffer):void
remove(ConnectedPortInfo, desc, slot:int,cmdStat,
 completeOnFailure:boolean, warnTxt:StringBuffer, lockSlots):void
reserveStatusFailedReset(SlotClipAudioData[],index):void
restoreAll(ConnectedPortInfo, desc, SlotClipAudioData[], cmdStat,
 erase:boolean, completeOnFailure:boolean, warnTxt:StringBuffer) :void
-clipInSlot(HARMessageClip):int
-clonePrivateSlotData(HARSlotData[]):HARSlotData[]
-collectAudioData(SlotClipAudioData[],desc,cmdStat,complete:boolean):void
-deregisterNewlyRegisteredClips():void
-findClip(HARMessageClip, clipPos:string):int
-firstAvailImmedSlot(prevAvail:int,cmdStat):int
-fmsDownloadClip(ConnectedPortInfo, desc, slot, AudioDataClip,
 cmdStat, completeOnFailure:boolean):void
-fmsRemoveClip(ConnectedPortInfo, desc, slot:int, cmdStat,
 completeOnFailure:boolean):void
-initPOA(desc, cmdStat,complete:boolean):void
-initPrivateSlotData():void
getClipInSlot(slotNumber,desc,CommandStatus):HARMessageClip
getMillisAvailMsg():int
getMillisAvailSlot(slotNumber):int
hasDataReserved():boolean
isUsingClip(Identifier audioClipID)(): boolean
deregisterAllClips(): void
-precheckSpaceAvail(SlotClipAudioData[], desc, cmdStat,
 complete:boolean, precheckType:int):void
prepareAudioDataForAll(desc,cmdStat,complete:boolean):SlotClipAudioData
prepareAudioDataForBlankMsg():SlotClipAudioData
prepareAudioDataForClip(slotData:HARSlotData,desc,cmdStat,
 precheckType:int):SlotClipAudioData
prepareAudioDataForClips(HARSlotData[],desc,cmdStat):SlotClipAudioData[]
prepareAudioDataForDefaultClips(desc,HARDeviceConfig,cmdStat,
 complete:boolean):SlotClipAudioData
prepareAudioDataForMsg(HARMesage, cmdStat):SlotClipAudioData[]
-prepareClipForSlot(HARMessageClip, clipPos:string, prevImmedSlotUsed:int,
 cmdStat):SlotClipAudioData
rebuildPlayListForMsg(HARMessage):int[]
-slotToBeReused(slotNumber, SlotClipAudioData):boolean
-updateHARsSlotData(desc, warnTxt:StringBuffer):void

AudioDataCollector(HARMessageClip clip,
 ReadWriteLock rwLock)
collectData(): void

HARMessageClip m_clip
SlotClipAudioData m_data
byte[] m_collectedData

getDateStampRefreshTimeOfDay():string
getFirstImmediateSlotNumber(): int
getHARRuntimeSafetyMarginSecs():int
getMaxMsgRunTimeSecs(): int
getPollPortWaitTimeSecs(): int
getPollTimerDelaySecs(): int
getRecoveryPeriodMins(): int
getRecoveryTimerDelaySecs(): int
getSharedResMonIntSecs():int
getSHAZAMActivateTimeoutSecs():int
getSHAZAMDeactivateTimeoutSecs():int
getSHAZAMOfflineTimeoutSecs(): int
getSHAZAMOnlineTimeoutSecs(): int
getSHAZAMMaintTimeoutSecs(): int
getTotalCombinedMsgRunTime(): int
getHARFactoryID():Identifier

HARControlDB(db)
getObjects():HARImpl[]
getConfiguration(AccessToken):Chart2HARConfiguration
getStatus(Identifier):Chart2HARStatus
insertHAR(Chart2HARConfiguration):void
removeHAR(harID):void
setConfiguration(Identifier, Chart2HARConfiguration):void
setStatus(Identifier, Chart2HARStatus):void

DBConnectionMgr m_db

Figure 5-192 HARControlModule (Class Diagram)

CHART R3B3 Detailed Design 5-266 12/23/2008

5.10.1.1.1 ArbitrationQueueEnabled (Class)

ArbQueueEnabled is a synonym for ArbitrationQueue. An ArbitrationQueue is a queue

that arbitrates the usage of a device. The evaluation of the queue determines which

message(s) should be on the device, based upon the priority of the queue entries. When

entries are added to the queue, they are assigned a priority level based on the type of traffic

event with which they are associated, and also upon the current contents of the queue. The

priority of the queue entries can be modified after they are added to the queue. The queue

is evaluated when the device is online and queue entries are added or removed, when an

entry's priority is modified, or when the device is put online.

5.10.1.1.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

5.10.1.1.3 AudioClipManager (Class)

This interface provides a way to store audio data associated with

HARMessageAudioDataClip objects, converting the HARMessageAudioDataClip objects

to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects are

created with a reference back to the AudioClipManager in them, so that the audio clips

themselves can provide access to the audio data (through their stream() interface), by

contacting the AudioClipManager (an AudioClipStreamer) to stream the data. The

AudioClipManager also provides a capability for various AudioClipOwners to register and

deregister their "interest" in a specific clip. When a clip no longer has any interested

owners, it can be (and is) deleted from the database.

5.10.1.1.4 AudioDataCollector (Class)

This object is used to stream a HARMessageClip and write the streamed audio .wav data to

a .wav file. It is used as a utility by the HARSlotManager to prepare HARMessageClips for

download into the HAR (which is accomplished via the ISSAP55HARProtocolHdlr by

passing the file name of the .wav file into it).

5.10.1.1.5 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push

model, where the server pushes the data to the consumer. One call to

pushAudioProperties() will always precede any calls to pushAudio(). When the

AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted()

to indicate successful completion, or a pushFailure() to indicate a failure which has

prevented the streaming from completing. PushAudio() returns a boolean "continue" flag,

which, if returned as false, indicates that the consumer no longer wants to continue

receiving audio data. In this case, the stream stops pushing data immediately, with no call

CHART R3B3 Detailed Design 5-267 12/23/2008

to pushCompleted() or pushFailure() necessary.

5.10.1.1.6 CheckForAbandonedHARTask (Class)

This class is a timer task that is executed periodically by a timer. When the run method in

this class is called, it calls the HARFactoryImpl's checkForAbandonedResources() method,

which causes the factory to evaluate each HAR in the factory and issue an abandoned

resource event for any HARs which have a controlling op center with no users logged in.

5.10.1.1.7 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.10.1.1.8 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of

the progress of a long-running asynchronous operation. This is normally used when field

communications are involved to complete a method call. The most common use is to allow

a GUI to show the user the progress of an operation. It can also be used and watched by a

server process when it needs to call on another server process to complete an operation.

The long running operation typically calls back to the CommandStatus object periodically

as the command is being executed, to provide in-progress status information, and it always

makes a final call to the CommandStatus when the operation has completed. The final call

to the CommandStatus from the long running operation indicates the success or failure of

the command.

5.10.1.1.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.10.1.1.10 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

CHART R3B3 Detailed Design 5-268 12/23/2008

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.10.1.1.11 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.10.1.1.12 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to

broadcast traffic related information over a localized radio transmitter, making the

information available to the traveler. This interface contains methods for getting and

setting configuration, getting status, changing communications modes of a HAR, and

manipulating and monitoring the HAR in maintenance and online modes.

5.10.1.1.13 HARControlDB (Class)

This class contains all the database interaction for the HARControlModule. This class

provides the ability to retrieve all HAR information on initialization, update of the

configuration and status information, and insert or remove a HAR device from the system.

5.10.1.1.14 HARControlModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for

publishing HAR objects and the HARFactory object within a service application. This

class is the controlling class for the HAR module, providing for the initialization and

overall operation of the module. This class creates and starts the timer tasks necessary for

refreshing datestamps on the HAR, checking for abandoned shared resources, and recovery

processing.

5.10.1.1.15 HARControlModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by

objects within the HARControlModule for the current instance of the application. These

settings are read during the module initialization. The module must be restarted to apply

any changes made to the properties file.

5.10.1.1.16 HARData (Class)

This class is used to store and persist data pertaining to a HAR which is not part of the

HARStatus (i.e., not transmitted to clients in status updates or at any other time).

CHART R3B3 Detailed Design 5-269 12/23/2008

5.10.1.1.17 HARDeviceConfig (Class)

HARDeviceConfig is a union which can contain the configuration for a ISS AP55 HAR, a

HIS DR1500 HAR, or a Synchronizable HAR (a "virtual" HAR representing a collection of

synchronized HARs). In R2B3 only DR1500 HARs are synchronizable.

5.10.1.1.18 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a

requester to acquire a list of HAR objects under the domain of the specific HARFactory

object.

5.10.1.1.19 HARFactoryImpl (Class)

This class implements the HARFactory interface as defined by the IDL specified in the

System Interfaces section. This class maintains the HAR objects served by this HAR

service.

5.10.1.1.20 HARImpl (Class)

This class implements HAR as defined by IDL specified in the System Interfaces section.

Since there is only one model of HAR currently envisioned for CHART II, this HARImpl

class is implementing the ISS AP55 HAR specifically.

5.10.1.1.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

5.10.1.1.22 HARMsgNotifierWrapper (Class)

This wrapper class is used to wrap HAR message notifiers associated with a HAR. This

class handles finding the reference of the notifier object given only the object's ID. The

object discovery is done at the point of first use or if a currently held reference produces a

CORBA failure when used.

5.10.1.1.23 HARProtocolHdlr (Class)

The HARProtocolHdlr implements is the base class to implement the commands which will

actually be sent to the HAR..

5.10.1.1.24 HARRecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the

life of the process. During normal operations, this task's sole purpose is to write a

CHART R3B3 Detailed Design 5-270 12/23/2008

timestamp to a file each time it is called. This timestamp file serves to provide, to an

approximation as accurate as its frequency of invocation, when the HARService last went

down, an essential piece of information for recovery during HARService startup. When the

HARService has recently started up, this Task, in addition to maintaining an up-to-date

timestamp in the timestamp file, also calls a method in the Factory (checkHARRecovery)

which requests all HAR objects to check and see if their recovery period has expired. (The

recovery period is a system-wide constant, on the order of 10-15 minutes.) Each HAR

terminates its recovery period as soon as all its TrafficEvents are resolved, or when the

message queue is modified through an addEntry or changePriority call, or, if neither of

those cases happens, at the end of the recovery period timer. (When all HARs have

terminated their recovery period, checkHARRecovery is no longer called.)

When each HAR checks its own recovery time, if it finds that it has just now exceeded the

recovery period, it calls its MessageQueue to take one last try at resolving traffic events on

its queue, then the HAR makes final a determination as to what message (or blank) belongs

on the sign, and it requests the HAR to set its message appropriately (either to the

message(s) at the top of the queue, or to the default message, if no messages are queued.

5.10.1.1.25 HARSlotManager (Class)

This class manages the slot usage for the HARImpl. When a clip is to be stored in the HAR

controller, this class is called instead of calling the ISSAP55HARProtocolHdlr directly.

This class ensures the reserved slot numbers (default header, default trailer, default

message, immediate message slots) are not overlaid with other clips stored in the controller.

When clips are stored in slots in the controller, this class keeps track of the run time for

each and the total run time for the device and provides an error when the storage of a clip

exceeds the configured available run time of the device.

This class also manages the condition when multiple slots are needed for the current

(immediate) message. This will be true any time multiple messages are combined into one

message on the HAR (up to the maximum play time for a combined message). A HAR has

many immediate slots available for cases such as this.

5.10.1.1.26 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data

contained in this class is that status information which can be transmitted from the HAR to

the client as necessary. This struct is also used to within the HAR Service to transmit data

to/from the HARControlDB database interface class. (The HAR implementation also

contains other private status data elements which are not elements of this class.)

5.10.1.1.27 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

CHART R3B3 Detailed Design 5-271 12/23/2008

5.10.1.1.28 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.10.1.1.29 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and

reprioritize traffic event entries in a prioritized list.

5.10.1.1.30 MuxWaitSem (Class)

This object is used block execution of a thread while it is running multiple long running

commands which need to be waited on. This class watches the SyncCommandStatus of

each command and releases control back to the main thread when all "child" long-running

processes have completed their respective CommandStatus object.

5.10.1.1.31 NoSpaceAvailableException (Class)

This exception is thrown by the HARSlotManager when there is not enough room in the

HAR to store the desired message as requested. This exception is local to the HAR service

only. If the exception needs to propagate out to a user (GUI), it is converted to a

CHART2Exception first. The distinction is required within the HAR service since a

NoSpaceAvailableException is not to be considered a failure of the device or the

communications.

5.10.1.1.32 NotifierTfcEvtList (Class)

This class is used to keep track of the relationships between HAR notifiers, and the traffic

events which are requesting that they be activated. One traffic event is chosen to be the

primary one, and is used as part of the ArbQueueEntryIndicator stored within this class.

The m_primeEntry and m_tfcEvents are used as parameters to activate and/or modify the

HAR notice on the notifier.

5.10.1.1.33 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

CHART R3B3 Detailed Design 5-272 12/23/2008

5.10.1.1.34 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.10.1.1.35 RefreshDateStampsTask (Class)

This class is a timer task that is executed periodically by a timer. When executed, the run

method of this class calls the HARFactoryImpl's checkDateTimeFieldUpdates(), which in

turn calls each HAR in the factory to have it determine if it needs to update any field

messages that use datestamp fields. These messages are reconverted to voice, and the

datestamp tag, in the format "<DATESTAMP>" is replaced by text words for the day of

week, month, and day of month (e.g. "Wednesday, July 14"). The reconverted messages

are then queued to be resent to the HAR.

5.10.1.1.36 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.10.1.1.37 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.10.1.1.38 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

5.10.1.1.39 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

CHART R3B3 Detailed Design 5-273 12/23/2008

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

5.10.1.1.40 SlotClipAudioData (Class)

This class is used to help keep track of and pass around slot data. This class associates a

clip with a particular slot and usage, and with a file name which contains its audio (wav)

data. The fileName is passed to the ISSAP55ProtocolHdlr to store the wav data in the slot.

5.10.1.1.41 SyncCommandStatus (Class)

A SyncCommandStatus implements the CommandStatus interface and performs a

notification when it is completed. It is used by the HAR service to track the activity of

HARMessageNotifiers, which may operate asynchronously and provide status later via a

CommandStatus.

5.10.1.1.42 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.10.1.1.43 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect

it to a destination phone number and perform send and receive operations while connected

that result in DTMF or voice being sent across the telephone connection to or from the

device.

5.10.1.1.44 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method

that can connect a VoicePort that has been acquired by the PortLocator base class. This

derived class logs information in the comm failure database table relating to connection

problems that may occur. Since this is a telephony port which is much simpler to connect

than, say, a ModemPort, there will be considerably fewer types of errors which can occur

and thus be detected and reported.

CHART R3B3 Detailed Design 5-274 12/23/2008

5.10.2 Sequence Diagrams

5.10.2.1 HARControlModule:SetConfiguration (Sequence Diagram)

A user with the appropriate privileges can set the configuration of the HAR. The HAR

must be in maintenance mode when setting the configuration. The command is processed

asynchronously by the CommandQueue. When the command reaches the top of the queue,

the HARImpl's setConfigurationImpl() method is called to do the actual work.

HARImpl
ORB

DictionaryWrapper

See sequence diagram HARControlModule:setConfigrationImpl for details.

Validate configuration values, to include checking there there is
enough space on the HAR to store any new default header,
message, or trailer clips.

Command queue executes
command asynchronously

HARSetConfigurationCmd

CommandStatusCommandQueue OperationsLog

[resource conflict]
ResourceControlConflict

verifyNoResourceConflict

setConfigurationImpl

[no rights]
log

[set configuration] log

"validate config"

update("queued for processing")

[invalid config]
CHART2Exception

execute

[banned words exist]
DisapprovedMessageContent

[clip instanceof HARMessageTextClip]
checkForBannedWords

[*for each new clip among
new config's

default header, trailer, &
default message]

create

[not in maintenance mode]
completed

[no rights]
completed

[not in maintenance mode]
CHART2Exception

[no rights]
AccessDenied

setConfiguration

addCommand

Figure 5-193 HARControlModule:SetConfiguration (Sequence Diagram)

CHART R3B3 Detailed Design 5-275 12/23/2008

5.10.2.2 HARControlModule:setConfigurationImpl (Sequence Diagram)

This method is called by the HARSetConfigCmd when it reaches the top of the

CommandQueue and is executed. This method does the work of updating the configuration

of the HAR. Some configuration elements require communication to the device: the default

header, trailer, and message. if any of these change, the audio data is collected by calling

prepareWavFiles() on each of the default clips changed, then a connected port is acquired

and used to download the new clip data into the HAR. This is accomplished by calling the

HARSlotManager store() method. Any clips which are unable to be stored are set back to

their original values. Because the configuration consists of many separate values that are

set individually on the device, the possibility of partial success exists. When this occurs

warning messages are given back to the user through the command status object and the

configuration is set to reflect the partial success. If any data has ultimately changed, the

new configuration is stored and persisted, and a HARConfigurationChanged event is

pushed.

CHART R3B3 Detailed Design 5-276 12/23/2008

R3B3:Update everything in
 m_config,except devicelocation

[got NoSpaceAvailableException]
"set hdr back to m_config's value"

[any monitor comm params (e.g. phone number) changed]
delete

[no new params different]
completed("nothing changed")

[nothing changed]

update m_config with newCfg data

[no CHART2Exception &
trailer different and port acquired]
store(port, trlrSlotClipFileData)

[hdr different and port acquired]
store(port, hdrSlotClipFileData)

update("updating config")

[no longer in maint mode]
completed

[no failure &
defaultMsg different and port acquired]

store(port, msgSlotClipFileData)

setConfigurationImpl

completed(success + warnTxt warnings)

[some or all of the configuration changes succeeded]
push(HARConfigurationChanged)

[some or all of the configuration changes succeeded]
setConfiguration

[failure]
CHART2Exception

[any control comm params (e.g. phone number) changed]
delete

[no longer in maint mode]

SlotClipFileData

AudioClipManagerWrapper

HARSlotManager

Append warning to warnTxt in this case.

Different means: audio vs text, or if are both text, compare text string, or if both are audio, compare clip IDs.

newCfg:
HARConfiguration

PushEventSupplier

HARControlModuleDB
CommandStatus

VoicePort

m_portLocator:
VoicePortLocator

m_PortLocator:
VoicePortLocator

HARSetConfigCmd

m_config:
HARConfiguration

m_monitorPortLocator:
VoicePortLocator

Do if not a SyncHAR constituent
and any of default header,
trailer, or default message
in new config are different.

m_monitorPortLocator:
VoicePortLocator

OperationsLog

On failure, calls handleOpStatus,
& updates, persists and pushes
status if necessary.
CommandStatus not completed.

Append warning to warnTxt
in any of these cases.

HARImpl

prepareWavFiles(slotClipFileData, cmdStat)

"set newCfg value to match existing m_config value"

fmsGetConnectedPort(true)

[failure getting port]
"set hdr, msg, trlr back to m_config's value"

[got CHART2Exception or NoSpaceAvailableException]
"set msg back to m_config's value"

[got CHART2Exception]
"set trlr, msg back to m_config's value"

[got CHART2Exception]
"set hdr, msg, trlr back to m_config's value"

[port acquired]
fmsReleasePort

[some or all of the config changes succeeded]
log("config changed by ..., list of changed params & new values)

[resource conflict]
ResourceControlConflict

verifyNoResourceConflict

create

[success]
slotClipFileData

[*for each default
hdr, trlr, msg different
from current config]

[any monitor comm params (e.g. phone number) changed]
create

[got NoSpaceAvailableException]
"set trlr back to m_config's value"

[any control comm params (e.g. phone number) changed]
create

Figure 5-194 HARControlModule:setConfigurationImpl (Sequence Diagram)

CHART R3B3 Detailed Design 5-277 12/23/2008

5.11 INRIXDataImportModule

5.11.1 Classes

5.11.1.1 INRIXDataImportModuleClasses (Class Diagram)

This diagram shows the classes that make up the INRIXDataImportModule.

INRIXImportResults

PushEventSupplier1

1

pushes
events
using

1

1

creates

INRIXLinkDataManager

INRIXDataImpor tModule

1

1

1

creates
from parsed

XML

INRIXLinkDataParseHandler

org.xml.sax.helpers.DefaultHandler

1

1

LinkData

«struct»

1

1

Aler tFactoryWrapper

NotificationManagerWrapper
1

1

sends alerts
using

1

1

sends
notificaitons

using

1 1

*

LinkDataConsumer

«interface»

DiscoverINRIXLinkDataConsumersCmd

1

1

1

QueueableCommand

«interface»

1

*

1

LinkDataProvider

«interface»

java.util.Timer

DataImportTimerTask

INRIXDataImportModuleProperties

java.util.TimerTask

11

1

1

1

1

creates
and

schedules

1

1

runs

1

1

1

1

1

1

ExternalSystemConnectionConfig

«struct»

ExternalSystemConnectionStatus

«struct»

INRIXSystemConnectionImpl

ExternalSystemConnection

«interface»

javax.xml.parsers.SAXParser

1

1

1

1

sends
parse

events to

1

1

1

1

ProxyINRIXLinkDataConsumer

1

1

* creates
and

caches

CommandQueue

PushINRIXLinkDataCmd

1

1

1

1

UserManagerWrapper

1

1

gets alert
and

notification
settings from

ServiceApplicationModule

«interface»

ServiceApplication

«interface»

1

setPushEventSupplier(supplier):void
setConnectionStatus(status:SimpleStatus):void

m_props:INRIXDataImportModuleProperties

pushDataToConsumer(data:LinkData):void

m_lastPushTimeMillis:long
m_lastPushedData:LinkData

getExternalSystemConnection():INRIXSystemConnectionImpl
getDiscoveryManager():DiscoveryManager
getDataModel():DataModel

addError(msg:Strring):void
addErrors(msgs:String[]):void
addLinkData(data:LinkRawData):void
getErrors():String[]
getLinkData():LinkRawData[]

m_impoortStartTime:Date
m_errors:ArrayList
m_linkData:Hashtable

getImportFreqSeconds():int
getINRIXServiceURL():String
getTMCSetsToPull():String[]

importLinkDataImpl():void
-persistLinkData(data:LinkData):void
-getPersistedLinkData():LinkData
-schedulePush(pushCmd:PushINRIXLinkDataCmd):void
-retrieveLinkData(tmcSetID:String):InputStream

m_data:LinkData
m_tmcSetIDs:String[]

m_data:LinkData
m_consumer:ProxyINRIXLinkDataConsumer

dataReceivedTimeMillis:timestamp2
linkData:LinkRawData[]

getParseErrors():String[]
startDocument():void
endDocument():void
startElement(nameSpace:String, localName:String, qualName:String, attrs:Attributes):void
endElement(namespace:String, simpleName:String, qualName:String):void

Figure 5-195 INRIXDataImportModuleClasses (Class Diagram)

5.11.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

CHART R3B3 Detailed Design 5-278 12/23/2008

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.11.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.11.1.1.3 DataImportTimerTask (Class)

The TimerTask that is scheduled for periodic execution in order to import the latest data

from the INRIX service.

5.11.1.1.4 DiscoverINRIXLinkDataConsumersCmd (Class)

5.11.1.1.5 ExternalSystemConnection (Class)

This interface defines external connections and provides status reporting.

5.11.1.1.6 ExternalSystemConnectionConfig (Class)

This struct defines a connection to an external system.

5.11.1.1.7 ExternalSystemConnectionStatus (Class)

This struct is used to report status for an ExternalSystemConnection.

5.11.1.1.8 INRIXDataImportModule (Class)

The service application module that provides INRIX data import functionality.

5.11.1.1.9 INRIXDataImportModuleProperties (Class)

This class provides convenience methods for getting the values of INRIX data import

modules configuration properties.

CHART R3B3 Detailed Design 5-279 12/23/2008

5.11.1.1.10 INRIXImportResults (Class)

This class is used to store information from the ingestion of INRIX link data. It stores

errors encountered and link data.

5.11.1.1.11 INRIXLinkDataManager (Class)

This class manages the current INRIXLinkData and provides access to it via the

INRIXLinkDataProvider CORBA interface.

5.11.1.1.12 INRIXLinkDataParseHandler (Class)

A SAX style parse handler that is used during the parse of the incoming INRIX XML

document to create an INRIXLinkData structure for use by the application.

5.11.1.1.13 INRIXSystemConnectionImpl (Class)

This class provides the implementation of the CORBA ExternalSystemConnection interface

that represents the INRIX data connection. It is responsible for maintaining the connection

status, pushing connection status events when the status changes and sending external

connection related events and notifications.

5.11.1.1.14 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.11.1.1.15 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.11.1.1.16 javax.xml.parsers.SAXParser (Class)

This class is used to perform a SAX parse of XML data.

5.11.1.1.17 LinkData (Class)

This class contains the latest LinkRawData along with a timestamp that indicates when it

was obtained by the CHART system.

5.11.1.1.18 LinkDataConsumer (Class)

This CORBA interface defines the methods that a consumer of INRIX link data must

implement in order to be updated when data changes.

5.11.1.1.19 LinkDataProvider (Class)

This CORBA interface defines the methods that a provider of INRIX link data must

implement.

CHART R3B3 Detailed Design 5-280 12/23/2008

5.11.1.1.20 NotificationManagerWrapper (Class)

This singleton class presents the same interface as the NotificationManager, but uses a

FirstAvailableOfferWrapper to provide fault tolerant access to the methods.

5.11.1.1.21 org.xml.sax.helpers.DefaultHandler (Class)

This class provides a default base handler for a SAX parse of XML data.

5.11.1.1.22 ProxyINRIXLinkDataConsumer (Class)

This class provides a proxy for an INRIXLinkDataConsumer. The proxy stores the last

pushed data and the time it was last pushed to allow it to avoid pushing data that is not

current.

5.11.1.1.23 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.11.1.1.24 PushINRIXLinkDataCmd (Class)

This class provides an asynchronoush method of pushing INRIXLinkData to a consumer.

5.11.1.1.25 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.11.1.1.26 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

CHART R3B3 Detailed Design 5-281 12/23/2008

Service.

5.11.1.1.27 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.11.1.1.28 UserManagerWrapper (Class)

The UserManagerWrapper is a singleton class that provides access to a single instance of a

remote service type (in this case UserManager) where many instances may exist in the

Traders. If the connection to the current instance is lost, it re-establishes the connection,

possible with a different instance of the desired service type. This class supports storing

properties with values that are string data or binary data.

CHART R3B3 Detailed Design 5-282 12/23/2008

5.11.2 SequenceDiagram

5.11.2.1 CHART2.INRIXDataImportModule:DataImportTimerTask.run (Sequence Diagram)

This diagram shows the processing that is perfomed each time the DataImportTimerTask is

run. First an INRIXImportResults object is created to store all link data and errors from the

import operation. Then an attempt is made to retrieve the link data for each configured

TMC set. If the data cannot be obtained an error is added to the import results. If the data

is retrieved successfully the returned XML document is parsed. All data found during the

parse is added to the import results. When the parse has completed all parse errors are

added to the import results as well. After all TMC sets have been imported the

INRIXLinkDataManager will get the parsed data and any parse errors encountered from the

INRIXImportResults object. If no data was found the connection status will be set to

FAILURE. If data was found but errors were encountered the connection status will be set

to WARNING. If all data was imported and no errors were encountered the connection

status is set to OK. If there is any new data it is persisted and then pushed to all previously

discovered ProxyINRIXDataConsumers asynchronously.

CHART R3B3 Detailed Design 5-283 12/23/2008

addLinkData()

getLinkData()

[* for each TMC set]

INRIXImportResults
create

retrieveLinkData(tmcSetID)

[Link Data && No Errors]
setConnectionStatus(OK)

CommandQueue

Clear the queue of any
previously scheduled pushes

clear()

PushINRIXLinkDataCmd

[* for each
ProxyINRIXLinkDataConsumer]

create

schedulePush(PushINRIXLinkDataCmd)

run()

persistLinkData()

[Link Data && Errors]
setConnectionStatus(WARNING)

getErrors()

getParseErrors()
String[]

getDataModel()

getObjectsOfType(ProxyINRIXLinkDataConsumer)

ProxyINRIXLinkDataConsumer[]

[No Link Data]
setConnectionStatus(FAILURE)

[No Link Data]

INRIXDataImportModule

INRIXSystemConnectionImpl

SAXParser

INRIXLinkDataParseHandler DataModel

getExternalSystemConnection()

INRIXSystemConnectionImpl

[Error getting data]
addError()

[Data retrieved successfully]
parse(inputStream, parseHandler)

startDocument()

endDocument()

[* for each element
in the document]

startElement()

endElement()

Timer

DataImportTimerTask

Refer to INRIXLinkDataCmd.execute
sequence diagram for details of the
push operation.

String[]

DataModel

[Parse Errors]
addErrors(errors)

INRIXLinkDataManager

LinkRawData[]

[No Link Data]

INRIXSYstemConnectionImpl
will send alerts and/or notifications
as configured in the system profile
when the connection status changes.

importLinkDataImpl()

Figure 5-196 CHART2.INRIXDataImportModule:DataImportTimerTask.run (Sequence

Diagram)

CHART R3B3 Detailed Design 5-284 12/23/2008

5.11.2.2 CHART2.INRIXDataImportModule:INRIXDataImportModule.initialize (Sequence

Diagram)

This diagram shows the processing that is performed when the INRIXDataImportModule is

initialized. The module creates a new INRIXDataImportModuleProperties object, then

creates a new INRIXSystemConnectionImpl, activates it in the persistent POA and registers

it in the primary trading service. Next the module creates a PushEventSupplier that will be

used to push ExternalSystemConnection related events and registers the channel in the

trader. The PushEventSupplier is set into the INRIXSystemConnectionImpl so that it may

be used to push events as status changes. Next the INRIXLinkDataManager is created.

The data manager reads any previously persisted link data to use as its initial link data and

then creates a Timer and schedules a recurring DataImportTimerTask. The

INRIXLinkDataManager also creates a

CHART R3B3 Detailed Design 5-285 12/23/2008

array of set ids

DiscoverINRIXLinkDataConsumersCmd

DiscoveryManager

create

add()

Timer

DataImportTimerTask

create

create

scheduleAtFixedRate(task)

Creates a PushEventSupplier that will be used
to push external system connection events.

setPushEventSupplier(eventPusher)

PushEventSupplier

INRIXLinkDataManager

registerObject(ExternalSystemConnection)

getEventChannelFactory()

EventChannelFactory

create()

registerEventChannel(channel)

getEventChannel()

EventChannel

create

getPersistedLinkData()

activate_object_with_id

registerObject

true

[Error during
initalization]

false

INRIXSystemConnectionImpl

ServiceApplication

POA

create

getPOA(persistentPOA)

activate_object_with_id

ServiceApplication

INRIXDataImportModule

INRIXDataImportModuleProperties

initialize()

create()

getTMCSetsToPull()

Figure 5-197 CHART2.INRIXDataImportModule:INRIXDataImportModule.initialize

(Sequence Diagram)

CHART R3B3 Detailed Design 5-286 12/23/2008

5.11.2.3 CHART2.INRIXDataImportModule:INRIXLinkDataProvider.getLinkData (Sequence

Diagram)

This diagram shows the processing that is perfomed each time a consumer calls the

INRIXLinkDataProvider.getLinkData CORBA method. The data manager verifies that the

caller has sufficient privileges to retrieve INRIX link data. If not an AccessDenied

exception is thrown, otherwise the current link data is returned.

CHART Component

TokenManipulatorINRIXLinkDataManager

getLinkData()

INRIXLinkData

[insufficient rights]
AccessDenied

checkAccess()

Figure 5-198 CHART2.INRIXDataImportModule:INRIXLinkDataProvider.getLinkData

(Sequence Diagram)

CHART R3B3 Detailed Design 5-287 12/23/2008

5.11.2.4 CHART2.INRIXDataImportModule:PushINRIXLinkDataCmd.execute (Sequence

Diagram)

This diagram shows the processing that is performed in order to push the current link data

out to a INRIXLinkDataConsumer. The PushINRIXLinkDataCmd is executed by the

CommandQueue and it calls the pushDataToConsumer method of the

ProxyINRIXLinkDataConsumer. The proxy performs a check to verify that the data that is

being pushed was received from INRIX more recently than the last data that was pushed to

this consumer. If it is not the push is not performed. If it is, the INRIXLinkDataConsumer

is called and is passed the new INRIXLinkData. If the consumer returns a result that it

expected INRIX link data that was missing from the update the external system connection

status is set to WARNING.

INRIXLinkDataConsumer

pushDataToConsumer()

[Data to push has
received timestamp

that is prior to that on
last data pushed to this

consumer]
[not latest data]

updateINRIXLinkData()
INRIXLinkDataUpdateResult

ProxyINRIXLinkDataConsumer INRIXSystemConnectionImpl

[result indicates missing link data]
setConnectionStatus(WARNING)

CommandQueue

PushINRIXLinkDataCmd

execute()

INRIXSYstemConnectionImpl
will send alerts and/or notifications
as configured in the system profile
when the connection status changes.

Figure 5-199 CHART2.INRIXDataImportModule:PushINRIXLinkDataCmd.execute

(Sequence Diagram)

CHART R3B3 Detailed Design 5-288 12/23/2008

5.12 INRIXLinkImportProgramPkg

5.12.1 Classes

5.12.1.1 INRIXLinkDefImportProgram (Class Diagram)

Utility program used to import INRIX link definition data into the CHART system.

m_instance

get():Log;
log()
logStack()

Log

m_flags : boolean[]

INRIXImporterLog

getProperty()
setProperty()

java.util.Properties

PROP_FILE

DBConnectionString
DBUserName
DBPassword
DBTableName
LogFileLevel
BoundaryLatLong

m_parser:INRIXLinkDataParser
m_db:INRIXLinkDB
m_fileName:string
m_roadwayLinkConfig:RoadwayLinkConfig

main(args:string)
readINRIXDVD(fileName:String) : RoadwayLinkConfig[]
setINRIXLink(config : RoadwayLinkConfig)

«utility»
INRIXLinkDefImporter

m_props : Properties

INRIXLinkImporterProperties

setRoadwayLink(roadwayLinkconfig:RoadWayLinkConfig)
-insertRoadwayLinkRecord(config : RoadwayLinkConfig)
-updatekRoadwayLinkRecord(config : RoadwayLinkConfig)

INRIXLinkDB

This may not be complete depending on
answers to questions we've asked INRIX.

EXT_LINK_ID_TMC
ROUTE_SPEC_TYPE_TMC_TYPE
ROUTE_NUMBER
BLANK_COLUMN
ROUTE_FREE_FORM_TEXT
LINK_NAME
LINEAR_TMC
COUNTRY
STATE_FIPS_CODE
COUNTY_NAME
USPS_STATE_CODE
DIRECTION
START_LAT_UDEG
START_LONG_UDEG
END_LAT_UDEG
END_LONG_UDEG
MILLI_MILES

«enumeration»
RoadwayLinkFieldType

m_parser:CSVParser
m_linkData:String[]
m_fileReader:java.io.FileReader

getRotadwayLinkData()
parseRoadwayLink()
addRoadwayLinkDataToConfig()

INRIXLinkDataParser

java.io.FileReader

CSVParser

This object is COTS (open source)
We are currently cosidering
org.apache.commons.csv.CSVParser
A CSVParser that uses the Apache license

1

1

1

1

1

1

1 1

1

1

Figure 5-200 INRIXLinkDefImportProgram (Class Diagram)

5.12.1.1.1 CSVParser (Class)

This class is a COTS API that provides functionality for parsing CSV data.

5.12.1.1.2 INRIXImporterLog (Class)

The common logging class used by the INRIXLinkDefImportProgram to help reduce code

duplication.

5.12.1.1.3 INRIXLinkDataParser (Class)

This class provides functions that reads the INRIX data line by line and converts that data

into tokens, processes those tokens into data that is inserted into a RoadwayLocationConfig,

and inserts or updates the configuration into the CHART database depending on whether

CHART R3B3 Detailed Design 5-289 12/23/2008

the link entry already exists in the database.

5.12.1.1.4 INRIXLinkDB (Class)

This class is a utility that provides methods for inserting or updating the database pertaining

to INRIX link definition data.

5.12.1.1.5 INRIXLinkDefImporter (Class)

 This is the main program of the INRIX link definition importer. It takes user parameters

from the command line, reads program properties from the property file, controls reading

the INRIX CSV link defintion data file, converts the INRIX data and updates the CHART

database.

5.12.1.1.6 INRIXLinkImporterProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to

the properties specific to the INRIXLinkDefImportProgram. These properties include the

name of the file where raw CSV INRIX Link definition data is located and the directory

where debug log files are to be kept.

5.12.1.1.7 java.io.FileReader (Class)

Convenience class for reading character files.

5.12.1.1.8 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

property list is searched if the property key is not found in the original property list.

5.12.1.1.9 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for

system trace messages.

5.12.1.1.10 RoadwayLinkFieldType (Class)

Enumeration used as an index in to the array of tokens returned by the CSVParser. Also

used to determine what process to run if any one each token from the array.

CHART R3B3 Detailed Design 5-290 12/23/2008

5.12.2 Sequence Diagrams

5.12.2.1 INRIXDefLinkImportProgramPkg:importINRIXLinks (Sequence Diagram)

This diagram shows how the INRIX Link definitions are imported in to the CHART database.

The importer is a utility program executed from the command line. The user must provide a user

name on the command line. The user can optionally provide the INRIX import data file name

and table name on the command line. The program first gets the properties from the property file.

It then checks to see if a user name was provided on the command line. If no user name is

provided it loops a display to the user asking for one till one is provided. The program then

creates a database file reader and uses it to create a CSVParser. Next it creates an

INRIXLinkDB object. It then reads the data from the filename provided one line at a time and

parses it into an array of tokens. It checks the lat/long to see if the link is in boundary specified

by parameters from the prop file. If the link is not in the boundary it moves to the next line in the

file. If the link is in the boundary the tokens are each processed as needed and stored in a

RoadwayLinkConfig. The RoadwayLinkConfig is then added to the CHART database if it does

not already exist in the database. It is updated if an entry already exists for that

RoadwayLinkConfig. Processing continues at this point unless one of two situations occurs. If

the first update/insert to the database fails an error is logged and displayed to the user and

processing stops. If a property file parameter number of database errors occur the processing is

also stopped. If the link configuration is successfully stored to the database the Link ID is logged

in the application log and processing continues until all records have been processed from the

INRIX link definition file

CHART R3B3 Detailed Design 5-291 12/23/2008

[db creation failed]

[DB error]
Exception()

Link xxxxx added to Chart DB

[DB error]
increment dbErrorCounter

[error count exceeded]
Too many links failed input into the database. Ending import.

A database error occured while adding
INRIX record xxxxx

dbErrorCounter = 0

[first link and DB error]
A Database error occured on the first import record. Check DB

isRoadwayLinkInBoundry()

create()

getPorperties(propFileName)

[DVD file name and database
 name not provided]

[DB error]
Exception()

Use each roadwayLinkRecord array value position
to determine where to place the data in the config
structure. This will include any processing that is
necessary.

RoadwayLink xxxx added to the database

App Log

[else]
updateRoadwayLinkRecord()

[link not in boundry]

RoadwayLinkConfig

parseRoadwayLink()

setRoadwayLink(config)

INRIXLinkImporter
Admin

INRIXLinkDataParser

FileReader

INRIXLinkDb

CSVParser

Select for record. If is exist update it
if not add it to the DB.

main(fileName:string)

readINRIXDVD(fileName, userName)

fileReader = new FileInputStream(
fileName)

FileNotFoundException

RoadwayLinkConfig config = new RoadwayLinkConfig

An error occured while reading INRIX DVD
File not found please provide a valid file name and pth parser = new CSVParser(fileReader)

String roadwayLinkRecord[] = parser.getLine()

[not in DB]
insertRoadwayLinkRecord()

INRIXLinkImporterProperties

Please prove a file name and database name

[* for each
line of data

on the INRIX
DVD]

getRoadwayLink()

addRoadwayLinkDataToConfig(config)

A database error occured while updating
INRIX record xxxxx

INRIX Link Import completed

Figure 5-201 INRIXDefLinkImportProgramPkg:importINRIXLinks

CHART R3B3 Detailed Design 5-292 12/23/2008

5.13 Java Classes

5.13.1 Classes

5.13.1.1 JavaClasses (Class Diagram)

This package is included for reference to classes included in the Java programming

language that are used in class and sequence diagrams for other packages within this

design.

org.xml.sax.helpers.DefaultHandler

javax.xml.parsers.SAXParser

java.lang.Comparable

«interface»

New for R3B3

javax.xml.validation.Validatorjavax.xml.transform.Source javax.xml.validation.Schema

java.util.Comparator
«interface»

java.awt.event.WindowListener

«interface»
java.awt.event.ActionListener

«interface»

javax.swing.table.
AbstractTableModel javax.swing.tree.

MutableTreeNode

«interface»

java.util.LinkedList

java.util.Vectorjavax.comm.SerialPort

java.lang.Runnable

«interface»

java.util.Date

java.sql.Connectionjava.sql.Statement

java.util.TreeMap

javax.swing.JTabbedPane

java.io.File

java.lang.ThreadGroup

javax.swing.table.
TableModel

java.awt.Component

java.util.Hashtablejavax.swing.JFrame

java.lang.Thread

java.util.Properties

javax.swing.JOptionPane

javax.swing.tree.
DefaultTreeModel

java.awt.event.KeyListener

«interface»

java.awt.event.ItemListener

java.util.Timer

java.util.TimerTask

javax.sound.sampled.AudioSystemjava.io.InputStream

java.lang.Object

start()
interrupt()
setDaemon(boolean)
run():void

hashCode()
equals()

put(Object key, Object value)
get(Object key):value

show()

executeQuery(string query):ResultSet
executeUpdate(string):int

run()

createStatement():Statement

getProperty()
setProperty()

actionPerformed()

getFirs t():Object
add(Object)

run()

keyPressed
()keyReleased
()keyTyped()

showMessageDialog
()showOptionDialog()

windowClosing()
windowOpened()

compareTo(T other) : int

schedule() : void
cancel() : void

parse(stream, handler):void

Figure 5-202 JavaClasses (Class Diagram)

CHART R3B3 Detailed Design 5-293 12/23/2008

5.13.1.1.1 java.awt.Component (Class)

This class is the base class for all graphical user interface components such as buttons and

panels.

5.13.1.1.2 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu

items, it is attached to menu items when the menu is built.

5.13.1.1.3 java.awt.event.ItemListener (Class)

This interface allows the implementing class to listen for changes to an item such as a list

item or combo box item.

5.13.1.1.4 java.awt.event.KeyListener (Class)

Interface that a class must realize in order for objects of that class to be notified when the

user presses a key.

5.13.1.1.5 java.awt.event.WindowListener (Class)

Listener interface that a class must implement for receiving window events

5.13.1.1.6 java.io.File (Class)

This class is an abstract representation of file and directory pathnames.

5.13.1.1.7 java.io.InputStream (Class)

Java class that represents a input stream of bytes.

5.13.1.1.8 java.lang.Comparable (Class)

This interface allows two objects to be compared for the purposes of sorting.

5.13.1.1.9 java.lang.Object (Class)

This is the base class from which all Java classes inherit.

5.13.1.1.10 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading

mechanism.

5.13.1.1.11 java.lang.Thread (Class)

This class represents a java thread of execution.

CHART R3B3 Detailed Design 5-294 12/23/2008

5.13.1.1.12 java.lang.ThreadGroup (Class)

A thread group represents a set of threads.

5.13.1.1.13 java.sql.Connection (Class)

This class represents a connection (session) with a specific database.

5.13.1.1.14 java.sql.Statement (Class)

Java class used for executing a static SQL statement and obtaining the results produced by

it.

5.13.1.1.15 java.util.Comparator (Class)

This interface is implemented by classes that can be sorted.

5.13.1.1.16 java.util.Date (Class)

A class used to store dates and times.

5.13.1.1.17 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any

non-null object can be used as a key or as a value. Objects used as keys implement the

hashCode method which is inherited by all objects from the java.lang.Object class.

5.13.1.1.18 java.util.LinkedList (Class)

This class is an implementation of List interface for a linked list.

5.13.1.1.19 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

property list is searched if the property key is not found in the original property list.

5.13.1.1.20 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.13.1.1.21 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.13.1.1.22 java.util.TreeMap (Class)

This class is an implementation of the SortedMap interface. This class guarantees that the

CHART R3B3 Detailed Design 5-295 12/23/2008

map will be in ascending key order, sorted according to the natural order for the key's class,

or by the comparator provided at creation time, depending on which constructor is used.

5.13.1.1.23 java.util.Vector (Class)

A Vector is a growable array of objects.

5.13.1.1.24 javax.comm.SerialPort (Class)

This class provides access to a computer's serial port. It allows the port to be opened and

closed and allows data to be sent and received.

5.13.1.1.25 javax.sound.sampled.AudioSystem (Class)

The AudioSystem class acts as the entry point to the sampled-audio system resources. This

class lets you query and access the mixers that are installed on the system.

5.13.1.1.26 javax.swing.JFrame (Class)

Java class that displays a frame window.

5.13.1.1.27 javax.swing.JOptionPane (Class)

This class is used to display popup messages to an end user.

5.13.1.1.28 javax.swing.JTabbedPane (Class)

This class is a component that has tabbed pages, and the user can click on a tab to flip to a

certain page.

5.13.1.1.29 javax.swing.table. AbstractTableModel (Class)

This class provides a base implementation of the TableModel interface. This data structure

will be used to supply a JTable with data.

5.13.1.1.30 javax.swing.table. TableModel (Class)

This class provides the data structure that drives the population and updating of the data

used by the JTable (a Java GUI component).

5.13.1.1.31 javax.swing.tree. DefaultTreeModel (Class)

This class is the data structure which is used as a foundation for the JTree class.

5.13.1.1.32 javax.swing.tree. MutableTreeNode (Class)

This interface extends the TreeNode interface and provides the ability to add and remove

children from nodes. It may be used in a TreeModel.

CHART R3B3 Detailed Design 5-296 12/23/2008

5.13.1.1.33 javax.xml.parsers.SAXParser (Class)

This class is used to perform a SAX parse of XML data.

5.13.1.1.34 javax.xml.transform.Source (Class)

This class is used for XML schema validation.

5.13.1.1.35 javax.xml.validation.Schema (Class)

This class represnts an XSD schema for XML.

5.13.1.1.36 javax.xml.validation.Validator (Class)

This class represents a valitor that can validation XML against an XSD schema.

5.13.1.1.37 org.xml.sax.helpers.DefaultHandler (Class)

This class provides a default base handler for a SAX parse of XML data.

CHART R3B3 Detailed Design 5-297 12/23/2008

5.14 MessageTemplateModulePkg

5.14.1 Classes

5.14.1.1 MessageTemplateModule (Class Diagram)

This diagram shows what happens when the MessageTemplateModule is initialized. The

ServiceApplication calls the MessageTemplateModule to initialize, which reads in the

properties from a file, overriding the default properties. It creates an event channel for

message templates and publishes the channel in the trading service so that other

applications can see it. It creates a DMSTravInfoMsgTemplateDB object to handle all of

the database calls, and a MessageTemplateFactoryImpl object to manage the DMS travel

info message templates. The MessageTemplateFactoryImpl calls the

DMSTravInfoMsgTemplateDB to load the DMSTravInfoMsgTemplate objects from the

database. Then for each template it will activate the an

existingDMSTravInfoMsgTemplate objects. The MessageTemplateFactoryImpl is

exported to the trading service.

getProperty()
setProperty()

java.util.Properties

ServiceApplication m_svcApp;
DefaultServiceApplicationProperties m_props;

initialize(ServiceApplication app):boolean
getVersion() : ComponentVersion
traderGroupUpdated() : void
shutdown(ServiceApplication app):boolean

«interface»
ServiceApplicationModule

m_props:MessageTemplateModuleProperties
m_dbConnMgr:DBConnectionManager
m_log : Log
m_svcApp : ServiceApplication
m_pushEventSupplier:PushEventSupplier

getDB():DMSTravInfoMsgTemplateDB
getProperties():MessageTemplateModuleProperties
getPOA():POA
getORB():ORB
createMessageTemplateFactory() : boolean

MessageTemplateModule

m_props : Properties
m_svcApp : ServiceApplication

MessageTemplateModuleProperties

createDMSTravInfoMsgTemplate(token:(token: AccessToken,
 config:DMSTravInfoMsgTemplateConfig) :DMSTravInfoMsgTemplateInfo()
getDMSTravInfoMsgTemplates(token: AccessToken):DMSTravInfoMsgTemplateInfo[]
getTollRateTimeFormats(token: AccessToken):TollRateTimeFormat[]
getTravelTimeFormats(token: AccessToken):TravelTimeFormat[]
getTravelTimeRangeFormats(token: AccessToken):TravelTimeRangeFormat[]
getTollRateFormats(token: AccessToken):TollRateFormat[]
getDistanceFormats(token: AccessToken):DistanceFormat[]
getConfig(templateId) :DMSTravInfoMsgTemplateConfig

«interface»
MessageTemplateFactory

m_props:MessageTemplateModuleProperties
m_dbConnMgr:DBConnectionManager
m_log : Log
m_svcApp : ServiceApplication

addDMSMessageTemplateConfig(
 config : DMSTravInfoMsgTemplateConfig)
getDMSMessageTemplateConfig(id : byte[]) :
 DMSTravInfoMsgTemplateConfig
removeDMSMessageTemplate((id : byte[])
getTollRateTimeFormats():TollRateTimeFormat[]
getTravelTimeFormats():TravelTimeFormat[]
getTravelTimeRangeFormats():TravelTimeRangeFormat[]
getTollRateFormats():TollRateFormat[]
getDistanceFormats():DistanceFormat[]
-setTravInfoTemplateFormats(formats : MessageTemplateFormats,
 templateId:byte[]):boolean
getTravInfoTemplateFormats(formats : MessageTemplateFormats,
 templateId : byte[]):boolean
removeTravInfoDataFormatAssociation(templateId : byte[])

«utility»
DMSTravInfoMsgTemplateDB

m_name : String
m_svcApp : ServiceApplication
m_poa : POA
m_db : DB
m_DMSTravInfoTemplateInfoList : DMSTravInfoMsgTemplateInfo[]

MessageTemplateFactoryImpl(svc_app:ServiceApplication,
 db:DMSTravInfoMsgTemplateDB,
 props:MessageTemplateModuleProperties,
 pushEventSupplier : PushEventSupplier)
-pushDMSTravInfoTemplateAdded():boolean
getPushEventSupplier():PushEventSupplier
removeDMSTravInfoMsgTemplate(
 impl : DMSTravInfoMsgTemplateImpl) : boolean
shutdown()

«implementationClass»
MessageTemplateFactoryImpl

getConfig(token: AccessToken) :
 DMSTravInfoMsgTemplateConfig
setConfig(token: AccessToken,
 config: DMSTravInfoMsgTemplateConfig) : void
remove(token: AccessToken) :void()

«interface»
DMSTravInfoMsgTemplate

m_Id:byte[]
m_msgTemplateFactoryId:byte[]
m_configInfo:DMSTravInfoMsgTemplateConfigInfo
m_props : MessageTemplateModuleProperties

getFactoryId():byte[]
DMSTravInfoMsgTemplateImpl(svc_app:ServiceApplication,
 config:DMSTravInfoMsgTemplateConfig,
 db:DMSTravInfoMsgTemplateDB,
 factory:MessageTemplateFactoryImpl,
 props:MessageTemplateModuleProperties)
-setTravInfoTemplateFormats()boolean()
-pushDMSTravInfoTemplateChanged():boolean
-pushDMSTravInfoTemplateRemoved():boolean
getTemplateDescription():string
setConfig(config:DMSTravInfoMsgTemplateConfig) : boolean
-isTemplateStale() : boolean
shutdown()

«implementationClass»
DMSTravInfoMsgTemplateImpl

PushEventSupplier

travelTimeFormat:TravelTimeFormat
travelTimeRangeFormat:TravelTimeRangeFormat
tollRateFormat:TollRateFormat
tollRateTimeFormat:TollRateTimeFormat
routeLengthFormat:DistanceFormat

«struct»
MessageTemplateFormats

templateConfig : DMSTravInfoMsgTemplateConfig
cachedTime : long

«struct»
DMSTravInfoMsgTemplateConfigInfo

templateDescription:string
numRows:int
numColumns:int
numPages:int
templateMessage:string
messageTemplateFormats:MessageTemplateFormats
destTagAlignment:MessageTemplateAlignment
missingDataOption:RouteMissingDataOption

«struct»
DMSTravInfoMsgTemplateConfig

11

1

1

1

1

1

1 1

*

1

1

1

1

1 *

1

1

1

1

1 1

Figure 5-203. MessageTemplateModule (Class Diagram)

CHART R3B3 Detailed Design 5-298 12/23/2008

5.14.1.1.1 DMSTravInfoMsgTemplate (Class)

The DMSTravlInfoMsgTemplate interface is implemented by objects that allow execution

of tasks associated with DMS travel information message templates.

5.14.1.1.2 DMSTravInfoMsgTemplateConfig (Class)

This object contains the configuration data for a message template that represents a

DMSTravlInfoMsgTemplate in the CHART DB

5.14.1.1.3 DMSTravInfoMsgTemplateConfigInfo (Class)

This structure contains a DMSTravInfoMsgTemplateConfig and a time stamp of when the

configuration was retrieved from the database. It's used in conjuction with a property to

determine if it is time to read the configurate from the database again. This evaluation

occurs when the template configuration is requested.

5.14.1.1.4 DMSTravInfoMsgTemplateDB (Class)

This class is a utility that provides methods for adding, removing, and updating database

data pertaining to DMS Travel Infomation Message Templates.

5.14.1.1.5 DMSTravInfoMsgTemplateImpl (Class)

This class implements the DMSTravInfoMsgTemplate interface defined in the IDL that

provides the set of methods use to create, view and remove DMS travel info message

templates

5.14.1.1.6 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

property list is searched if the property key is not found in the original property list.

5.14.1.1.7 MessageTemplateFactory (Class)

Interface whose implementation is used to create message templates, retrieve travel

information message templates and retrieve travel time and toll rate formats.

5.14.1.1.8 MessageTemplateFactoryImpl (Class)

This class is an implementation of MessageTemplateFactory and is capable of creating a

new DMSTravInfoMsgTemplate objects in the system. Additionally, it provides the

sevices of retrieving existing travel information message formats and

DMSTravInfoMsgTemplates.

5.14.1.1.9 MessageTemplateFormats (Class)

This structure contains all travel time and toll rate format that are specified within a given

CHART R3B3 Detailed Design 5-299 12/23/2008

DMSTravInfoMsgTemplate.

5.14.1.1.10 MessageTemplateModule (Class)

This class provides the resources and support functionality necessary to serve

DMSTravInfoMsgTemplates related objects in a service application. It implements the

ServiceApplicationModule interface which allows it to be served from any

ServiceApplication.

5.14.1.1.11 MessageTemplateModuleProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to

the properties specific to the MessageTemplateModule. These properties include the name

of the file where raw DMS Message Template parameter data is to be logged, the directory

where debug log files are to be kept, and the interval at which the configuration of message

formats and DMSTravInfoMsgTemplates is to be read from the DB when requested.

5.14.1.1.12 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.14.1.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

.

CHART R3B3 Detailed Design 5-300 12/23/2008

5.14.2 Sequence Diagrams

5.14.2.1 DMSTravInfoMsgTemplateImpl:getConfig (Sequence Diagram)

This sequence diagram shows the process for getting a DMSTravInfoMsgTemplateConfig

from an DMSTravInfoMsgTemplateImpl. The function first checks to see if the caller has

the correct access rights. If the caller does not have the proper rights the function throws

an AccessDenied exception. If the caller has the correct rights the process continues and

next checks to see if the configuration has be cached longer than the

TemplateCacheThrehold specifics. If the threshold has not been exceeded it returns the

cached DMSTravInfoMsgTemplateConfig configuration. If the TemplateCacheThrehold

has been exceded the function reads the configuration using the

DMSTravInfoMsgTemplateDb, from the DMS_TRAVEL_INFO_MSGE_TEMPLATE

table and the various MSG__FORMATS tables. It then returns the

DMSTravInfoMsgTemplateConfig to the caller.

ORB

DMSTravInfoMsgTemplateImpl TokenManipulator OperationsLog DMSTravInfoMsgTemplateDB MessageTemplateModuleProperties DMSTravInfoMsgTemplateConfigInfo

DMSTravInfoMsgTemplateConfig
config = createconfig = create

m_configInfo.cachedTime = currentTimem_configInfo.cachedTime = currentTime

[templateCacheTheshold < currentTime - cachedTime][templateCacheTheshold < currentTime - cachedTime]

long templateTheshold = getTemplateCacheThreshold()long templateTheshold = getTemplateCacheThreshold()

cachedTime = m_configInfo.cachedTimecachedTime = m_configInfo.cachedTime

getConfig(token : AccessToken) :
 DMSTravInfoMsgTemplateConfig
getConfig(token : AccessToken) :
 DMSTravInfoMsgTemplateConfig

[sucessful][sucessful]

[db error]
CHART2Exception

[db error]
CHART2Exception

[db error][db error]

config = getDMSMessageTemplateConfig(msgTemplateId) config = getDMSMessageTemplateConfig(msgTemplateId)

[no Access]
AccessDenied

[no Access]
AccessDenied

[no access]
log

[no access]
log

checkAccess()checkAccess()

[db error]
CHART2Exception

[db error]
CHART2Exception

m_configInfo.templateConfigm_configInfo.templateConfig

formats = getTravInfoTemplateFormats(templateId)formats = getTravInfoTemplateFormats(templateId)

[db error][db error]

m_configInfo. templateConfig = configm_configInfo. templateConfig = config

Figure 5-204. DMSTravInfoMsgTemplateImpl:getConfig (Sequence Diagram)

CHART R3B3 Detailed Design 5-301 12/23/2008

5.14.2.2 DMSTravInfoMsgTemplateImpl:remove (Sequence Diagram)

This sequence diagram describes the process of removing a DMS message travel info

template from the CHART system.

DBConnec tionM anager

Connec ti on
c onn = c reate()

c onn = getConnec ti on()

c onn.s etAutoCom m it(fa ls e)

c onn.c om m it()

M es s ageTem plateEv ent

 dm s Tem plateRem ov edEv ent.rem ov edTem plate Id(m s gTem plate Id)

dm s Tem plateRem ov edEv ent = new M es s ageTem plateEv ent()

M es s ageTem plateFac tory Im pl

deac tiv ate_objec t(m s gTem plate Id)

POA

m s gTem plate Id = m _Id.getId()

pus h(dm s Tem plateRem ov edEv ent)

Pus hEv entSuppl i er

[s uc c es s]
true

c reati on o f Any not s hown.

rem ov eDM SM s gTem plate() : boo lean

ORB

DM STrav InfoM s gTem plate Im pl Tok enM anipu la tor Operations Log DM STrav InfoM s gTem plateDB

rem ov e(tok en : Ac c ess Tok en) : v o id

[db error]
CHART2Ex ception

[db error bas ic data]

rem ov eDM SM es s ageTem plate(m s gTem plate Id : by te) v o id

[no Ac c es s]
Ac c es s Denied

[no ac c es s]
l og

c hec k Ac c es s ()

[db error form ats]

[tem plate rem ov ed]
log(m s gTem plate Id)

[db error]
CHART2Ex ception

rem ov eTrav InfoDataForm atAss oc ia ti on(c onn, m s gTem plateId)

Figure 5-205. DMSTravInfoMsgTemplateImpl:remove (Sequence Diagram)

CHART R3B3 Detailed Design 5-302 12/23/2008

5.14.2.3 DMSTravInfoMsgTemplateImpl:setConfig (Sequence Diagram)

This method is when a user updates the configuration of a DMSTravInfoMsgTemplate. The

method first checks the user's access rights. If the user has the proper rights the method saves the

configuration to the database by calling addDMSMessageTemplateConfig on

DMSTravInfoMsgTemplateDB. addDMSMessageTemplateConfig creates a database connection

with auto commit set to false. It then saves the configuration base data to the database using

updateConfigData(). If there is a database error the changes are rolled back and a db error is

returned to the DMSTravInfoMsgTemplateImpl. The impl throws a Chart2Exception.

addDMSMessageTemplateConfig calls the setTravInfoTemplateFormats() to update the

Message Template Formats. Errors are handled the same as in updateConfigData(). If the

database inserts/updates are successful the changes are committed, a

DMSTravInfoMsgTemplateInfo is created and a dmsTemplateChangedEvent is push to clients.

ORB

DMSTravInfoMsgTemplateImpl TokenManipulator OperationsLog DMSTravInfoMsgTemplateDB

Connection

DBConnectionManager DictionaryWrapper

MessageTemplateFormats

DMSTravInfoMsgTemplateInfo

MessageTemplateEvent

PushEventSupplier

conn = getConnection()conn = getConnection()

conn = create()conn = create()

conn.setAutoCommit(false)conn.setAutoCommit(false)

conn.commit()conn.commit()

[db error]
CHART2Exception

[db error]
CHART2Exception

updateConfigData(config)updateConfigData(config)

push(dmsTemplateChangedEvent)push(dmsTemplateChangedEvent)

dmsTemplateChangedEvent.msgTemplateInfo.(dmsTravInfoMsgTemplateInfo)dmsTemplateChangedEvent.msgTemplateInfo.(dmsTravInfoMsgTemplateInfo)

dmsTemplateChangedEvent = new MessageTemplateEvent()dmsTemplateChangedEvent = new MessageTemplateEvent()

dmsTravInfoMsgTemplateInfo = new DMSTravInfoMsgTemplateInfo(config, dmsTravInfoMsgTemplateRef, getId())dmsTravInfoMsgTemplateInfo = new DMSTravInfoMsgTemplateInfo(config, dmsTravInfoMsgTemplateRef, getId())

setConfig(config)setConfig(config)

pushDMSTravInfoTemplateChanged()pushDMSTravInfoTemplateChanged()

formats = config.messageTemplateFormats formats = config.messageTemplateFormats

setConfig(token: AccessToken
config: DMSTravInfoMsgTemplateConfig): void)

setConfig(token: AccessToken
config: DMSTravInfoMsgTemplateConfig): void)

addDMSMessageTemplateConfig(config)addDMSMessageTemplateConfig(config)

[no Access]
AccessDenied

[no Access]
AccessDenied

[no access]
log

[no access]
log

checkAccess()checkAccess()

[db error]
CHART2Exception

[db error]
CHART2Exception

setTravInfoTemplateFormats(formats,
templateId)

setTravInfoTemplateFormats(formats,
templateId)

[db error][db error]

[successful][successful]

checkForBannedWords(config.templateMessage, usual delimiters, DMS)checkForBannedWords(config.templateMessage, usual delimiters, DMS)

[db error][db error]

[has banned words]
DisapprovedMessageContent

[has banned words]
DisapprovedMessageContent

Figure 5-206. DMSTravInfoMsgTemplateImpl:setConfig (Sequence Diagram)

CHART R3B3 Detailed Design 5-303 12/23/2008

5.14.2.4 MessageTemplateFactoryImpl:createDMSTravInfoMsgTemplate (Sequence

Diagram)

This diagram shows how a new DMSTravInfoMsgTemplate is created.

Admin
MessageTemplateFactoryImpl TokenManipulator DMSTravInfoMsgTemplateImpll OperationsLog Identifier DMSTravInfoMsgTemplateDB DictionaryWrapper

Vector

POA

push a message
template added event if
everything is successful

DMSTravInfoMsgTemplateHelper

DMSTravInfoMsgTemplateInfo

MessageTemplateEvent

PushEventSupplier
dmsTravInfoMsgTemplateRef = narrow(object)dmsTravInfoMsgTemplateRef = narrow(object)

object = id_to_reference(dmsImplId)object = id_to_reference(dmsImplId)

[constructor]
DMSTravInfoMsgTemplateImpl()

[constructor]
DMSTravInfoMsgTemplateImpl()

checkAccess()checkAccess()

pushDMSTravInfoTemplateAdded(config, dmsTravInfoMsgTemplateRef, dmsImplId)pushDMSTravInfoTemplateAdded(config, dmsTravInfoMsgTemplateRef, dmsImplId)

checkForBannedWords(config.templateMessage, usual delimiters list, DMS)checkForBannedWords(config.templateMessage, usual delimiters list, DMS)

[no banned words][no banned words]

createDMSTravInfoMsgTemplate(
 token: AccessToken,

 config:DMSTravInfoMsgTemplateConfig)

createDMSTravInfoMsgTemplate(
 token: AccessToken,

 config:DMSTravInfoMsgTemplateConfig)

activate_object(DMSTravInfoMsgTemplate)activate_object(DMSTravInfoMsgTemplate)

addDMSMessageTemplateConfig(config)addDMSMessageTemplateConfig(config)

dmsTemplateAddedEvent.msgTemplateInfo.(dmsTravInfoMsgTemplateInfo)dmsTemplateAddedEvent.msgTemplateInfo.(dmsTravInfoMsgTemplateInfo)

setTravInfoTemplateFormats(formats)setTravInfoTemplateFormats(formats)

[if sucessful][if sucessful]

[db error][db error]

[no Access]
AccessDenied

[no Access]
AccessDenied

dmsTemplateAddedEvent = new MessageTemplateEvent()dmsTemplateAddedEvent = new MessageTemplateEvent()

[has banned words]
banned word list

[has banned words]
banned word list[has banned words]

DisapprovedMessageContent
[has banned words]

DisapprovedMessageContent

[no access]
log

[no access]
log

log(DMSTravInfoMsgTemplate)log(DMSTravInfoMsgTemplate)

push(dmsTemplateAddedEvent)push(dmsTemplateAddedEvent)

[successful]
DMSTravInfoMsgTemplateInfo

[successful]
DMSTravInfoMsgTemplateInfo

m_Id = new Identifier()m_Id = new Identifier()

dmsImplId = getId()dmsImplId = getId()

dmsTravInfoMsgTemplateInfo = new DMSTravInfoMsgTemplateInfo(config, dmsTravInfoMsgTemplateRef,dmsImplId)dmsTravInfoMsgTemplateInfo = new DMSTravInfoMsgTemplateInfo(config, dmsTravInfoMsgTemplateRef,dmsImplId)

setConfig(config)setConfig(config)

 add(DMSTravInfoMsgTemplateInfo) add(DMSTravInfoMsgTemplateInfo)

[db error]
CHART2Exception

[db error]
CHART2Exception

Figure 5-207. MessageTemplateFactoryImpl:createDMSTravInfoMsgTemplate (Sequence

Diagram)

CHART R3B3 Detailed Design 5-304 12/23/2008

5.14.2.5 MessageTemplateFactoryImpl:getDMSTravInfoMsgTemplates (Sequence

Diagram)

This diagram shows how all DMS travel infomation messages templates in the CHART

system are retrieved..

templateId = oldTemplateInfo. templateId
Config = oldTemplateInfo..templateConfig

Chart2Exception

config

set(templateId, dmsTemplateInfo)

DMSTravInfoMsgTemplateConfig

DmsTravInfoMsgTemplateInfo

dmsTemplateInfo = new DmsTravInfoMsgTemplateInfo(templateId, config, templateRef)

config = create()

oldTemplateInfo = elementAt(index)

[db error]
retainAll(templateList)

DMSTravInfoMsgTemplateDB

getDMSMessageTemplateConfig(msgTemplateId)

[* for each DMSTravInfoMsgTemplate]

ORB

MessageTemplateFactoryImpl TokenManipulator OperationsLogVector

 m_dmsTravInfoMsgTemplateInfo.toArray()

[no Access]
AccessDenied

[no access]
log

templateLis] = m_dmsTravInfoMsgTemplateInfo.toArray()

[db error]

checkAccess()

getDMSTravInfoMsgTemplates(token: AccessToken)

Figure 5-208. MessageTemplateFactoryImpl:getDMSTravInfoMsgTemplates (Sequence

Diagram)

CHART R3B3 Detailed Design 5-305 12/23/2008

5.14.2.6 MessageTemplateFactoryImpl:getTollRateTimeFormats (Sequence Diagram)

 This sequence diagram shows the getTollRateTimeFormats function. It first checks to see if the

caller has the proper access rights. If not it throws an AccessDenied exception and stops

operations. If the user has all rights needed the function checks if the formatThreshold has been

exceded by comparing it to the cached formats time stamp. If not exceeded it returns the

currently cached toll rate time formats. If the threshold has been exceeded the function reads the

formats from the database and returns them to the requester. This diagram serves as the example

for all other MessageTemplateFactoryImpl get format functions. getTravelTimeFormats(),

getTravelTimeRangeFormats(), getTollRateFormats() and getDistanceFormats() are essentially

the same functionally as getTollRateTimeFormats().
All other factory get format functions, getTravelTimeFormats(),
 getTravelTimeRangeFormats(), getTollRateFormats() and
 getDistanceFormats() are essentially the same as
getTollRateTimeFormats() shown here.

ORB

MessageTemplateFactoryImpl TokenManipulator OperationsLog TollRateTimeFormat TravelInfoDataFormatDB MessageTemplateModuleProperties

getTollRateTimeFormats(token: AccessToken) :
TollRateTimeFormat[]

getTollRateTimeFormats(token: AccessToken) :
TollRateTimeFormat[]

[db error]
CHART2Exception

[db error]
CHART2Exception

[db error][db error]

m_tollRateTimeFormats = getTollRateTimeFormats()m_tollRateTimeFormats = getTollRateTimeFormats()

[no Access]
AccessDenied

[no Access]
AccessDenied

[no access]
log

[no access]
log

checkAccess()checkAccess()

m_tollRateTimeFormatm_tollRateTimeFormat

[formatThreshold exceeded][formatThreshold exceeded]

formatTheshold = getFormatCacheThreshold()formatTheshold = getFormatCacheThreshold()

Figure 5-209. MessageTemplateFactoryImpl:getTollRateTimeFormats (Sequence

Diagram)

CHART R3B3 Detailed Design 5-306 12/23/2008

5.14.2.7 MessageTemplateModule:initialize (Sequence Diagram)

This diagram shows what happens when the MessageTemplateModule is initialized. The

ServiceApplication calls the MessageTemplateModule to initialize, which reads in the

properties from a file, overriding the default properties. It creates an event channel for

message templates and publishes the channel in the trading service so that other

applications can see it. It creates a DMSTravInfoMsgTemplateDB object to handle all of

the database calls, and a MessageTemplateFactoryImpl object to manage the DMS travel

info message templates. The MessageTemplateFactoryImpl calls the

DMSTravInfoMsgTemplateDB to load the DMSTravInfoMsgTemplate objects from the

database. Then for each template it will activate the an

existingDMSTravInfoMsgTemplate objects. The MessageTemplateFactoryImpl is

exported to the trading service.

Vec tor
DM STrav In foM s gTem plate Info

ac tiv ate _obj ec t
(M e s s ag eTem plateFac tory)

getDis c ov ery M anag er

DM STrav InfoM s gTe m pla teHel per

DM STrav In foM s gTem plateIm p l

m _tra v Info Tem p lateIn foVe c tor

pus hDM STrav InfoTe m pla teAd ded()

m _ trav In foTem plateInfo Vec to r.add (tem p lateInfo)

[*for eac h entry DM S_Trav _Info M s gTem p lateIm pl}

c re ate

id = getId()

c onfig = getConfi g()

tem pl ateInfo = c reate ()

o bjRef = id_ to_re feren c e(id)

tem pl ate = narro w(obj Ref)

obj Ref = id_to _refe renc e (id)

DM STrav InfoM s gTem pla teInfo

Se rvice Application

M es s ageTem p lateM odule Serv ic eAppl ic ation

M es s ageTem pl ateM odule Prop erties

Pus hEv e ntSup pl ier

POA

M e s s ag eTem plate Fac to ry Im pl

DM STrav In foM s gTem plate DB

re gis te rObje c t(ob jRef, id, M es s a geTe m pla teFac tory Im pl)

id = g et()

tem p lateIm pls = getDM STrav In foM s gTem plates ()

getDefau l tProp ertie s
in i tia l iz e

c reate

g etEv entCh anne lFac tory
c re ate

getPropert ies

regis terEv entChanne l

getTradi ngRe gis te r

c reate

g etDBConne c tion M an ager

ac tiv ate_o bjec t
(DM STrav In foM s gTem plate)

[* for ea c h
DM STrav In foM s gTem plate

i n tem plate Im pl s]

c rea te

Figure 5-210. MessageTemplateModule:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-307 12/23/2008

5.14.2.8 MessageTemplateModule:shutdown (Sequence Diagram)

This diagram shows what happens when the MessageTemplateModule shuts down.

ServiceApplication

MessageTemplateModule MessageTemplatetFactory Impl DMSTravInfoMsgTemplateImpl ServiceApplication POA

delete

deactivate_object
(DMSTravInfoMsgTemplate)

deactivate_object(MessageTemplatettFactory)

getPOA

shutdown

DMSTravInfoMsgTemplateDB

shutdown

shutdown

getPOA

delete

[* for each
DMSTrav InfoMsgTemplateImp]

delete

Figure 5-211. MessageTemplateModule:shutdown (Sequence Diagram)

CHART R3B3 Detailed Design 5-308 12/23/2008

5.15 RoadwayLocationModule

5.15.1 Classes

5.15.1.1 RoadwayLocationModule (Class Diagram)

This diagram shows the classes involved in the implementation of the Roadway Location

Lookup Module. The Roadway Location Lookup Module is used to look up specific

roadway location attributes within the State of Maryland, for instance, a list of Maryland

counties, a list of primary roadways within a Maryland County, or a list of intersecting

roadways along a given primary roadway within a given Maryland County.

RoadwayLocationLookup

«interface»

RoadwayLocationRoute

Route appears to be taken
so, I'm pre-pending the name
RoadwayLocation to it.

UniquelyIdentifiable

«interface»

1

1

1

PushEventSupplier

1

1

RoadwayLocationImpl

ServiceApplicationModule

«interface»

1

1

RoadwayLocationDB

RoadwayLocationModule

1

1

1

DBConnectionManager

ServiceApplication

«interface»

1

1RoadwayLocationModuleProperties

getID()
getName()

+initialize(ServiceApplication) : boolean
+shutdown(ServiceApplication) : boolean
-createEventChannel(String) : PushEventSupplier
-createEventLocation(int) : boolean
-addEventLocationTypeToTrader() : void
+getVersion() : ComponentVersion

+getStates:StateInfo[]
+getCountiesByState
+getRegionsByState
+getRoadwayLocationAliasInfo
+getStates
+getCountiesByState
+getRegionsByState
+getRoutesByRouteType
+getIntersectingRoutes
+getIntersectionInfo

Properties m_props;
ServiceApplication m_serviceApp;

+getID() : Identifier
+getName() : String
getLogFlags() : boolean[]
getHostName() : String
getProperties() : RoadwayLocationModuleProperties
-log(String, String, String)
-opLog(token,String,int,String,String)

m_state : String
m_county : String
m_roadName : String
m_routePrefix : String
m_routeNumber : double
m_routeSuffix : String

getRoutesList(String state, String county,
 String routePrefix) : RoadwayLocationRoute []
getIntersectingRoutesList(String state, String county,
 String routePrefix, double routeNumber,
 String routeSuffix) : RoadwayLocationRoute []
getMilepostRangeList(String state, String county,
 String routePrefix, double routeNumber,
 String routeSuffix) : int []

+getConnection() : java.sql.Connection
+getCurrentOpenCursors() : int
+releaseConnection() : void
+shutdown() : void
+verifyDBInitialized() : boolean

Figure 5-212. RoadwayLocationModule (Class Diagram)

CHART R3B3 Detailed Design 5-309 12/23/2008

5.15.1.1.1 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.15.1.1.2 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.15.1.1.3 RoadwayLocationDB (Class)

The RoadwayLocationDB class provides an interface between the RoadwayLocation

service and the GIS database. It contains a collection of methods that perform database

operations on tables pertinent to RoadwayLocation. The class is constructed with a

DBConnectionManager object, which manages database connections.

5.15.1.1.4 RoadwayLocationImpl (Class)

The RoadwayLocationImpl class provides an implementation of the RoadwayLocation

interface.

The RoadwayLocationImpl contains *Impl methods that map to methods specified in the

IDL In release R3B1, the methods are an interface to the GIS mapping database that will

be used primarily by CHARTLite to get Roadway Location information.

5.15.1.1.5 RoadwayLocationLookup (Class)

This class is used to actually do the lookups in the RoadwayLocationDB.

CHART R3B3 Detailed Design 5-310 12/23/2008

5.15.1.1.6 RoadwayLocationModule (Class)

The RoadwayLocationModule class is the service module for Roadway Location. It

implements the ServiceApplicationModule interface. It creates and serves a single

RoadwayLocationImpl object. It also creates RoadwayLocationDB,

RoadwayLocationModuleProperties, and PushEventSupplier objects.

5.15.1.1.7 RoadwayLocationModuleProperties (Class)

The RoadwayLocationModuleProperties class is used to provide access to properties used

by the Roadway Location Module. This class wraps properties that are passed to it upon

construction. It adds its own defaults and provides methods to extract properties specific to

the Roadway Location Module.

5.15.1.1.8 RoadwayLocationRoute (Class)

The RoadwayLocationRoute class is a data structure that will hold the information about

the roadway location, such as state, county, road name, route number, etc.

5.15.1.1.9 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.15.1.1.10 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.15.1.1.11 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-311 12/23/2008

5.15.2 Sequence Diagrams

5.15.2.1 RoadwayLocation:ProvideCountyData (Sequence Diagram)

This sequence diagram describes how the system will get the data from the GIS mapping

database.

getCountiesByStateList()

System
Roadw ayLocationDBRoadw ayLocationImpl

getCountiesByState()

Figure 5-213. RoadwayLocation:ProvideCountyData (Sequence Diagram)

CHART R3B3 Detailed Design 5-312 12/23/2008

5.15.2.2 RoadwayLocationModule:Initialize (Sequence Diagram)

This sequence diagram shows the initialization of the RoadwayLocationModule on Service

startup.

RoadwayLocationImpl

RoadwayLocationProperties

RoadwayLocationDB

create

create

getEventChannel()

getDBConnectionManager()

create

register_object(RoadwayLocation)

initialize

getDefaultProperties()

getProperties()

create

PushEventSupplier

getEventChannelFactory()

registerEventChannel()

getOpLog()

activate_object(RoadwayLocation)

ServiceApplication

POA

RoadwayLocationModule ServiceApplication

Figure 5-214. RoadwayLocationModule:Initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-313 12/23/2008

5.15.2.3 RoadwayLocationModule:Shutdown (Sequence Diagram)

This sequence diagram shows the processing when the ServiceApplication which contains

the RoadwayLocationModule is shut down. The RoadwayLocationModule disconnects the

RoadwayLocationImpl from the ORB and then tells it to shut down.

Roadway LocationImpl

ServiceApplication

Roadway LocationModule POA

shutdown

deactiv ate_object(Roadway Location)

shutdown()

delete

delete

Figure 5-215. RoadwayLocationModule:Shutdown (Sequence Diagram)

CHART R3B3 Detailed Design 5-314 12/23/2008

5.16 SHAZAMControlModulePkg

5.16.1 Classes

5.16.1.1 SHAZAMControl (Class Diagram)

The SHAZAMControlModule serves a SHAZAMFactory object and SHAZAM objects.

The class diagram below shows the classes used to implement these system interfaces.

CHART R3B3 Detailed Design 5-315 12/23/2008

R3B3:Added
setLocation()

1 1

UniquelyIdentifiable

«interface»

HARMessageNotifier

«interface»

SHAZAM

«interface»

TokenManipulator

CommEnabled

«interface»

GeoLocatable

«interface»
SharedResource

«interface»

SHAZAMStateAction

«enumeration»

SHAZAMActivateCmd SHAZAMDeactivateCmd SHAZAMPutOnlineCmd SHAZAMPutInMaintModeCmd SHAZAMTakeOfflineCmd SHAZAMSetConfigurationCmd

java.util.TimerTask

java.util.Timer

CheckForAbandonedSHAZAMTask

ServiceApplicationModule

«interface»

SharedResourceManager

«interface»

SHAZAMFactory

«interface»

SHAZAMControlModuleProperties

SHAZAMControlModule

TrafficEvent

«interface»

SHAZAMRefreshCmd

QueueableCommand

«interface»

RefreshSHAZAMTimerTask

VikingRC2AProtocolHdlr

ServiceApplication

«interface»

SHAZAMControlDB

PushEventSupplier

SHAZAMImpl
SHAZAMFactoryImpl

CommandQueue

SHAZAMConfiguration

«typedef»

SHAZAMStatus

«typedef»

1
*

1
1

1

*

* *

is in
use by

is
using

1

1

1

1

1

*

1

1

1

1
1

1

1

1

*

1 *

1

11

*

1

1

1

1

1

HAR

«interface»

1

1

1 1

1

1

getSHAZAMRefreshTimerMins():long
getSharedResMonIntSecs():long
getSHAZAMFactoryID():byte[]

initialize(ServiceApplication app):boolean
getVersion() : ComponentVersion
traderGroupUpdated() : void
shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;
DefaultServiceApplicationProperties m_props;

run()

SHAZAMFactoryImpl m_factory

activateHARNotice(AccessToken, ArbQueueEntryIndicator,
 TrafficEventList, CommandStatus):void
deactivateHARNotice(AccessToken, boolean onlineFlag,
 CommandStatus):void
modifyHARNotice(AccessToken, TrafficEventList): void
isHARNoticeActive() : boolean
setAssociatedHAR(AccessToken, HAR, Identifier harID):void
getAssociatedHAR() : HAR
getDirection():DirectionValues
setDirection(Direction):void

run()

SHAZAMFactoryImpl m_factory

getResources() : SharedResourceList
getControlledResources(Identifier opCtrID) : SharedResourceList
hasControlledResources(Identifier opCtrID) : boolean

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putInMaintenanceMode(AccessToken, CommandStatus):void
getCommMode() :CommunicationMode

createSHAZAM(AccessToken,
 SHAZAMConfiguration) : SHAZAM
getSHAZAMList():SHAZAMList

SHAZAMControlDB(DBConnectionManager)
deleteSHAZAM(Identifier):void
getSHAZAMList():SHAZAMImpl[]
insertSHAZAM(Identifer,
 SHAZAMConfiguration):
 SHAZAMImpl[]
setStatus(Identifer, SHAZAMStatus,
 SHAZAMData):void
setConfiguration(Identifer,
 SHAZAMConfiguration):void

DBConnectionManager m_db

SHAZAMFactoryImpl(byte[] id,
 ServiceApplication serviceApp,
 SHAZAMControlDB db,
 PushEventSupplier evtRes,
 PushEventSupplier evtSHAZAM,
 RecurringTimer timer,
 long resMonIntSecs)
removeSHAZAM():void
checkForAbandonedShazams():void
refreshShazams():void
shutdown():boolean

java.lang.Vector m_SHAZAMList

boolean m_maintMode
byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status
TrafficEvent m_trafficEvent

ACTIVATE
DEACTIVATE

boolean m_maintMode
byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

SHAZAMImpl(SHAZAMFactoryImpl, SHAZAMControlDB, PushEventSupplier)
refreshSHAZAMState():void
setBeaconsState(SHAZAMStateAction, CommandStatus, boolean):boolean
handleOpStatus(OperationalStatus, CommandStatus, boolean):boolean
activateImpl(AccessToken, CommandStatus):void
deactivateImpl(AccessToken, CommandStatus):void
checkResourceConflict(AccessToken, CommandStatus):void
putInMaintenanceModeImpl(AccessToken, CommandStatus):void
putOnlineImpl(AccessToken, CommandStatus):void
refreshImpl(AccessToken, CommandStatus):void
setConfigurationImpl(AccessToken, Chart2DMSConfiguration,
 CommandStatus):void
shutdown():boolean
takeOfflineImpl(AccessToken, CommandStatus):void
setLocation(token:byte[], location:ObjectLocation):void

long m_lastRefreshTime
TrafficEvent[] m_activeTrafficEvents

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status

byte[] m_token
SHAZAMImpl m_shazam
CommandStatus m_status
SHAZAMConfiguration m_config

byte[] token
SHAZAMImpl m_shazam
CommandStatus m_status

Figure 5-216. SHAZAMControl (Class Diagram)

5.16.1.1.1 CheckForAbandonedSHAZAMTask (Class)

The CheckForAbandonedSHAZAMTask class is responsible for detecting any SHAZAM

device in maintenance mode with a message on it which has no one logged on at the

controlling operations center. This would only occur as a result of an anomaly, such as a

CHART R3B3 Detailed Design 5-316 12/23/2008

reboot of a user's machine, because during a normal Chart II logout attempt, the logout is

prohibited by Chart II system if the the user is the last user on his/her operations center and

that operations center is controlling a maintenance mode sign. However, because

anomalies happen, this task runs periodically to look for abandoned SHAZAM devices.

This class implements the java.util.TimerTask interface, and as such it contains one

method, run(), which is invoked by Java timer object on a regularly scheduled basis. This

class contains a reference to the SHAZAMFactoryImpl, which is called upon to actually

check the SHAZAM objects and controlling operations centers of each SHAZAM every

time this task is called.

5.16.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.16.1.1.3 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.16.1.1.4 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.16.1.1.5 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to

broadcast traffic related information over a localized radio transmitter, making the

information available to the traveler. This interface contains methods for getting and

setting configuration, getting status, changing communications modes of a HAR, and

manipulating and monitoring the HAR in maintenance and online modes.

5.16.1.1.6 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

CHART R3B3 Detailed Design 5-317 12/23/2008

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

5.16.1.1.7 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.16.1.1.8 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.16.1.1.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.16.1.1.10 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.16.1.1.11 RefreshSHAZAMTimerTask (Class)

The RefreshSHAZAMTimerTask class is responsible for refreshing all of the SHAZAM

devices. This class implements the java.util.TimerTask interface, and as such it contains

one method, run(), which is invoked by Java timer object on a regularly scheduled basis.

This class contains a reference to the SHAZAMFactoryImpl, which is called upon to

request each SHAZAM to refresh itself (command the device to its last known status) if its

refresh interval has expired, each time this task is called.

CHART R3B3 Detailed Design 5-318 12/23/2008

5.16.1.1.12 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.16.1.1.13 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.16.1.1.14 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

5.16.1.1.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

5.16.1.1.16 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to

interface with a SHAZAM field device. It specifies methods for activating and deactivating

the SHAZAM in maintenance mode, refreshing the SHAZAM (commanding the device to

its last known status), changing the configuration of the SHAZAM, and removing the

SHAZAM. This interface is implemented by a SHAZAMImpl class, which uses a helper

ProtocolHdlr class to perform the model specific protocol for device command and control.

5.16.1.1.17 SHAZAMActivateCmd (Class)

This class contains data needed to activate a SHAZAM asynchronously via the

CommandQueue. A flag is used to determine if the activation is being performed directly

on the device while it is in maintenance mode or if the activation is being processed as an

extension of setting a HAR message in response to a traffic event.

5.16.1.1.18 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to

CHART R3B3 Detailed Design 5-319 12/23/2008

communicate configuration information to/from the database, and to/from the GUI clients.

The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the

configuration of an existing SHAZAM.Device Location member has been modified for

R3B3. Now it contains a detailed location information.

5.16.1.1.19 SHAZAMControlDB (Class)

This class provides access to database functionality needed to support the SHAZAM and

SHAZAMFactory classes. This class provides a high level interface to allow for

persistence and depersistance of SHAZAM and SHAZAMFactory objects.

5.16.1.1.20 SHAZAMControlModule (Class)

This class is a service module that provides control of SHAZAM devices. Upon

initialization the module initializes a SHAZAMFactory which contains SHAZAM objects

that have been previously added to the system. These objects are accessed via the CORBA

ORB and manipulated directly from client applications. The module also creates support

objects that are used by the SHAZAM (and SHAZAMFactory) objects to perform their

processing, such as a database connection, event channels, and a periodic timer used to

allow the objects to perform timer based processing.

5.16.1.1.21 SHAZAMControlModuleProperties (Class)

This class is used to provide access to properties used by the SHAZAM Control Module.

This class wraps properties that are passed to it upon construction. It adds its own defaults

and provides methods to extract properties specific to the SHAZAM Control Module.

5.16.1.1.22 SHAZAMDeactivateCmd (Class)

This class contains data needed to deactivate a SHAZAM asynchronously via the

CommandQueue. A flag is used to determine if the deactivation is being performed

directly on the device while it is in maintenance mode or if the deactivation is being

processed as an extension of setting a HAR message in response to a traffic event.

5.16.1.1.23 SHAZAMFactory (Class)

The SHAZAMFactory class specifies the interface to be used to create SHAZAM objects

within the Chart II system. It also provides a method to get a list of SHAZAM devices

currently in the system.

5.16.1.1.24 SHAZAMFactoryImpl (Class)

This class provides the ability to add new SHAZAM objects to the system. When

SHAZAMs are added, they are persisted to the database so this object can depersist them

upon startup. This class also provides a removeSHAZAM method that allows a SHAZAM

to remove itself from the system when directed. This class is also responsible for

performing the checks requested by the timer tasks: to refresh the SHAZAM devices and to

look for SHAZAM devices with no one logged in at the controlling operations center.

CHART R3B3 Detailed Design 5-320 12/23/2008

5.16.1.1.25 SHAZAMImpl (Class)

The SHAZAMImpl class provides an implementation of the SHAZAM interface, and by

extension the SharedResource, HARMessageNotifier, CommEnabled, GeoLocatable, and

UniquelyIdentifiable interfaces as specified by the IDL.

This class contains a CommandQueue object that is used to sequentially execute long

running operations (field communications to the device) in a thread separate from the

CORBA request threads, thus allowing quick initial responses.

Also contained in this class are SHAZAMConfiguration and SHAZAMStatus objects (used

to store the configuration and status of the sign), a lastRefreshTime value used for

refreshing (commanding the device to its last known status), and a list of TrafficEvent

objects that are currently active on the SHAZAM.

The SHAZAMImpl contains *Impl methods that map to methods specified in the IDL,

including requests to activate and deactivate the SHAZAM, put the SHAZAM online, put

the SHAZAM offline, put the SHAZAM in maintenance mode, or to change (set) the

configuration of the SHAZAM. All of these requests require (or potentially require) field

communications to the device, so each request is stored in a specific subclass of

QueueableCommand and added to the CommandQueue. The queueable command objects

simply call the appropriate SHAZAMImpl method as the command is executed by the

CommandQueue in its thread of execution.

The SHAZAMImpl also contains methods called by the SHAZAMFactory to support the

timer tasks of the SHAZAM Service: to refresh the SHAZAM devices and to look for

maintenance mode SHAZAM devices with no one logged in at the controlling operations

center.

5.16.1.1.26 SHAZAMPutInMaintModeCmd (Class)

This command contains data needed to put a SHAZAM device in maintenance mode (from

either offline or online mode) asynchronously via the CommandQueue. When executed

this class calls back into the SHAZAMImpl object to execute the

putInMaintenanceModeImpl method.

5.16.1.1.27 SHAZAMPutOnlineCmd (Class)

This command contains data needed to put a SHAZAM device online (from maintenance or

offline mode) asynchronously via the CommandQueue. When executed this class calls

back into the SHAZAMImpl object to execute its putOnLineImpl method.

5.16.1.1.28 SHAZAMRefreshCmd (Class)

This class is a command object used to invoke the SHAZAM refresh processing

(commanding the device to its last known status) asynchronously from the command queue.

When executed, this class calls back into the SHAZAMImpl object to execute the

refreshImpl method.

CHART R3B3 Detailed Design 5-321 12/23/2008

5.16.1.1.29 SHAZAMSetConfigurationCmd (Class)

This command contains data needed to set the SHAZAM configuration asynchronously via

the CommandQueue. When executed, this class calls back into the SHAZAMImpl object

to execute its setConfigurationImpl method. The SHAZAM device model currently in use

does not contain any configuration settings, however this command is still processed

asynchronously for consistency.

5.16.1.1.30 SHAZAMStateAction (Class)

The SHAZAMStateAction class enumerates the types of actions (commands) that set the

state of a SHAZAM: ACTIVATE or DEACTIVATE.

5.16.1.1.31 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store

status within the SHAZAM object, and is also used to communicate configuration

information to/from the database, and to the GUI clients (one-way).

5.16.1.1.32 SHAZAMTakeOfflineCmd (Class)

This command contains data needed to take a SHAZAM device offline (from online or

maintenance mode) asynchronously via the CommandQueue. When executed, this class

calls back into the SHAZAMImpl object to execute its takeOfflineImpl method.

5.16.1.1.33 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only

code in the system which knows how to create, modify and check a user's functional rights.

It encapsulates the contents of an octet sequence which will be passed to every secure

method. Secure methods should call the checkAccess method to validate the user. Client

processes should use the check access method to verify access and optimize to reduce

reduce the size of the sequence to only those rights which are necessary to invoke the

secure method. The token contains the following information. Token version, Token ID,

Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

5.16.1.1.34 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.16.1.1.35 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.16.1.1.36 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A

SHAZAM device.

CHART R3B3 Detailed Design 5-322 12/23/2008

5.16.2 SequenceDiagrams

5.16.2.1 SHAZAMControlModule:setConfiguration (Sequence Diagram)

A user with appropriate functional rights can set the configuration of a SHAZAM if it is in

maintenance mode. The Rc2aSHAZAM itself does not have any configurable settings, so

no field communications are necessary. Although this command does not currently require

field communications, the asynchronous command pattern is used for consistency with

other device commands and also to allow the code to easily adapt to a device type that

supports configurable settings. When the command is executed, setConfigurationImpl

stores configuration in memory. If it is communication parameters that have changed, a

new VoicePortLocator is created. The new configuration is persisted to the database and an

event is pushed onto the status event channel to notify others of the changes.

R3B3:set everything in config
except device location

OperationsLogSHAZAMControlDB PushEventSupplier

SHAZAMSetConfigurationCmd

CommandStatus

CommandQueue executes
command asynchronously.

m_config:
SHAZAMConfiguration VoicePortLocator

VoicePortLocator

ORB

SHAZAMImpl

CommandQueue

execute

log

[improper rights]
log

[not in maint mode]
push(currentStatus)

[op ctr not equal caller's
 and no override]

[op ctr not equal caller's
 and no override]

setConfigurationImpl

update("setting configuration")

push(SHAZAMConfigurationChanged)

completed

setConfiguration

[op ctr not equal caller's and no override]
completed[op ctr not equal

caller's and no override]
ResourceControlConflict

[not in maint mode]
completed

[not in maint mode]
[not in maint mode]

[no change to existing configuration]
completed

[no change to
existing configuration] [no change to

existing configuration]

synchronized

set data as requested

end synchronize

[comm param(s) change]
delete

[comm params(s) change]
create

setConfiguration

[improper rights]
AccessDenied

[not in maint mode]
InvalidStateException

[improper rights]
completed

[not in maint mode]
completed

create

update

addCommand

Figure 5-217. SHAZAMControlModule:setConfiguration (Sequence Diagram)

CHART R3B3 Detailed Design 5-323 12/23/2008

5.17 SHAZAMManagementPkg

5.17.1 Classes

5.17.1.1 SHAZAMUtility (Class Diagram)

This diagram shows SHAZAM related classes that are shared between the server and the

GUI.

boolean m_activated
CommunicationMode m_commMode
OperationalStatus m_opStatus
OpcenterInfo m_controllingOpCenter
long m_lastContactTime
long m_lastStatusChangeTime

«typedef»
SHAZAMStatus

string m_name
ObjectLocation m_location
Identifier owningOrgID
string m_messageText
Direction m_direction
string m_devicePhoneNumber
string m_deviceAccessCode
PortLocationData m_portLocationData
long m_refreshIntervalMins
boolean m_refreshEnabled
NetworkConnectionSite m_networkConnectionSite
Identifier m_associatedHARID
Identifier m_associatedHARID

«typedef»
SHAZAMConfiguration

Figure 5-218. SHAZAMUtility (Class Diagram)

5.17.1.1.1 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to

communicate configuration information to/from the database, and to/from the GUI clients.

The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the

configuration of an existing SHAZAM.Device Location member has been modified for

R3B3. Now it contains a detailed location information.

5.17.1.1.2 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store

status within the SHAZAM object, and is also used to communicate configuration

information to/from the database, and to the GUI clients (one-way).

CHART R3B3 Detailed Design 5-324 12/23/2008

5.18 SystemInterfaces

5.18.1 Classes

5.18.1.1 AlertManagement (Class Diagram)

This class diagram shows the system interfaces that make the AlertManagement capability

of CHART2 system.

M O DI FI ED FO R R3B3.

Added aler t t ypes and f act or y const r uct or s
f or t he f our new R3B3 aler t s.

External Connect i onAl er t
«int er f ace»

External EventAl er t
«int er f ace»

Tol l Rat eAl er t
«int er f ace»

Travel Ti m eAl er t
«int er f ace»

1

1

1

1

1

1

1

1

Ext ernal Connect i onAl er t Dat a
«st r uct »

Ext ernal Event Al er t Dat a
«st r uct »

Travel Ti m eAl er t Dat a
«st r uct »

Tol l RateAl er t Dat a
«st r uct »

Al ert Fact ory
«int er f ace»

Uni quel yI dent i f i abl e
«int er f ace»

Al er tSt at e
«enum er at ion»

Al er tCreat i onResul t
«dat at ype»

Al er tTypeDi abl edExcept i on
«except ion»

1

11

1

1

Act ionDat a is a union, wit h
Act ionType as t he discr im inat or .
O penEvent Act ionDat a is t he only
possible t ype.

ExtendedAl er tData
«dat at ype»

Al er tDat a
«dat at ype»

Al er tHi story
«dat at ype»

Al er t Act i on
«enum erat ion»

G ener i cAl er t
«int er f ace»

Devi ceFai l ureDevi ceType
«enum erat ion»

Devi ceFai l ureAl er t
«int er f ace»

Devi ceFai l ureAl er t Dat a
«st r uct »

Dupl i cateEventAl ert
«int er f ace»

Dupl i cateEvent Al ert Dat a
«st ruct »

Event St i l l O penAl er t
«int er f ace»

EventSt i l l O penAl er t Dat a
«st r uct »

Unhandl edResourcesAl er t
«int er f ace»

Unhandl edResourcesAl ert Dat a
«dat at ype»

11

11

11

11

11 *1

1

1

1

1

1

1

1

1

Execut eSchedul edAct i onsAl er t
«int er f ace» Execut eSchedul edAct i onsAl er t Dat a

Act i onData
«union»

*1

Al ert
«int er f ace»

Al er t Type
«enum erat ion»

Al er t Event Type
«enum erat ion»

Al er t I nfo
«dat at ype»

Al readyAtM axVi si bi l i tyExcept i on
«except ion»

1

NEW FO R R3B3.

M O DI FI ED FO R R3B3.
Added f ailur eType.

1

1

1

1

NEW FO R R3B3.

Devi ceFai l ureType
«enum erat ion»

1

1

1

1

NEW FO R R3B3.

get Aler t s() : Aler t I nf o[]
get O penAler t I ds() : I dent if ier []
cr eat eDeviceFailur eAler t (t oken : AccessToken, deviceI d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult
cr eat eDuplicat eEvent Aler t (t oken : AccessToken, older Event I d : I dent if ier , newerEvent I d : I dent if ier ,
 desc st r ing, init ialVisibilit y : Aler t M anagem ent G roup[]) : Aler t Cr eat ionResult
cr eat eEvent St illO penAler t (t oken : AccessToken, event I d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult
cr eat eG ener icAler t (t oken : AccessToken, desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult
cr eat eUnhandledResour ceAler t (t oken : AccessToken, deviceI d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult
cr eat eExecut eScheduledAct ionsAler t (t oken : AccessToken, scheduleI d: I dent if ier ,
 execAct ionDat aList : Act ionDat a[] , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult
cr eat eExt ernalConnect ionAler t (t oken : AccessToken, ext ConnI d : I dent if ier , isWar ning : boolean,
 changeTim eSecs: long, conf ir m Tim eSecs: long, desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult
cr eat eExt ernalEvent Aler t (t oken : AccessToken, event I d : I dent if ier , f ir st Aler t RuleM et I d : I dent if ier ,
 desc st r ing, init ialVisibilit y : Aler t M anagem ent G roup[]) : Aler t Cr eat ionResult
cr eat eTollRat eAler t (t oken : AccessToken, r out eI d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult
cr eat eTr avelTim eAler t (t oken : AccessToken, r out eI d : I dent if ier , t r avelTim eSecs: int ,
 t r avelTim eEf f Secs: long, t r avelTim eAler t Lim it Secs: int , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Creat ionResult

get I D()
get Nam e()

Aler t Added
Aler t Changed
Aler t Delet ed

ALERT_TYPE_G ENERI C_ALERT
ALERT_TYPE_UNHANDLED_RESO URCES
ALERT_TYPE_DEVI CE_FAI LURE
ALERT_TYPE_DUPLI CATE_EVENT
ALERT_TYPE_TRAFFI C_EVENT_STI LL_O PEN
ALERT_TYPE_EXECUTE_SCHEDULED_ACTI O NS
ALERT_TYPE_EXTERNAL_CO NNECTI O N
ALERT_TYPE_EXTERNAL_EVENT
ALERT_TYPE_TO LL_RATE
ALERT_TYPE_TRAVEL_TI M E

get Type() : Aler t Type
get Dat a() : Aler t Dat a
get Ext endedAler t Dat a() : Ext endedAler t Dat a
addCom m ent (t oken : AccessToken, com m ent : st r ing) : void
escalat e(t oken : AccessToken, com m ent : st r ing) : void
accept (t oken : AccessToken) : void
accept Wit hDet ails(t oken : AccessToken, r em inder Tim eM sec : unslgned long,
 com m ent : st r ing) : void
set Accept Tim eout (AccessToken t oken, rem inder Tim eM sec : unslgned long,
 com m ent : st r ing) : void
unaccept (t oken : AccessToken) : void
delay(t oken : AccessToken) : void
delayWit hDet ails(t oken : AccessToken, r em inderTim eM sec : unslgned long,
 com m ent : st r ing) : void
set DelayTim eout (AccessToken t oken, r em inder Tim eM sec : unslgned long,
 com m ent : st r ing) : void
undelay(t oken : AccessToken) : void
close(t oken : AccessToken, com m ent : st r ing) : void

aler t I d : I dent if ier
t heAler t : Aler t
t ype : Aler t Type
ext Aler t Dat a : Ext endedAler t Dat a
cr eat ionWar ningM essage : st r ing

reason : st r ing

reason : st r ing

id : I dent if ier
t ype : Aler t Type
r ef : Aler t

ALERT_STATE_NEW
ALERT_STATE_ACCEPTED
ALERT_STATE_DELAYED
ALERT_STATE_CLO SED

get FailedDeviceI d() : I dent if ier
get DeviceType() : DeviceFailureDeviceType
get DeviceFailur eAler t Dat a() : DeviceFailur eAler t Dat a

get NewerEvent I d() : I dent if ier
get O lderEvent I d() : I dent if ier
get Duplicat eAler t Dat a() : Duplicat eEvent Aler t Dat a

get Event I d() : I dent if ier
get Event St illO penAler t Dat a() : Event St illO penAler t Dat a

aler t I d: I dent if ier
descr ipt ion: st r ing
t ype: Aler t Type
descr ipt ion: st r ing
st at e: Aler t St at e
r esponsibleUser : st r ing
r esponsibleCent er I nf o: O pCent er I nf o
aler t Creat ionTim e: dat et im e
aler t Cur r ent Visibilit y: Aler t M anagem ent G r oup[]
aler t Next Visibilit y: Aler t M anagem ent G roup[]
next Act ionTim eM sec : unsigned long
aler t Last St at eChangeTim e: unsigned long
aler t Hist ory : Aler t Hist ory[]

get O pCent er I d() : I dent if ier
get UnhandledResour cesAler t Dat a() : UnhandledResour cesAler t Dat a

FAI LURE_TYPE_CO M M _FAI L
FAI LURE_TYPE_HW_FAI L

get Execut eScheduledAct ionsAler t Dat a() : Execut eScheduledAct ionsAler t Dat a

DEVI CE_TYPE_DM S
DEVI CE_TYPE_TSS

baseAler t Dat a: Aler t Dat a
event I d: I dent if er
t ypeO f FailedDevice: DeviceFailur eDeviceType
f ailur eType: DeviceFailureType

get Ext er nalConnect ionAler t Dat a() : Ext er nalConnect ionAler t Dat a

t im est am p: unsigned long
st at e: Aler t St at e
act ion: Aler t Act ion
opCent er I d: I dent if ier
user : st r ing
user Com m ent : st r ing
next Act ionTim eM sec : unsigned long
addedVisibilit y: AM G List

baseAler t Dat e: Aler t Dat a
newer Event : I dent if ier
olderEvent : I dent if ier

get Ext ernalEvent Aler t Dat a() : Ext er nalEvent Aler t Dat a

baseAler t Dat a: Aler t Dat a
event I d: I dent if er

ALERT_ACTI O N_CREATE
ALERT_ACTI O N_ACCEPT
ALERT_ACTI O N_UNACCEPT
ALERT_ACTI O N_DELAY
ALERT_ACTI O N_UNDELAY
ALERT_ACTI O N_CLO SE
ALERT_ACTI O N_ADD_CO M M ENT
ALERT_ACTI O N_ESCALATE
ALERT_ACTI O N_EDI T

get TollRat eAler t Dat a() : TollRat eAler t Dat a

baseAler t Dat a: Aler t Dat a
opCent er I d: I dent if ier

baseAler t Dat a: Aler t Dat a
scheduleI d: I dent if ier
schedAct ions: Act ionDat a[]

union on Aler t Type
cont ains appr opr iat e t ype-specif ic Aler t Dat a st r uct

get TravelTim eAler t Dat a() : Tr avelTim eAler t Dat a

baseAler t Dat a: Aler t Dat a
ext ConnI d: I dent if ier
isWar ning: boolean
aler t St at usChangeTim eSecs: long
aler t St at usConf ir m Tim eSecs: long

baseAler t Dat a: Aler t Dat a
ext Event I d: I dent if ier
f ir st Aler t RuleM et I d: I dent if ier

discr im inat or : Act ionType
openEvent Act ionDat a: O penEvent Act ionDat a

baseAler t Dat a: Aler t Dat a
Tr avelRout eI d: I dent if ier

baseAler t Dat a: Aler t Dat a
t r avelRout eI d: I dent if ier
aler t edTr avelTim eSecs: int
aler t edTr avelTim eEf f Secs: long
t r avelTim eAler t Lim it Secs: int

Figure 5-219. AlertManagement (Class Diagram)

CHART R3B3 Detailed Design 5-325 12/23/2008

5.18.1.1.1 ActionData (Class)

This IDL union holds the data used to describe a schedule action. It has been designed as a

union discriminated by the enumeration ActionType to support schedule actions to be

determined in future releases of CHART. Currently the only supported variant is the

OpenEventAction.

5.18.1.1.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and

provides operations used to manage an alert.

5.18.1.1.3 AlertAction (Class)

This IDL enumeration defines the actions that can be done to an Alert.

5.18.1.1.4 AlertCreationResult (Class)

This IDL struct represents the data that will be returned as a result of an alert creation using

the AlertFactory calls. It includes: alert id, alert CORBA reference, alert type, extended

alert data, and a warning string used to describe non-fatal conditions when creating the

alert.

5.18.1.1.5 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.18.1.1.6 AlertEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the AlertModule.

Its primary use is as a discriminator value used when handling AlertEvents. These can

either be Alert Added, Changed, or Deleted.

5.18.1.1.7 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory

is responsible for creating alerts and storing alert information on the alerts that it created.

5.18.1.1.8 AlertHistory (Class)

This IDL struct contains information used to describe an action being done to an alert. A

collection of these structs represents the history of the alert from beginning to end.

5.18.1.1.9 AlertInfo (Class)

This IDL struct contains information about an Alert in the system. Its primary use is to be

returned as part of a list of AlertInfo objects in response to an AlertFactory's getAlerts()

call.

CHART R3B3 Detailed Design 5-326 12/23/2008

5.18.1.1.10 AlertState (Class)

AlertState is an IDL enumeration of the four defined states for an Alert.

5.18.1.1.11 AlertType (Class)

AlertType is an IDL enumeration of the five Alert types.

5.18.1.1.12 AlertTypeDiabledException (Class)

This exception is thrown by the AlertFactory create operations if the alert type being

created is disabled within the system. (Server-side clients can ignore this alert; GUI-side

clients may wish to display this to the user.)

5.18.1.1.13 AlreadyAtMaxVisibilityException (Class)

This exception is thrown by the Alert escalate() operation if the alert is already at maximum

visibility (no additional AMGs are configured in the backup set(s) of the AMG(s) in the

current visibility list). Clients may wish to try escalation after receipt of this exception (or

at any time the nextVisibility array is empty), in case an administrator may have modified

the backup set of AMGs in the meanwhile.

5.18.1.1.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is

implemented by classes representing DeviceFailureAlerts in the Chart2 System.

5.18.1.1.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event

causing the alert. Also included is information on the device failure type.

5.18.1.1.16 DeviceFailureDeviceType (Class)

The DeviceFailureDeviceType is an enumeration of the possible device failure types

supported in a device failure alert.

5.18.1.1.17 DeviceFailureType (Class)

This enumeration lists the possible types of device failures which can be communicated by

a device failure alert.

5.18.1.1.18 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is

implemented by classes representing DuplicateEventAlertsDevice in the Chart2 System.

CHART R3B3 Detailed Design 5-327 12/23/2008

5.18.1.1.19 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate

traffic events.

5.18.1.1.20 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is

implemented by classes representing EventStillOpenAlerts in the Chart2 System.

5.18.1.1.21 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to

an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.18.1.1.22 ExecuteScheduledActionsAlert (Class)

This IDL interface contains operations specific to aExecute Scheduled Actions alert. This

interface is implemented by classes representing ExecuteScheduledActionsAlert in the

Chart2 System.

5.18.1.1.23 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

to an ExecuteScheduledActionsAlert.

5.18.1.1.24 ExtendedAlertData (Class)

ExtendedAlertData is a union of the four type specific alert datatypes:

DeviceFailureAlertData, DuplicateEventAlertData, EventStillOpenAlertData, and

UnhandledResourceAlertData. Note that the GenericAlert does not include any type

specific data. The AlertType enumeration is used as the discriminator over the data in this

union.

5.18.1.1.25 ExternalConnectionAlert (Class)

This IDL interface contains operations specific to an External Connection Alert, which

indicates trouble with a connection between CHART and an external system.

5.18.1.1.26 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the

interface which is having trouble and a flag indicating whether the connection is in failure

or warning status, the timestamp it transitioned. (The GUI displays additional data which is

best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a

textual description and alert management data.)

CHART R3B3 Detailed Design 5-328 12/23/2008

5.18.1.1.27 ExternalEventAlert (Class)

This IDL interface contains operations specific to an External Event Alert, which indicates

an event has arrived from an external system which satisfies criteria a CHART

administrator has defined to flag an external event as significant enough to warrant this

alert.

5.18.1.1.28 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the

event and the ID of the first rule found that requested an alert be sent. (Text in the base

AlertData structure provides a textual description and alert management data.)

5.18.1.1.29 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is

implemented by classes representing GenericAlerts in the Chart2 System.

5.18.1.1.30 TollRateAlert (Class)

This IDL interface contains operations specific to an Toll Rate Alert, which indicates a

travel route which had a currently active toll rate no longer does in a more recently received

toll rate update document from a toll rate provider. (This alert is not sent if a toll rate

expires due to an absence of any current toll rate document -- such an event would have

triggered one external connection alert and does not need to also trigger a multitude of

individual toll rate alerts as well.)

5.18.1.1.31 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no

longer has data for its toll rate. (Text in the base AlertData structure provides a textual

description and alert management data.)

5.18.1.1.32 TravelTimeAlert (Class)

This IDL interface contains operations specific to an Travel Time Alert, which indicates the

travel time associated with a travel route is high enough to warrant this alert.

5.18.1.1.33 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit

and the travel time which exceeded the limit. (Text in the base AlertData structure provides

a textual description and alert management data.)

5.18.1.1.34 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to a Unhandled Resources alert. This

interface is implemented by classes representing UnhandledResourceAlerts in the Chart2

System.

CHART R3B3 Detailed Design 5-329 12/23/2008

5.18.1.1.35 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

to an UnhandledResourcesAlert.

5.18.1.1.36 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-330 12/23/2008

5.18.1.2 Common (Class Diagram)

This class diagram shows classes used by multiple modules.

GetPortTimeout

«exception»

PortEventType

«enumeration»

PortStatusChangedEventInfo

«typedef»

Por tStatusInfo

«typedef»

All these port related
classes are moved
from FMS for R3B3.

PortType

«enumeration»

Prior ity

«enumeration»

EVENT_CHANNEL_PORT_STATUS

«type»

ConnectFailure

«exception»

PortOpenFailure

«exception»

DataPortIOException

«exception»
PortStatus

«enumeration»

Password

«type»

Unsuppor tedOperation

«exception»

GeoLocatable

«interface»

AbsoluteOrRelativeTime

«union»

CHART2Exception

«exception»

SpecifiedObjectNotFound

«exception»

TimeStamp2

«typedef»

CommandStatus

«interface»

DuplicateData

«exception»

TimeStamp

«typedef»

Direction

«typedef»

TimeSpecificationType

«enumeration»

NEW FOR R3B2

AccessDenied

«exception»

ApplicationVersion

«typedef»

NetworkConnectionSite

«type»

1

InvalidState

«exception»

UserName

«type»

UniquelyIdentifiable

«interface»

SourceTypeValues

«interface»

Service

«interface»

DirectionValues

«interface»

TrafficParameters

«struct»

Source

«typedef»

1

Note: Timestamp2 is a new
typedef which defines a
"long long" timestamp. It is
to be used in all new code
instead of Timestamp (a
long). (The long long
datatype maps to a Java
long.)

ComponentVersion

«typedef»

getID()
getName()

getLocationDesc():string
getLocationProfileles()
LocationProfile[] ()

timestamp : long

timestamp : long long

ping():void
getName():string;
getVersion():ApplicationVersion
getNetConnectionSite():string;
oneway shutdown(AccessToken token):void

TIME_ABSOLUTE
TIME_RELATIVE

SourceType theSourceType
string otherDescription

string

string reason
string debug

discriminator TimeSpecificationType
Timestamp2 absTime if TIME_ABSOLUTE
long relTimeSecs relTimeSecs if TIME_RELATIVE

string reason
string requiredRights

int m_speedData;
int m_volumeData;
int m_percentOccupancy
SpeedRange m_speedRange;

STATUS_OK
STATUS_MARGINAL
STATUS_FAILED
STATUS_DISABLED-future

const short OTHER_NO_ADDITIONAL_INFO
const short OTHER_ADDITIONAL_INFO
const short NORTH
const short NORTH_EAST
const short EAST
const short SOUTH_EAST
const short SOUTH
const short SOUTH_WEST
const short WEST
const short NORTH_WEST
const short INNER_LOOP
const short OUTER_LOOP

string reason

short

PortStatusChanged

string reason

string reason

string name
string version

string reason

PortStatusInfo[] info

const short SOURCE_OTHER_NO_ADDL_INFO
const short SOURCE_OTHER_WITH_INFO
const short CCTV
const short SYSTEM_ALARM
const short STATE_POLICE
const short LOCAL_POLICE
const short CHART_UNIT
const short CITIZEN
const short MCTMC
const short MEDIA

string reason

string reason

string reason

ISDN_MODEM
POTS_MODEM
DIRECT_RS232
TELEPHONY
TCPIP

string applicationName
ComponentVersionList componentVersions

update(String status):void
completed(boolean commandSuccessful,
 String finalStatus):void
completedSameStatus(boolean commandSuccessful):void

long timeoutMillis

PRIORITY_POLLING
PRIORITY_ON_DEMAND

Identifier id
string name
PortType type
PortStatus status

Figure 5-220. Common (Class Diagram)

5.18.1.2.1 AbsoluteOrRelativeTime (Class)

This union stores a time, in either absolute or relative terms.

CHART R3B3 Detailed Design 5-331 12/23/2008

5.18.1.2.2 AccessDenied (Class)

This class represents an access denied, or "no rights" failure.

5.18.1.2.3 ApplicationVersion (Class)

This structure contains the name of the application and information about the versions of its

components.

5.18.1.2.4 CHART2Exception (Class)

Generic exception class for the CHART2 system. This class can be used for throwing very

generic exceptions which require no special processing by the client. It supports a reason

string which may be shown to any user and a debug string which will contain detailed

information useful in determining the cause of the problem.

5.18.1.2.5 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of

the progress of a long-running asynchronous operation. This is normally used when field

communications are involved to complete a method call. The most common use is to allow

a GUI to show the user the progress of an operation. It can also be used and watched by a

server process when it needs to call on another server process to complete an operation.

The long running operation typically calls back to the CommandStatus object periodically

as the command is being executed, to provide in-progress status information, and it always

makes a final call to the CommandStatus when the operation has completed. The final call

to the CommandStatus from the long running operation indicates the success or failure of

the command.

5.18.1.2.6 ComponentVersion (Class)

This structure contains the name and version number of the software component.

5.18.1.2.7 ConnectFailure (Class)

This exception is a catch-all for exceptions that do not fit in a more specific exception that

can be thrown during a connection attempt.

5.18.1.2.8 DataPortIOException (Class)

This exception is used to indicate an Input/Output error has occurred.

5.18.1.2.9 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in

DirectionValues.

5.18.1.2.10 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

CHART R3B3 Detailed Design 5-332 12/23/2008

5.18.1.2.11 DuplicateData (Class)

This exception is thrown when an object is to be added to the system, but the system

already contains an object with equivalent data.

5.18.1.2.12 EVENT_CHANNEL_PORT_STATUS (Class)

This is a static string that contains the name of the event channel used to push events

relating to the change in Port status. The following PortEventTypes are pushed on

EVENT_CHANNEL_PORT_STATUS channel: PortStatusChanged

5.18.1.2.13 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.18.1.2.14 GetPortTimeout (Class)

This class is an exception that is thown by a PortManager when a request to acquire a port

of a given type cannot be fulfilled within the timeout specified.

5.18.1.2.15 InvalidState (Class)

This exception is thrown when an operation is attempted on an object that is not in a valid

state to perform the operation.

5.18.1.2.16 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is

running. This field is useful for administrators in debugging problems should an object

become "software comm failed".. It is included in the Chart2DMSStatus.

5.18.1.2.17 Password (Class)

Typedef used to define the type of a Password.

5.18.1.2.18 PortEventType (Class)

This enum defines the types of CORBA events that are pushed on a Field Communications

event channel.

5.18.1.2.19 PortOpenFailure (Class)

This exception is thrown if there is an error opening the port while attempting a connection.

This exception would most likely only occur if there is another application accessing the

physical com port, which would be true if debugging activities were being done on a port

while the FieldCommunications service is still running.

CHART R3B3 Detailed Design 5-333 12/23/2008

5.18.1.2.20 PortStatus (Class)

This enumeration specifies the values used to represent a Port's status. OK signifies the

port is working properly. MARGINAL signifies errors have been experienced during

recent use of the port. FAILED indicates the port is not working at all.

5.18.1.2.21 PortStatusChangedEventInfo (Class)

This class contains data that is pushed on a Field Communications event channel with a

PortStatusChanged event.

5.18.1.2.22 PortStatusInfo (Class)

This class contains the data of status of a particular port.

5.18.1.2.23 PortType (Class)

This enumeration defines the types of ports that may be requested from a PortManager.

5.18.1.2.24 Priority (Class)

This enumeration specifies the priority levels used when requesting a port from a

PortManager. ON_DEMAND is given higher priority than POLLING.

5.18.1.2.25 Service (Class)

This interface is implemented by all services in the system that allow themselves to be

shutdown externally. All implementing classes provide a means to be cleanly shutdown

and can be pinged to detect if they are alive.

5.18.1.2.26 Source (Class)

This structure contains information about the source of the data being added to the system.

5.18.1.2.27 SourceTypeValues (Class)

This enumeration contains the possible sources of information that can be used for adding

CommLog entries and/or traffic event data.

5.18.1.2.28 SpecifiedObjectNotFound (Class)

Exception used to indicate that an operation was attempted that involves a secondary object

that cannot be found by the invoked object.

5.18.1.2.29 TimeSpecificationType (Class)

This enumeration lists the types of times which can be stored in the

AbsoluteOrRelativeTime union.

CHART R3B3 Detailed Design 5-334 12/23/2008

5.18.1.2.30 TimeStamp (Class)

This typedef defines the type of TimeStamp fields.

5.18.1.2.31 TimeStamp2 (Class)

This data type offers extended date range beyond the year 2038 limititation implicit in the

TimeStamp data type.

5.18.1.2.32 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor

System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles

per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535

is used to indicate a missing or invalid value (such as when the volume for the sample

period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A

value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent.

(thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a

missing or invalid value.

5.18.1.2.33 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.18.1.2.34 UnsupportedOperation (Class)

This exception is used to indicate that an operation is not supported by the object on which

it is called.

5.18.1.2.35 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

CHART R3B3 Detailed Design 5-335 12/23/2008

5.18.1.3 Common2 (Class Diagram)

This class diagram shows classes used by many other modules within the CHART System.

This diagram supplements the “Common” Class Diagram, showing additional classes

which cannot fit on the original “Common” Class Diagram.

*0

StateInfo is optional for all devices. It is required for TrafficEvent.
CountyInfo , RegionInfo are optional.
OptionalRoadwayLocation - optional
ShowRouteName and showIntRouteName are required.
RoadwayLocationAliasNameInfo and GeoLocationInfo are optional.

New for
R3B3

New for R3B3

Based on RouteSpecificationType
it is one of the two values.

LRMSVer ticalDatumType

«enumeration»LRMSHorizontalDatumType

«enumeration»

LRMSGeomLocationProfile

«struct»

RouteSpecification

«union»

RouteSpecificationType

«enumeration»

FreeformRouteInfo

«struct»LocationProfile

«union»

IntersectingFeatureProximityType

«enumeration»

PointLocationProfile

«struct»

IntersectingFeatureInfo

«union»

MilePostIntersectingFeatureData

«struct»

MilePostType

«enumeration»

IntersectingFeatureType

«enumeration»

IntersectingFeatureProximity

«struct»

IntersectingFeatureLocationInfo

«struct»

SimpleStatus

«enumeration»

ExternalObjectIdentificationData

«struct»

RoadwayLocationAliasInfo

«struct»

ObjectLocation

«typedef»

StateInfo

«struct»

CountyInfo

«struct»

<<struct>>
RoadwayLocation

RoadwayLocationAliasNameInfo

«struct»

<<enumeration>>
PointLocationProfile

«enumeration»

RouteNumber

«struct»

RouteType

«enumeration»

RegionInfo

«struct»

RouteTypeInfo

«struct»

RouteInfo

«struct»

LocationProfileType

«enumeration»

ObjectGeoLocationSourceType

«enumeration»

ObjectGeoLocationInfo

«typedef»

HHMMRange

«typedef»

typeOfRoute:routeType
nameOfRouteType:string

rtetype:routeType
roadName:string
rteNumber:routeNumber

lrmsGeomProfile:LRMSGeomLocationProfile
pointProfile:PointLocationProfile

I
STATE
US
COUNTY
MUNICIPAL
OTHER_PUBLIC
OTHER_STATE
UNKNOWN
OTHER

ROAD
MILEPOST

prefix:string
number:string
suffix:string

countyCode:string
countyName:string
fipsCode:string

STATE_MILEPOST
COUNTY_MILEPOST

rteType:RouteType
rteDesc:string

LRMS_GEOMETRY
POINT

InternalName:string
publicName:string

proximity:IntersectingFeatureProximity
featureInfo:IntersectingFeatureInfo

milePostUnitsType:MilePostType
milePostMilliMiles:long

FORMAL
FREEFORM

HD_WGS_84
HD_84EGM_96
HD_NAD83
HD_UNUSED
HD_NAD27

locationDesc:string
locationDescOverridden:string
state:StateInfo
county:CountyInfo
region:RegionInfo
optionalRoadwayLocation:RoadwayLocation[]
showRouteName:boolean
showIntRouteName:boolean
roadwayLocationAliasNameInfo:RoadwayLocationAliasNameInfo[]
optGeoLocationInfo:GeoLocationInfo[]

regionName:string

aliasname:RoadwayLocationAliasNameInfo
stateData:Stateinfo
countyData:countyInfo
regionData:RegionInfo
optionalRouteInfo:RoadwayLocation []

rteInfo:routeInfo
freeformRteInfo:FreeformRouteInfo

milePostData:MilePostIntersectingFeatureData
rteSpecification:RouteSpecification

stateCode:string
stateName:string
fipsCode:string

VD_WGS_84
VD_NAVD

proximityType:IntersectingFeatureProximityType
distancefromFeatureMilliMiles:long

extSystemIdentificationString:string
extAgencyIdentificationString:string
extObjectIdentificationString:string

m_horizDatum:LRMSHorizontalDatumType
m_latitudeUDeg:long
m_longitudeUDeg
m_vertDatum:LRMSVerticalDatumType
m_height:long
m_vertLevel:long

geoLocation:PointLocationProfile
sourceType:ObjectGeoLocationSourceType
sourceDesc:string

AT
PAST
PRIOR
NORTH_OF
SOUTH_OF
WEST_OF

OK
FAILED
WARNING

routeSpecification:RouteSpecification
nominalrouteDirection:Direction
optionalIntersectingFeature:IntersectingFeatureLocationInfo[]

OPERATOR
ROUTE_INTERSECTION_DATA
EXTERNAL_SYSTEM

m_latitudeUDeg : int
m_longitudeUDeg : int

m_startHour:byte
m_startMin:byte
m_endHour:byte
m_endMin:byte

Figure 5-221. Common2 (Class Diagram)

5.18.1.3.1 <<enumeration>> PointLocationProfile

This structure contains the latitude and longitude of geographical locatio

CHART R3B3 Detailed Design 5-336 12/23/2008

5.18.1.3.2 <<struct>> RoadwayLocation (Class)

This structure has the information to define roadwaylocation of CHART objects like

devices and TrafficEvents

5.18.1.3.3 CountyInfo (Class)

This structure contains information about a county.

5.18.1.3.4 ExternalObjectIdentificationData (Class)

 This structure is used to hold data which identifies the external source of an external

object which has been imported into CHART.

5.18.1.3.5 FreeformRouteInfo (Class)

Information specifying a route when only the route type and route description are known,

such as may be the case when a route is entered by the user.

5.18.1.3.6 HHMMRange (Class)

This structure defines a time duration.

5.18.1.3.7 IntersectingFeatureInfo (Class)

This union provides auxiliary data for identifying an intersecting feature along a given

roadway.

5.18.1.3.8 IntersectingFeatureLocationInfo (Class)

Location of a point along a roadway, using an intersecting feature to define the location.

5.18.1.3.9 IntersectingFeatureProximity (Class)

This structure defines a location of a point on a given roadway relative to an intersecting

feature.

5.18.1.3.10 IntersectingFeatureProximityType (Class)

This enumeration represents a direction relative to an intersecting feature on a roadway for

defining a location on the roadway.

5.18.1.3.11 IntersectingFeatureType (Class)

The type of intersecting feature which is used to define a point along a given roadway.

5.18.1.3.12 LocationProfile (Class)

Data included in an LRMS geometry location profile.

CHART R3B3 Detailed Design 5-337 12/23/2008

5.18.1.3.13 LocationProfileType (Class)

Defines all supported location profiles for GeoLocatable objects in the system.

5.18.1.3.14 LRMSGeomLocationProfile (Class)

Data included in an LRMS geometry location profile.

5.18.1.3.15 LRMSHorizontalDatumType (Class)

This enum lists the values that can be used for horizontal datum for the LRMS (Location

Referencing Message Specification) Geometry profile using TMDD proscribed values for

loc_ext_horizontal_datum. (Reference TMDD Vol II Annex June 2004).

5.18.1.3.16 LRMSVerticalDatumType (Class)

This enum lists the values that can be used for vertical datum for the LRMS (Location

Referencing Message Specification) Geometry profile using TMDD proscribed values for

loc_ext_vertical_datum. (Reference TMDD Vol II Annex June 2004).

5.18.1.3.17 MilePostIntersectingFeatureData (Class)

This structure defines a milepost location along a given roadway, with a milepost

measurement in terms of the specified milepost type.

5.18.1.3.18 MilePostType (Class)

This enumeration lists the type of milepost units.

5.18.1.3.19 ObjectGeoLocationInfo (Class)

This structure defines the geographical location of a CHART object.

5.18.1.3.20 ObjectGeoLocationSourceType (Class)

This structure defines the source of geolocaiton information of an object(a CHART

entity).

5.18.1.3.21 ObjectLocation (Class)

This structure defines the location of CHART objects like devices and traffic events.

StateInfo, CountyInfo, RegionInfo, RoadwayLocation, RoadwayLocationAliasNameInfo

and GeoLocationInfo fields are optional.

5.18.1.3.22 PointLocationProfile (Class)

This struct represents a geographical point defined as a latitude / longitude pair. The

latitude and longitude are defined in microdegrees.

CHART R3B3 Detailed Design 5-338 12/23/2008

5.18.1.3.23 RegionInfo (Class)

This structure contains information about a region.

5.18.1.3.24 RoadwayLocationAliasInfo (Class)

This structure contains the aliases for locations. For example, an alias can describe the

Fort McHenry Tunnel where the alias would be FMT.

5.18.1.3.25 RoadwayLocationAliasNameInfo (Class)

This structure contains information on the two names of an alias for a roadway location.

5.18.1.3.26 RouteInfo (Class)

Information for specifying a route when the components of the route number information

(and optionally the route name) are known.

5.18.1.3.27 RouteNumber (Class)

A route number, which may consist of an alphanumeric prefix, a number, and an

alphanumeric suffix.

5.18.1.3.28 RouteSpecification (Class)

This union specifies a route using either a formal definition or a freeform text definition.

5.18.1.3.29 RouteSpecificationType (Class)

 This enum indicates whether a route is specified using the formal definition (as is the case

when the route number components are known), or whether the route was entered as

freeform text.

5.18.1.3.30 RouteType (Class)

This enumeration is used to specify the classification of a road (interstate, MD, etc.)

5.18.1.3.31 RouteTypeInfo (Class)

This structure contains information about the classification type of a road.

5.18.1.3.32 SimpleStatus (Class)

This enum defines simple status values.

5.18.1.3.33 StateInfo (Class)

This structure contains information about a State.

CHART R3B3 Detailed Design 5-339 12/23/2008

5.18.1.4 DMSControl (Class Diagram)

This Class Diagram shows the CORBA system interface classes and methods used to

manipulate DMS services within the CHART system. This diagram was modified for

R3B3 to add support for traveler information messages, device location, TCP/IP

communications, NTCIP font control, notifications, and more alerts.

DM SEvent Type is
DMSModelChanged

DM SEvent Type is
DMSTr avI nf oM sgCf gChanged

DMSEvent Type is
DMSAdded or
DMSConf igChanged

DMSEvent Type is
Cur r ent DMSSt at us

Ext ernal DM SFact ory
«int er f ace»

M O DI FI ED FO R R3B3.

Added get DMSI nf oList () .
M ade cr eat eDMS() r et ur n new
DMSI nf o st r uct inst ead of just
t he DM S r ef er ence.

M O DI FI ED FO R R3B3.
set Locat ion() is new.
set Conf igur at ion() t o ignor e Locat ion changes.

DMSI nf o
«st r uct »

DM SType
«st r uct » NEW FO R R3B3.

M O DFI I ED FO R R3B3.

This is t he
DMSConf igSt at usEvent I nf o,
r enamed, wit h DM SType
and f act or y I D added.

1

1

DM SEvent Type is
DMSModelChanged

1 1

1 1

NEW
FO R
R3B3.

M O DI FI ED FO R
R3B3.
Added event t ype
f or t r aveler inf o
m sg conf ig.

DM STravI nf oM sgConf i gEvent I nf o
«st r uct »

DM SEvent Type is
DMSTr avI nf oM sgCf gChanged

1

1

I PPort Locat i onDat a
«st r uct »

NEW FO R R3B3.

1

1

1

1

HHM M Range
«t ypedef »

0. . * 1

Ext ernal DM S
«int er f ace»

NEW FO R R3B3.
See Ext er nalDM S
diagr am f or det ails

M O DI FI ED FO R R3B3.
m _ipPor t Dat a and
ever yt hing f r om
m _com mFailAler t O pCent er
down is new.
(m_am gToNot if y is r enamed t o
m _com mFailAler t O pCent er .)
0 or 1 Por t Locat ionDat a and
0 or 1 I PPor t Locat ionDat a
(should be exact ly 1 of one
t ype and 0 of t he ot her) .

1
1

1

NEW FO R R3B3.

M O DI FI ED FO R R3B3.
Added Tr aveler I nf oM sgSt at us

DMSTravI nf oM sgSt at e
«enum er at ion»

DM STravI nf oM sgSt at us
«st r uct »

1

Travel Rout eConsumer
«int er f ace»

DMSTravI nf oM sgConf i g

1

NEW f or R3B3.

t r avI nf oMsgI d is t he I D f or t he whole
(dms, t emplat e, r out elist) t uple, e. g. t he I D
f or t his t em plat e using t hese r out es as
conf igur ed f or t his DM S. Assigned by t he
ser ver as t he Tr avI nf oM sg is added t o
t he conf ig (e. g. , t he ser ver ignor es t he
I D passed in by t he client) . The I D is used
t o unam biguously enable/ disable m sgs via
set Tr avI nf oMsgEnabledFlag() (wit hout
having t o r ely on an index in t he conf ig
m at ching exact ly bet ween G UI and
ser ver) .
r out eI dList is a spar se ar r ay. May have a
sm all num ber of unused elem ent s,
signif ied wit h t he Null- I dent if ier .

NEW FO R R3B3.

DM S is Ent r yO wner
f or t r aveler inf o m sgs

0. . *

MO DI FI ED FO R R3B3. set Tr avI nf oMsgEnabledFlag() is new
f or R3B3. I f a new m essage is being enabled, it aut om at ically
set s any cur r ent ly enabled t r aveler I nf oM essage t o disabled.
DM S is an Ent r yO wner f or Tr aveler I nf or m at ion Messages.

Uni quel yI dent i f i abl e
«int er f ace»

ArbQ ueueEnt r y
«valuet ype»

DMSArbQ ueueEnt r y
«valuet ype»

Communi cat i onMode
«enum er at ion»

Short ErrorSt at us
«t ype»

M ULTI St ri ng
«t ype»

DM SConf i gurat i on
«valuet ype»

Chart 2DM SConf i gurat i on
«valuet ype»

DM SSt at us
«valuet ype»

Chart 2DM SSt at us
«valuet ype»

DMS
«int er f ace»

Char t 2DMS
«int er f ace»

Chart 2DM SFact ory
«int er f ace»

SharedResourceManager
«int er f ace»

HARM essageNot i f i er
«int er f ace»

SharedResour ce
«int er f ace»

DM SFact ory
«int er f ace»

DM SLi st
«t ype»

DM SM essage
«valuet ype»

DMSSt at usEvent I nf o
«st r uct »

Si gnM et ri cs
«t ypedef »

Font M et ri cs
«t ypedef »

DM SConf i gurat i onEvent I nf o
«st r uct »

BeaconTypeVal ues
«int er f ace»

Si gnTypeVal ues
«int er f ace»

ResponsePl anI t emDat a

DM SRPI Dat a

HARNot i f i er ArbQ ueueEnt ry
«valuet ype»

M essage
«int er f ace»

Uni quel yI dent i f i abl e
«int er f ace»

G eoLocat abl e
«int er f ace»

FP9500DM S
«int er f ace»

FP9500DM SSt at us
«valuet ype»

M essageQ ueue

Net w or kConnect i onSi t e
«t ype»

M ULTI ParseFai l ure
«except ion»

DMSEvent
«t ypedef »

DMSEvent Type
«enumer at ion»

Arbi t rat i onQ ueue
«int er f ace»

CommEnabl ed
«int er f ace»

DM SM odel I D
«enum er at ion»

O perat i onal St at us
«enum er at ion»

Si gnType
«t ype»

BeaconType
«t ype»

Pl anI t emDat a

DMSPl anI t emDat a

1

1

1
1

1 1

1

1

1

1

1

1

DMSEvent Type is
DMSAdded or
DMSConf igChanged

*

1

1

1

1 1

11

1

1

DMSEvent Type is
Cur r ent DMSSt at us

1

*

1 *

1

1
1

1

*

*

*

*

*

1

M O DI FI ED FO R R3B3.
m _dmsLocat ion changed t o O bject Locat ion.
m _def ault Font Num ber and m_def ault LineSpacing ar e new.

Ent r yO w ner
«int er f ace»

1

1

*

1

1

1

1*

1 1

1*

1

1

11

11 11

ResponsePl anI t emTarget
«int er f ace»

DM STr avI nf oMsg
«st r uct »

NEW FO R R3B3.

t heDM S: DM S
dm sI D: I dent if ier
dm sFact or yI D : I dent if ier
dm sType: DM SType
conf ig: DM SConf igur at ion
st at us: DMSSt at us

CHART_DMS
EXTERNAL_DMS

DM SEvent Type <discr im inat or >
I dent if ier dm sI D - f or DM SDelet ed
or
DM SConf igur at ionEvent I nf o dmsConf igI nf o
or
DM SSt at usEvent I nf o st at usI nf o

dm sI D: I dent if ier
st at us: DM SSt at us

DM SAdded
DM SDelet ed
Cur r ent DMSSt at us
DM SConf igChanged
DM STr avI nf oM sgCf gChanged

dmsI D: I dent if ier
conf ig: DM STr avI nf oM sgConf ig

m _ipAddr ess: st r ing
m _t cpPor t Num ber : int

DMS_ADDCO
DMS_FP1001
DMS_FP2001
DMS_FP9500
DMS_PCMS
DMS_SYLVI A
DMS_TS3001
DMS_NTCI P

t heDMS: DMS
dmsI D: I dent if ier
conf ig: DM SConf igur at ion

ot her = 1
bos = 2
cm s = 3
vm sChar = =4
et c.

shor t f ont Height
shor t char act er Widt h

long vm sSignHeight Pixels
long vm sSignWidt hPixels
shor t vm sChar act er Height Pixels
shor t vm sChar act er Widt hPixels

ot her = 1
none = 2
oneBeacon = 3
t woBeaconSyncFlash = 4
et c.

get Net wor kConnect ionSit e() : Net wor kConnect ionSit e
f act or y cr eat eChar t 2DM SConf igur at ion() :
 Char t 2DMSConf igur at ion

m _dmsModelI D: DM SM odelI D
m _owningO r gI D: I dent if ier
m _net wor kConnect ionSit e: Net wor kConnect ionSit e
m _pollingEnabled: boolean
m _pollI nt er valM inut es: long
m _por t Locat ionDat a: Por t Locat ionDat a[]
m _ippor t Dat a: I PPor t Locat ionDat a[]
m _com mPor t Conf ig: Comm Por t Conf ig
m _devicePhoneNum ber : st r ing
m _deviceDr opAddr ess: long
m _com munit ySt r ing: st r ing
m _deviceResponseTim eout : long
m _shazam Message: DM SM essage
m _associat edHAR: HAR
m _associat edHARI D: I dent if ier
m _enableDeviceLog: boolean
m _com mFailAler t O pCent er : O pCent er I nf o
m _hwFailAler t O pCent er : O pCent er I nf o
m _com mFailNot if G r oup: Not if icat ionG r oupI nf o
m _hwFailNot if G r oup: Not if icat ionG r oupI nf o
m _dmsTr avI nf oM sgConf ig

f act or y cr eat eDMSConf igur at ion() :
 DMSConf igur at ion

m_nam e: st r ing
m_dm sLocat ion: O bject Locat ion
m_dm sSignType: SignType
m_signMet r ics: SignMet r ics
m_f ont M et r ics: Font M et r ics
m_pages: long
m_dm sTim eCom mLoss: long
m_dm sBeaconType: BeaconType
m_def ault Just if icat ionLine: long
m_def ault PageO nTim e: long
m_def ault PageO f f Time: long
m_def ault Font Number : shor t
m_def ault LineSpacing: shor t

t akeO f f line(AccessToken, Comm andSt at us) : void
put O nline(AccessToken, Com mandSt at us) : void
put I nMaint enanceM ode(AccessToken, Com m andSt at us) : void
get Comm M ode() : Comm unicat ionM ode

r out eTr avTimeSt at sUpdat ed(r out eI d: I dent if ier ,
 t imeDat a: Rout eTr avTim eSt at s) : void
r out eTollRout eSt at sUpdat ed(r out eI d: I dent if ier ,
 t ollDat a: Rout eTollRat eSt at s) : void
r out eUpdat esCom plet ed() : void
r out eDisplayConf igUpdat ed(r out eI d: I dent if ier ,
 conf ig: Tr avelRout eDisplayConf ig) : void
r out eDelet ed(r out eI d: I dent if ier) : void

blankSign(AccessToken t oken, Com mandSt at us st at us) : void
get Conf igur at ion(AccessToken t oken) : DMSConf igur at ion
get St at us() : DM SSt at us
isBlank() : boolean
pollNow(AccessToken t oken, Com m andSt at us st at us) : void
r em ove(AccessToken t oken) : void
r eset Cont r oller (AccessToken t oken, Com mandSt at us st at us) : void
set Conf igur at ion(AccessToken t oken, DM SConf igur at ion conf ig,
 Com mandSt at us st at us) : void
set Message(AccessToken t oken, DM SM essage m essage,
 Com mandSt at us st at us) : void
set Locat ion(t oken: Accesst oken, locat ion: O bject Locat ion) : void

addEnt r y(t oken: AccessToken, level: Ar bQ ueuePr ior it yLevel,
 ent r y: Ar bQ ueueEnt r y) : void
r emoveEnt r iesFor O wner (t oken: AccessToken, owner I D: I dent if ier) : void
r emoveEnt r ies(t oken: AccessToken, keys: Ar bQ ueueEnt r yKeyList) : void
changePr ior it y(t oken: AccessToken, owner Name: st r ing,
 key: Ar bQ ueueEnt r yKey, pr ior it y: double) : void
get Ent r ies() : Ar bQ ueueEnt r yList
get Ent r y(key: Ar bQ ueueEnt r yKey) : Ar bQ ueueEnt r y
get Ent r yDescr ipt ions() : Ar bQ ueueEnt r yDescList
f or ceEvaluat ion(t oken: AccessToken) : void

m_st ar t Hour : byt e
m_st ar t M in: byt e
m_endHour : byt e
m_endMin: byt e

validat e(Ar bQ ueueEnt r yKey ent r yKey) : boolean

t r avI nf oM sgI d: I dent if ier
t em plat eI d: I dent if ier
r out eI dList : I dent if ier []
aut oRowPosit ioning: boolean

get DM SI D() : I dent if ier
set DM S(DMS, I dent if ier) : void
get MessageI D() : I dent if ier
set Message (St or edM essage, I dent if ier) : void
f act or y cr eat eDMSPlanI t emDat a() : DM SPlanI t em Dat a

DM S m _dms
I dent if ier m_dm sI D
St or edMessage m_st or edMsg
I dent if ier m_st or edMsgI D

m _t r avelTim eQ ueueLevel: Ar bQ ueuePr ior it yLevel
m _t ollRat eQ ueueLevel: Ar bQ ueuePr ior it yLevel
m _r elat edRout es: I dent if ier []
m _t r avI nf oM sgList : Tr aveler I nf oMsg[]
m _over r ideDef ault Schedule: boolean
m _enabledSpecif icTimes: boolean
m _cust om Schedule: HHM M Range[]

r em oveCHART2DM S(t oken: AccessToken) : void
changeM odelType(t oken: AccessToken, newM odelI D: DM SM odelI D, cmdSt at : Com m andSt at us) : void
set Tr avI nf oM sgConf ig(t oken: AccessToken, msgConf ig: DMSTr avI nf oM sgConf ig) : void
set Tr avI nf oM sgEnabledFlag(t r avI nf oM sgI d: I dent if ier , enableFlag: boolean) : void
set Q ueueLevels(AccessToken, t r avelTim eQ ueueLevel: Ar bQ ueuePr ior it yLevel,
 t ollRat eQ ueueLevel: Ar bQ ueuePr ior t yLevel) : void
set Tr avelTim eShcedule(AccessToken, useCust omSchedule: boolean, useSpecif icTime: boolean,
 r anges: HHMM RangeList) : void
set Relat edRout es(AccessToken, I dent if ier) : void
addDMSTr avI nf oM sg(AccessToken, DM STr avI nf oMsg) : void
m odif yDMSTr avI nf oM sg(AccessToken, DM STr avI nf oMsg) : void
r em oveDM STr avI nf oMsg(AccessToken, I dent if ier) : void

act ivat eHARNot ice(AccessToken, Ar bQ ueueEnt r yI ndicat or ,
 Tr af f icEvent List , Comm andSt at us) : void
deact ivat eHARNot ice(AccessToken, boolean onlineFlag,
 Com m andSt at us) : void
m odif yHARNot ice(AccessToken, Tr af f icEvent List) : void
isHARNot iceAct ive() : boolean
set Associat edHAR(AccessToken, HAR, I dent if ier har I D) : void
get Associat edHAR() : HAR
get Dir ect ion() : Dir ect ionValues
set Dir ect ion(Dir ect ion) : void

O K
CO M M_FAI LURE
HARDWARE_FAI LURE

st r ing r eason

sequence DM S

get ResponsePlanI t em () : ResponsePlanI t em
f act or y cr eat eDM SAr bQ ueueEnt r y(Tr af f icEvent t r af f icEvt ,
 ResponsePlanI t em r pi,
 DM SM essage m essage) : DM SAr bQ ueueEnt r y

ResponsePlanI t em m _r esponsePlanI t em

O NLI NE
O FFLI NE
M AI NT_MO DE

get DeviceI Ds() : I dent if ier []
get O wner () : Ent r yO wner
get O wner I D() : I dent if ier
get Key() : Ar bQ ueueEnt r yKey
get O pCent er I D() : I dent if ier
get O pCent er Name() : st r ing
get Host Nam e() : st r ing
get UseAllDevices() : boolean
get User Nam e() : st r ing
get M essage() : Message
get Pr ior it y() : double
set DeviceI Ds(I dent if ier []) : void
set Host Nam e(st r ing host Nam e) : void
set I ndicat or (Ar bQ ueueEnt r yI ndicat or dat a) : void
set O pCent er I D(I dent if ier opCent er I D) : void
set O pCent er Name(st r ing opCent er Nam e) : void
set Pr ior it y(double newpr ior it y) : void
set UseAllDevices(boolean) : void
set User Nam e(st r ing user Nam e) : void
validat e() : Ent r yValidSt at us

m _ent r yO wner : Ent r yO wner
m _indicat or : Ar bQ ueueEnt r yI ndicat or
m _useAllDevices: boolean
m _deviceI Ds: I dent if ier []
m _m essage: M essage
m _pr ior it y: double
m _host Nam e: st r ing
m _opCent er I D: I dent if ier
m _opCent er Nam e: st r ing
m _user Nam e: st r ing

cr eat eDM S(AccessToken t oken, DM SConf igur at ion conf ig) : DM SI nf o
get DM SList () : DM S[]
get DM SI nf oList () : DM SI nf o[]

f act or y cr eat eDM SSt at us() : DM SSt at us

m _per f or m ingPixelTest : boolean
m _cur r ent Message: DM SM essage
m _com mM ode: Com m unicat ionsM ode
m _opSt at us: O per at ionalSt at us
m _shor t Er r or St at us: Shor t Er r or St at us
m _st at usChangeTime: long

enabledTr avI nf oM sgI d: I dent if ier
msgSt at e: DM STr avI nf oM sgSt at e
msgReason: st r ing

get BeaconSt at e() : boolean
get MessageText () : st r ing
isM essageText M ult i() : boolean
f act or y cr eat eDMSMessage(MULTI St r ing mult iSt r ingM essage,
 boolean beaconSt at e,
 boolean isM essageText M ult i) : DM SM essage

m_dm sM essageSt r ing: st r ing
m_dm sM essageBeacon: boolean
m_isM essageText M ult i: boolean

f act or y cr eat eChar t 2DMSSt at us() : Char t 2DM SSt at us

m_cont r ollingO pCent er : O pCent er I nf o
m_t r avI nf oM sgSt at : DM STr avI nf oM sgSt at us

DI SPLAYED_NO RMALLY
TO LL_RATE_EXPI RED
M I SSI NG _DATA
BAD_Q UALI TY
BAD_FO RMAT
TEMPLATE_SI ZE_M I SM ATCH
PRE_EMPTED
NO _M SG _ENABLED
NO T_SCHEDULED
DM S_NO T_O NLI NE

get Comm andSt at us() : Comm andSt at us
f act or y cr eat eHARNot if ier Ar bQ ueueEnt r y(Ar bQ ueueEnt r yI ndicat or ,
 Tr af f icEvent [] ,
 DMSMessage,
 Com mandSt at us) : HARNot if ier Ar bQ ueueEnt r y

Tr af f icEvent [] m_t r af f icEvent List

f act or y cr eat eFP9500St at us() : FP9500DMSSt at us

oct et m _cur r ent MsgNum
oct et m _cur r ent MsgSour ce

get DM S() : Char t 2DM S
get M essage() : DMSMessage
set DM S(Char t 2DM S) : void
set M essage(DM SM essage) : void
f act or y cr eat e DM SRPI Dat a() :
 DM SRPI Dat a

Char t 2DM S m_dm s
DM SM essage m _m essage

per f or m PixelTest (AccessToken t oken,
 Com m andSt at us st at us) : void
get Ext endedSt at us(AccessToken t oken,
 Com mandSt at us st at us) : FP9500DMSSt at us

Figure 5-222. DMSControl (Class Diagram)

5.18.1.4.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the

queue determines which message(s) should be on the device, based upon the priority of the

CHART R3B3 Detailed Design 5-340 12/23/2008

queue entries. When entries are added to the queue, they are assigned a priority level based

on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are

added to the queue. The queue is evaluated when the device is online and queue entries are

added or removed, when an entry's priority is modified, or when the device is put online.

5.18.1.4.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

5.18.1.4.3 BeaconType (Class)

The BeaconType class defines the beacon type for a DMS. Its values are defined by the

BeaconTypeValues class. It is a part of a DMSConfiguration object.

5.18.1.4.4 BeaconTypeValues (Class)

The BeaconTypeValues class enumerates the various beacon types used on DMS devices

(number of beacons and whether and in what manner they flash).

5.18.1.4.5 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

5.18.1.4.6 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to Chart II

processing. Such information includes how to contact the sign under Chart II software

control, the default SHAZAM message for using the sign as a HAR Notifier, and the

owning organization. Such data extends beyond what would be industry-standard

configuration information for a DMS. Parameters to support TCP/IP communications,

notifications and more alerts, and traveler information messages were added for R3B3.

CHART R3B3 Detailed Design 5-341 12/23/2008

5.18.1.4.7 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional

Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS

objects). It implements the SharedResourceManager capability to control DMS objects as

shared resources.

5.18.1.4.8 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to

provide status information specific to CHART processing, such as information on the

controlling operations center for the sign. This data extends beyond what would be

industry-standard status information for a DMS. Status information for traveler information

messages was added in R3B3.

5.18.1.4.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.18.1.4.10 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE,

OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the

operational system. OFFLINE is used to indicate the device is not available to the online

system and communications to the device have been disabled. MAINT_MODE is used to

indicate that the device is available only for maintenance / repair activities and testing.

5.18.1.4.11 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

5.18.1.4.12 DMSArbQueueEntry (Class)

The DMSArbQueueEntry class provides an implementation of ArbQueueEntry that is used

CHART R3B3 Detailed Design 5-342 12/23/2008

for most standard entries placed on the arbitration queue. When its setActive, setInactive,

and setFailed methods are called, it adds a log entry to its traffic event and calls the

appropriate method on its response plan item (setActive, setInactive, or update).

5.18.1.4.13 DMSConfiguration (Class)

The DMSConfiguration class is an abstract valuetype class which describes the

configuration of a DMS device. This configuration information is normally fairly static:

things like the size of the sign in characters and pixels, its name and location, and how to

contact the sign (as opposed to dynamic information like the current message on the sign,

which is defined in an analogous Status object). The font number and line spacing were

added for R3B3, and the location was changed to a ObjectLocation, which contains more

detailed locations fields.

5.18.1.4.14 DMSConfigurationEventInfo (Class)

The DMSConfigurationEventInfo class is the type of DMSEvent used for DMSEventType

DMSConfigChanged. It contains a DMSConfiguration object which details the new

configuration for a Chart II DMS object.

5.18.1.4.15 DMSEvent (Class)

The DMSEvent class is a union which can be any one of four events relating to DMS

operations which can be pushed on an Event Channel to update event consumers on DMS-

related activities. The four types of events, defined by the enumeration DMSEventType,

are: DMSAdded, DMSDeleted, CurrentDMSStatus, and DMSConfigChanged.

5.18.1.4.16 DMSEventType (Class)

The DMSEventType is an enumeration which defines the five types of events relating to

DMS operations which can be pushed on an Event Channel to update event consumers on

DMS-related activities. The five types of events are: DMSAdded, DMSDeleted,

CurrentDMSStatus, DMSConfigChanged, and DMSTravInfoMsgCfgChanged.

5.18.1.4.17 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the

Chart II system. It also provides a method to get a list of DMS devices currently in the

system.

5.18.1.4.18 DMSInfo (Class)

This is a structure which contains all information about a DMS: its ID, its configuration and

status, the DMS type (internal or external), and a CORBA refrence to the DMS.

5.18.1.4.19 DMSList (Class)

The DMSList class is simply a list of DMS devices which can be used by the DMS Factory

and other classes for maintaining the list or other lists of DMS objects.

CHART R3B3 Detailed Design 5-343 12/23/2008

5.18.1.4.20 DMSMessage (Class)

The DMSMessage class is an abstract class which describes a message for a DMS. It

consists of two elements: a MULTI-formatted message and beacon state information

(whether the message requires that the beacons be on). The DMSMessage is contained

within a DMSStatus object, used to communicate the current message on a sign, and is

stored within a DMSRPIData object, used to specify the message which should be on a sign

when the response plan item is executed.

5.18.1.4.21 DMSModelID (Class)

The DMSModelID class enumerates the models of DMSs that are in the system.

5.18.1.4.22 DMSPlanItemData (Class)

The DMSPlanItemData class is a valuetype that contains data stored in a plan item for a

DMS. It is derived from PlanItemData.

5.18.1.4.23 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a

DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the

DMSMessage itself.

5.18.1.4.24 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a

DMS. This status information is relatively dynamic: things like the current message on the

sign, its beacon state, its current operational mode (online, offline, maintenance mode), and

current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More

static information about the sign, such as its size and location, is defined in an analogous

Configuration object.)

5.18.1.4.25 DMSStatusEventInfo (Class)

The DMSStatusEventInfo class is the type of DMSEvent used for DMSEventType

CurrentDMSStatus. It contains a DMSStatus object which details the new status for a

Chart II DMS object.

5.18.1.4.26 DMSTravInfoMsg (Class)

This class holds information necessary to put traveler information messages (containing

travel times and/or toll rates) on DMSs. Each TravelerInfoMsg contains the ID for the

template, and the IDs of the routes to use, as configured for its specific DMS. Each

TravelerInfoMsg can be enabled or disabled. The DMSControlModule will ensure that a

maxiumum of one TravelerInfoMsg is enabled at a time.

CHART R3B3 Detailed Design 5-344 12/23/2008

5.18.1.4.27 DMSTravInfoMsgConfig (Class)

This class is a part of Chart2DMSConfiguration. This class holds information necessary to

put traveler information messages (containing travel times and/or toll rates) on DMSs.

Each DMSTravelerInfoMsgConfig contains travelTimeQueueLevel, tollRateQueueLevel,

array of relatedRoutes,arra of TravInfoMsd, overrideDefaultSchedule,

enabledSpecificTime, andf array of customSchedule.

5.18.1.4.28 DMSTravInfoMsgConfigEventInfo (Class)

The DMSTravInfoMsgConfigEventInfo class is the type of DMSEvent used for

DMSEventType DMSTravInfoMsgCfgChange. It contains a DMSTravInfoMsgConfig and

Identifer of DMS object.

5.18.1.4.29 DMSTravInfoMsgState (Class)

This enumeration lists possible states for traveler information messages. The first state is

the normal case -- all others are reasons why a traveler information message may be not

displayed (or not displayed correctly). It is possible that some of these states could occur at

the same time, but since this is not expected to occur too often, only one state will be

provided in the status. When one problem state is corrected, the next problem state (if any)

would bubble up into the status. The problem states are listed in roughly priority order

(although the implementation is not obliged to abide by this order if another ordering is

determined to be better).

5.18.1.4.30 DMSTravInfoMsgStatus (Class)

This structure provides a textual and encoded view into what is happening with the traveler

information message for this DMS.

5.18.1.4.31 DMSType (Class)

This is an enumeration which lists the possible types of DMS: CHART (internal to

CHART) or External (imported).

5.18.1.4.32 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an

ArbQueueEntry on a device's arbitration queue. This validate method of this interface can

be called by the device to determine continued validity of the entry (either during recovery

or as a final check of the validity of an entry before putting its message on the device).

5.18.1.4.33 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

CHART R3B3 Detailed Design 5-345 12/23/2008

5.18.1.4.34 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

5.18.1.4.35 FontMetrics (Class)

The FontMetrics class is a non-behavioral class (structure) which contains information

regarding to the font size used on a DMS. It is a part of a DMSConfiguration object.

5.18.1.4.36 FP9500DMS (Class)

The FP9500DMS class extends the Chart2DMS interface and defines a more detailed

interface to be used in manipulating FP9500 models of DMS signs. It is exemplary of

potentially a whole suite of subclasses specific to a specific brand and model of sign for

manufacturer-specific DMS control. For instance, the FP9500DMS has a performPixelTest

method, which knows how to invoke and interpret a pixel test as supported by the FP9500

model DMS.

5.18.1.4.37 FP9500DMSStatus (Class)

The FP9500DMSStatus class provides additional storage for status information unique to

the FP9500 model of sign. It is exemplary of potentially a whole suite of Chart2DMSStatus

subclasses specific to a specific brand and model of sign.

5.18.1.4.38 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.18.1.4.39 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

5.18.1.4.40 HARNotifierArbQueueEntry (Class)

The HarNotifierArbQueueEntry class provides an implementation of the ArbQueueEntry

used for entries that are placed on the arbitration queue to put a "SHAZAM" message on a

DMS. These types of messages have a low priority and are not allowed to overwrite any

standard message (from a DMSArbQueueEntry) that is currently displayed on a device.

These types of messages are also different in that they are not added to the queue directly

by a response plan item and are instead included as a sub-task of activating a message on a

HAR. The HAR uses a command status object to track the progress of the HAR notifier

message.

CHART R3B3 Detailed Design 5-346 12/23/2008

5.18.1.4.41 HHMMRange (Class)

This structure defines a time duration.

5.18.1.4.42 IPPortLocationData (Class)

this structure defines the connection information of a tcp/ip port.

5.18.1.4.43 Message (Class)

This class represents a message that will be used while activating devices. This class

provides a means to check if the message contains any banned words given a Dictionary

object. Derived classes extend this class to provide device specific message data.

5.18.1.4.44 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and

reprioritize traffic event entries in a prioritized list.

5.18.1.4.45 MULTIParseFailure (Class)

The MULTIParseFailure class is an exception to be thrown when a MULTI-formatted DMS

message cannot be correctly parsed.

5.18.1.4.46 MULTIString (Class)

The MULTIString class is a MULTI-formatted DMS message. The DMSMessage class

contains a MULTIString value to specify the content of the sign, in addition to the beacon

state value.

5.18.1.4.47 NetworkConnectionSite (Class)

The NetworkConnectionSite class contains a string that is used to specify where a service is

running. This field is useful for administrators in debugging problems should an object

become "software comm failed".. It is included in the Chart2DMSStatus.

5.18.1.4.48 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have:

OK (normal mode), COMM_FAILURE (no communications to the device), or

HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

5.18.1.4.49 PlanItemData (Class)

This class is a valuetype that is the base class for data stored in a plan item. Derived classes

contain specific data that map a device to an operation and the data needed for the

operation. For example a derived class provides a mapping between a specific DMS and a

DMSMessage.

CHART R3B3 Detailed Design 5-347 12/23/2008

5.18.1.4.50 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan

item. Derived classes of this base class have specific implementations for the type of

device the response plan item is used to control.

5.18.1.4.51 ResponsePlanItemTarget (Class)

This interface represents an object that can be a target of a response plan item.

5.18.1.4.52 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

5.18.1.4.53 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

5.18.1.4.54 ShortErrorStatus (Class)

The ShortErrorStatus class identifies an error condition for a DMS. It is a bit field defined

by the NTCIP center to field standard for DMS that specifies error conditions that may be

present on the device. This class is used to encapsulate the bit mask and provide a user

friendly interface to the error conditions. The DMSStatus class contains a value of this

type.

5.18.1.4.55 SignMetrics (Class)

The SignMetrics class is a non-behavioral class (structure) which contains information

regarding to the size of a DMS, in pixels and characters. It is a part of a DMSConfiguration

object.

5.18.1.4.56 SignType (Class)

The SignType class defines the sign type for a DMS. Its values are defined by the

SignTypeValues class. It is a part of a DMSConfiguration object.

5.18.1.4.57 SignTypeValues (Class)

The SignTypeValues class enumerates the various sign types DMS devices. Examples are

bos, cms, vmsChar, etc.

CHART R3B3 Detailed Design 5-348 12/23/2008

5.18.1.4.58 TravelRouteConsumer (Class)

This interface allows other CHART objects to register as a direct consumer of travel route

statistical data. It provides operations for the travel route to call when the travel time or toll

rate for the route is updated. A DMS registers as a TravelRouteConsumer when a

TravelerInfoMsg is enabled.

5.18.1.4.59 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.18.1.5 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.

NEW FOR R3B3.

UPDATED FOR R3B3.

Added TOLL_RATE and
TRAVEL_TIME priorities.

IPPortLocationData
«struct»

ArbQueueSubEntryDescList
«typedef»

1
1

ArbQueuePriorityLevel
«enumeration»

ArbQueueEntryType
«enumeration»

ArbQueueEntryKeyList
«typedef»

* 1

ArbQueueEntryIndicator
«datatype»

EntryValidStatus

1 1

Message
«interface»

CommEnabled

«interface»

EntryOwner
«interface»

1*

ArbQueueEntryKey
«typedef»

ArbQueueEntryList
«typedef»

ArbQueueEntry

«valuetype»

PortManagerCommsData
«typedef»

PortLocationData
«typedef»

1

*

1 *

1*

1 1

ArbQueueEntryDescList
«typedef»

ArbQueueEntryDesc
«typedef»

CommunicationMode
«enumeration»

OperationalStatus
«enumeration»

DisapprovedMessageContent
«exception»

CommFailure
«exception»

ArbitrationQueue
«interface»

UniquelyIdentifiable
«interface»

ArbQueueSubEntryDesc
«datatype»

1
*

ONLINE
OFFLINE
MAINT_MODE

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putInMaintenanceMode(AccessToken, CommandStatus):void
getCommMode() :CommunicationMode

deviceID:Identifier
isActive:boolean

OK
COMM_FAILURE
HARDWARE_FAILURE

WordList disapprovedWords
string reason

string m_portManagerName;
string m_devicePhoneNumber;

byte[] m_ownerID
byte[] m_pwnerSubID
ArbQueueEntryType m_type

key:ArbQueueEntryKey
priority :double
msgDesc:s tring
isActive:boolean
deviceStatus:ArbQueuSubEntryDesc[]
entryValid:boolean

string reason;
string debug;
long errorCode;

SAFETY
ACTION
SPECIAL
WEATHER
SHAZAM
CONGESTION
TOLL_RATE
TRAVEL_TIME
PLANNED_ROADWAY_CLOSURE
INCIDENT
URGENT

PortManagerCommsList m_prtManagerList
PortType m_portType;
int m_portWaitTimeSecs;

ArbQueueEntryKey m_key
EntryOwner m_entryOwner

addEntry(token: AccessToken, level: ArbQueuePriorityLevel,
 entry : ArbQueueEntry):void
removeEntriesForOwner(token: AccessToken, ownerID: Identifier):void
removeEntries(token: AccessToken, keys: ArbQueueEntryKeyLis t):void
changePriority (token: AccessToken, ownerName: string,
 key: ArbQueueEntryKey, priority : double):void
getEntries():ArbQueueEntryLis t
getEntry(key: ArbQueueEntryKey):ArbQueueEntry
getEntryDescriptions():ArbQueueEntryDescList
forceEvaluation(token: AccessToken):void

m_ipAddress:string
m_tcpPortNumber:int

getDeviceIDs():Identifier[]
getOwner():EntryOwner
getOwnerID():Identifier
getKey():ArbQueueEntryKey
getOpCenterID():Identifier
getOpCenterName():s tring
getHostName():s tring
getUseAllDevices():boolean
getUserName():s tring
getMessage():Message
getPriority ():double
setDeviceIDs(Identifier[]):void
setHostName(string hostName):void
setIndicator(ArbQueueEntryIndicator data) : void
setOpCenterID(Identifier opCenterID):void
setOpCenterName(string opCenterName):void
setPriority (double newpriority):void
setUseAllDevices(boolean):void
setUserName(string userName):void
validate():EntryValidStatus

m_entryOwner: EntryOwner
m_indicator: ArbQueueEntryIndicator
m_useAllDevices: boolean
m_deviceIDs: Identifier[]
m_message: Message
m_priority : double
m_hostName: s tring
m_opCenterID: Identifier
m_opCenterName: string
m_userName: string

HAR
DMS
HAR_NOTIFIER

VALID
INVALID
UNDETERMINED

validateMessageContent():void;
matches(Message): boolean

getID()
getName()

validate(ArbQueueEntryKey entryKey):boolean

Figure 5-223. DeviceManagement (Class Diagram)

CHART R3B3 Detailed Design 5-349 12/23/2008

5.18.1.5.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the

queue determines which message(s) should be on the device, based upon the priority of the

queue entries. When entries are added to the queue, they are assigned a priority level based

on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are

added to the queue. The queue is evaluated when the device is online and queue entries are

added or removed, when an entry's priority is modified, or when the device is put online.

5.18.1.5.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

5.18.1.5.3 ArbQueueEntryDesc (Class)

This structure is used to provide a description of an entry on the arbitration queue.

5.18.1.5.4 ArbQueueEntryDescList (Class)

Collection of ArbQueueEntryDesc objects.

5.18.1.5.5 ArbQueueEntryIndicator (Class)

The ArbQueueEntryIndicator contains data necessary to specify a unique ArbQueueEntry

object; in addition, it contains a reference to the TrafficEvent which is responsible for the

entry.

5.18.1.5.6 ArbQueueEntryKey (Class)

This class contains the Traffic Event ID and RPI ID and is used to identify a specific

ArbQueueEntry. In some cases (e.g., for HARNotifierArbQueueEntry objects), the RPI ID

is the string representing a null Identifier.

5.18.1.5.7 ArbQueueEntryKeyList (Class)

A collection of ArbQueueEntryKey objects.

5.18.1.5.8 ArbQueueEntryList (Class)

5.18.1.5.9 ArbQueueEntryType (Class)

Enumeration of all possible types of entries that could be on an arbitration queue.

CHART R3B3 Detailed Design 5-350 12/23/2008

5.18.1.5.10 ArbQueuePriorityLevel (Class)

Enumeration of all possible priority levels of the arbitration queue. All entries in the queue

fit into one of these levels. The levels are named after the types of messages that are

typically mapped into them. However, any message can exist in any level and new types of

messages could be mapped into these levels. Thus, the levels could have been named,

LOWEST through HIGHEST. The names chosen have been used to provide some

indication of the likely usage of the levels. TOLL_RATE and TRAVEL_TIME levels have

been added for R3B3.

5.18.1.5.11 ArbQueueSubEntryDesc (Class)

This structure hold ArbQueueEntry "device-level detail for one "sub-device (such as a

constituent HAR within a SyncHAR). It holds the ID of the device and an indication as to

whether the entry is active for this particular subdevice. An ArbQueueEntry for a

conglomerate device (such as a SyncHAR) will contain a list of these structures, one for

each constituent HAR the entry is destined for.

5.18.1.5.12 ArbQueueSubEntryDescList (Class)

This is an array of ArbQueueSubEntryDesc. It holds a list of "sub-devices" (such as

constituent HARs of a SyncHAR) for which an arb queue entry is destined, and for which

of those devices the entry is active.

5.18.1.5.13 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.18.1.5.14 CommFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating

with a device.

5.18.1.5.15 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE,

OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the

operational system. OFFLINE is used to indicate the device is not available to the online

system and communications to the device have been disabled. MAINT_MODE is used to

indicate that the device is available only for maintenance / repair activities and testing.

CHART R3B3 Detailed Design 5-351 12/23/2008

5.18.1.5.16 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are

not approved. This exception is also thrown if an attempt is made to put the device in an

invalid display state, such as putting the Beacons ON for a blank DMS.

5.18.1.5.17 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an

ArbQueueEntry on a device's arbitration queue. This validate method of this interface can

be called by the device to determine continued validity of the entry (either during recovery

or as a final check of the validity of an entry before putting its message on the device).

5.18.1.5.18 EntryValidStatus (Class)

This enumeration is used to track whether an arb queue entry has been validated by its

EntryOwner (interface). The possible values are VALID, INVALID, and

UNDETERMINED.

5.18.1.5.19 IPPortLocationData (Class)

This structure defines the connection information of a tcp/ip port.

5.18.1.5.20 Message (Class)

This class represents a message that will be used while activating devices. This class

provides a means to check if the message contains any banned words given a Dictionary

object. Derived classes extend this class to provide device specific message data.

5.18.1.5.21 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have:

OK (normal mode), COMM_FAILURE (no communications to the device), or

HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

5.18.1.5.22 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to

communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager)

to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem,

POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to

acquire a port from a port manager.

CHART R3B3 Detailed Design 5-352 12/23/2008

5.18.1.5.23 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to

access a device from the given port manager. This class exists to allow for the phone

number used to access a device to differ based on the port manager to take into account the

physical location of the port manager within the telephone network. For example, when

dialing a device from one location the call may be long distance but when dialing from

another location the call may be local.

5.18.1.5.24 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.18.1.6 ExternalDMS (Class Diagram)

ExternalObjectIdentificationData

«struct»

See DMSControl
Class Diagram for
details.

1

1

*

1

1
1

1 1

SharedResourceManager

«interface»

NEW FOR R3B3

Note: This diagram extends the DMSContol class diagram by adding
support for External DMS objects.

CommEnabled

«interface»

DMS

«interface»

GeoLocatable

«interface»
UniquelyIdentifiable

«interface»

ExternalDMS

«interface»

DMSConfiguration

«valuetype»

Chart2DMSConfiguration

«valuetype»

Chart2DMS

«interface»

ExternalDMSConfiguration

«valuetype»

DMSFactory

«interface»

Chart2DMSFactory

«interface»

ExternalDMSFactory

«interface»

DMSStatus

«valuetype»

Chart2DMSStatus

«valuetype»

blankSign(AccessToken token, CommandStatus status) : void
getConfiguration(AccessToken token) : DMSConfiguration
getStatus() : DMSStatus
isBlank() : boolean
pollNow(AccessToken token, CommandStatus status) : void
remove(AccessToken token) : void
resetController(AccessToken token, CommandStatus status) : void
setConfiguration(AccessToken token, DMSConfiguration config,
 CommandStatus status) : void
setMessage(AccessToken token, DMSMessage message,
 CommandStatus status) : void
setLocation(token:Accesstoken, location:ObjectLocation):void

factory createDMSConfiguration() :
 DMSConfiguration

m_name: string
m_dmsLocation: ObjectLocation
m_dmsSignType: SignType
m_signMetrics: SignMetrics
m_fontMetrics: FontMetrics
m_pages: long
m_dmsTimeCommLoss: long
m_dmsBeaconType: BeaconType
m_defaultJustificationLine: long
m_defaultPageOnTime: long
m_defaultPageOffTime: long
m_defaultFontNumber: short
m_defaultLineSpacing: short

updateStatus(token : AccessToken,
 status : DMSStatus) : void
setExternalConfiguration(token : AccessToken,
 extdmsConfig:ExternalDMSConfiguration):void
getExternalConfiguration(token:AccessToken):
 ExternalDMSConfiguration

extSystemIdentificationString:string
extAgencyIdentificationString:string
extObjectIdentificationString:string

factory createExternalDMSConfiguration() :
 ExternalDMSConfiguration

m_extID : ExternalObjectIdentificationData
m_owningOrgID: Identifier
-m_networkConnectionSite: NetworkConnectionSite

createExternalDMStoken(token:AccessToken,
 externalDMSconfiguration:ExternalDMSConfiguration)raises(AccessDenied,CHART2Exception)

factory createDMSStatus() : DMSStatus

m_performingPixelTest: boolean
m_currentMessage: DMSMessage
m_commMode: CommunicationsMode
m_opStatus: OperationalStatus
m_shortErrorStatus: ShortErrorStatus
m_statusChangeTime: long

factory createChart2DMSStatus() : Chart2DMSStatus

m_controllingOpCenter: OpCenterInfo
m_travInfoMsgStat: DMSTravInfoMsgStatus

Figure 5-224. ExternalDMS (Class Diagram)

CHART R3B3 Detailed Design 5-353 12/23/2008

5.18.1.6.1 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

5.18.1.6.2 Chart2DMSConfiguration (Class)

The Chart2DMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to Chart II

processing. Such information includes how to contact the sign under Chart II software

control, the default SHAZAM message for using the sign as a HAR Notifier, and the

owning organization. Such data extends beyond what would be industry-standard

configuration information for a DMS. Parameters to support TCP/IP communications,

notifications and more alerts, and traveler information messages were added for R3B3.

5.18.1.6.3 Chart2DMSFactory (Class)

The Chart2DMSFactory interface extends the DMSFactory interface to provide additional

Chart II specific capability. This factory creates Chart2DMS objects (extensions of DMS

objects). It implements the SharedResourceManager capability to control DMS objects as

shared resources.

5.18.1.6.4 Chart2DMSStatus (Class)

The Chart2DMSStatus class is an abstract class which extends the DMSStatus class to

provide status information specific to CHART processing, such as information on the

controlling operations center for the sign. This data extends beyond what would be

industry-standard status information for a DMS. Status information for traveler information

messages was added in R3B3.

5.18.1.6.5 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

CHART R3B3 Detailed Design 5-354 12/23/2008

5.18.1.6.6 DMS (Class)

The DMS class defines an interface to be used in manipulating Dynamic Message Sign

(DMS) objects within Chart II. It specifies methods for setting messages and clearing

messages from a sign (in maintenance mode), polling a sign, changing the configuration of

a sign, and resetting a sign. (Setting messages on a sign in online mode are not

accomplished by manipulating a DMS directly; that is accomplished by manipulating traffic

events, which use an ArbitrationQueue interface or by manipulating HARs, which use a

HARMessageNotifier interface. This activity involves the DMS extension, Chart2DMS,

which defines interactions with signs under Chart II business rules.)

5.18.1.6.7 DMSConfiguration (Class)

The DMSConfiguration class is an abstract valuetype class which describes the

configuration of a DMS device. This configuration information is normally fairly static:

things like the size of the sign in characters and pixels, its name and location, and how to

contact the sign (as opposed to dynamic information like the current message on the sign,

which is defined in an analogous Status object). The font number and line spacing were

added for R3B3, and the location was changed to a ObjectLocation, which contains more

detailed locations fields.

5.18.1.6.8 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the

Chart II system. It also provides a method to get a list of DMS devices currently in the

system.

5.18.1.6.9 DMSStatus (Class)

The DMSStatus class is an abstract value-type class which provides status information for a

DMS. This status information is relatively dynamic: things like the current message on the

sign, its beacon state, its current operational mode (online, offline, maintenance mode), and

current operational status (OK, COMM_FAILURE, or HARDWARE_FAILURE). (More

static information about the sign, such as its size and location, is defined in an analogous

Configuration object.)

5.18.1.6.10 ExternalDMS (Class)

The ExternalDMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the External DMS objects within CHART.

5.18.1.6.11 ExternalDMSConfiguration (Class)

The ExternalDMSConfiguration class is an abstract class which extends the

DMSConfiguration class to provide configuration information specific to External DMS

objects.

CHART R3B3 Detailed Design 5-355 12/23/2008

5.18.1.6.12 ExternalDMSFactory (Class)

The ExternalDMSFactory interface extends the DMSFactory interface.. This factory

creates ExternalDMS objects (extensions of DMS objects).

5.18.1.6.13 ExternalObjectIdentificationData (Class)

 This structure is used to hold data which identifies the external source of an external

object which has been imported into CHART.

5.18.1.6.14 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.18.1.6.15 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

5.18.1.6.16 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-356 12/23/2008

5.18.1.7 ExternalSystem (Class Diagram)

This class diagram shows the interfaces involved in importing and exporting data from

external systems.

Note: It is invalid to have
exclude flag and incldue flag
set at the same time. valid
settings are both un-set, or
one or the other set.

SimpleStatus

«enumeration»

ExternalObjectIdentificationData

«struct»1

11

UniquelyIdentifiable

«interface»

ExternalDataType

«enumeration»MODIFIED FOR R3B3:

Added DMS, DETECTOR,
TOLL_RATES, and
TRAVEL_TIMES

NEW FOR R3B3

*

1

Naming interface only.
Used for convenience
and to clarify implementation.

ExternalDMSManager

«interface»

ExternalTSSManager

«interface»

ExternalDeviceType

«enumeration»

CandidateSearchCriteria

«struct»

ExternalDeviceCandidateInfo

«struct»

CandidateGroup

«struct»

UniquelyIdentifiable

«interface»

ExternalSystemConnectionStatus

«struct»

NEW FOR R3B3

1*

ExternalDeviceManagerConfig

«struct»

ExternalSystemConnection

«interface»

ExternalSystemConnectionConfig

«struct»

ExternalDeviceManager

«interface»

1

getConfig(): ExternalSystemConnectionConfig
getStatus(): ExternalSystemConnectionStatus

connId : Identifier
extSystemIdentificationString : string
externalDataTypes :ExternalDataTypes[]

statusValue : SimpleStatus
statusChangeTime : TimeStamp2
statusConfirmTime : TImeStamp2

TRAFFIC_EVENT
DMS
DETECTOR
TOLL_RATES
TRAVEL_TIMES

getConfig() : ExternalDeviceManagerConfig
searchForCandidateDevices(criteria : CandidateSearchCriteria) :
 CandidateGroup
setCandidateDevices(candidates : CandidateGroup)

OK
FAILED
WARNING

agencyNames : string[]
geoAreaNames : string[]
searchText : string
undecided : boolean
excluded : boolean
included : boolean

id : Identifier
extSystemIDString : string
extDeviceType :ExternalDeviceType

EXTERNAL_DMS
EXTERNAL_TSS

extDeviceMangerId : Identifier
candidates : ExternalDeviceCandidate[]

extId : ExternalObjectIdentificationData
description : string
location : ObjectLocation
boolean : exclude
boolean : include
type : ExternalDeviceType

extSystemIdentificationString:string
extAgencyIdentificationString:string
extObjectIdentificationString:string

Figure 5-225. ExternalSystem (Class Diagram)

5.18.1.7.1 CandidateGroup (Class)

This struct groups ExternalDeviceCandidates with the ExternalDeviceManager that the

candidates are associated with.

5.18.1.7.2 CandidateSearchCriteria (Class)

This struct is used to define search criteria when searching for candidate external devices.

5.18.1.7.3 ExternalDataType (Class)

This enumeration defines external data types handled by an ExternalSystemConnection.

CHART R3B3 Detailed Design 5-357 12/23/2008

5.18.1.7.4 ExternalDeviceCandidateInfo (Class)

This struct represents a candidate external device (DMS, TSS, ...) .

When returned from an ExternalDeviceManager.searchForCandidateDevices() query the

exclude flag indicates it was previously excluded from import. The include flag indicates

that it was previously included for import.

If used with a ExternalDeviceManager.setCandidates() call, it indicates whether the

candidate should be included, excluded, or no action taken.

5.18.1.7.5 ExternalDeviceManager (Class)

This interface defines operations used for configuring External Devices in CHART. Each

ExternalDeviceManager manages external devices of a specific type (DMS, TSS, ...) for a

specific External System (i.e. data source).

5.18.1.7.6 ExternalDeviceManagerConfig (Class)

This struct defines the configuration for an ExternalDeviceManager in CHART.

5.18.1.7.7 ExternalDeviceType (Class)

This enumeration defines external device types.

5.18.1.7.8 ExternalDMSManager (Class)

This is a naming interface (empty interface) used to specify a external device manager

specific to DMS devices. Its used as a convenience when querying traders and to clarify

implementation.

5.18.1.7.9 ExternalObjectIdentificationData (Class)

 This structure is used to hold data which identifies the external source of an external

object which has been imported into CHART.

5.18.1.7.10 ExternalSystemConnection (Class)

This interface defines external connections and provides status reporting.

5.18.1.7.11 ExternalSystemConnectionConfig (Class)

This struct defines a connection to an external system.

5.18.1.7.12 ExternalSystemConnectionStatus (Class)

This struct is used to report status for an ExternalSystemConnection.

5.18.1.7.13 ExternalTSSManager (Class)

This is a naming interface (empty interface) used to specify a external device manager

CHART R3B3 Detailed Design 5-358 12/23/2008

specific to TSS devices. Its used as a convenience when querying traders and to clarify

implementation.

5.18.1.7.14 SimpleStatus (Class)

This enum defines simple status values.

5.18.1.7.15 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-359 12/23/2008

5.18.1.8 FieldCommunications (Class Diagram)

This diagram shows system interfaces relating to field communications. These interfaces,

typedefs, and enums specify the IDL for the FieldCommunications package.

UniquelyIdentifiable

«interface»

Priority

«enumeration»

VoicePortConnectFailure

«exception»

*

VoicePort

«interface»

CommPortConfig

«typedef»

DataBits

«enumeration»

ModemInitFailure

«exception»
ModemResponseCode

«enumeration»
ModemNotResponding

«exception»

DisconnectException

«exception»

Por tManager

«interface»

PortType

«enumeration»

Other port types
such as VoicePort

1

DataPort

«interface»

ModemPort

«interface»

DirectPort

«interface»

Par ity

«enumeration»

Port

«interface»

NoPor tsFound

«exception»

StopBits

«enumeration»

FlowControl

«enumeration»

ModemConnectFailure

«exception»

getPortsStatus():PortStatusInfo[]
getPort(PortType type, long maxWaitMillis,
 Priority requestPriority):Port
releasePort(Port thePort):void

send(byte[] data):void
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis,
 long maxReadDurationMillis):byte[]

getStatus():PortStatus
disconnect():void

ISDN_MODEM
POTS_MODEM
DIRECT_RS232
TELEPHONY
TCPIP

connect(CommPortConfig config,
 String phoneNo):void

PRIORITY_POLLING
PRIORITY_ON_DEMAND

connect(phoneNo:string):void
getSupportedFormats():AudioDataFormat[]
playDTMF(dtmfCodes:string, interToneDelayMillis:int):void
playReadDMTF(dtmfCodes:string, interToneDelayMillis:int,
 readChars:long, timeouts:readTimeouts,
 terminationChar:string)
playReadDMTFDynLength(dtmfCodes:string, interToneDelayMillis:int,
 lengthFieldStart:int, lengthFieldEnd:int, timeouts:readTimeouts,
 terminationChar:string)
playAudio(clip:AudioDataClip, preDTMFCmds:string,
 postDTMFCmds:string, dtmfCmdDelimiter:string,
 intertoneDelayMillis:int):void
recordAudio(numSecs:int, format:AudioDataFormat,
 preDTMFCmds:string, dtmfCmdDelimiter:string,
 interToneDelayMillis:int):void
receiveDTMFTones():int[]

long m_baudRate
DataBits m_dataBits
StopBits m_stopBits
Parity m_parity
FlowControl m_flowControl

connect(CommPortConfig config):void

DATABITS_5
DATABITS_6
DATABITS_7
DATABITS_8

string modemCmd;
ModemResponseCode rspCode;

STOPBITS_1
STOPBITS_2
STOPBITS_1_5

PARITY_EVEN
PARITY_ODD
PARITY_NONE
PARITY_MARK
PARITY_SPACE

string modemCmd;
ModemResponseCode rspCode;

FLOWCONTROL_NONE
FLOWCONTROL_RTS_CTS
FLOWCONTROL_XON_XOFF

string reason

string reason;

MODEM_RSP_OK
MODEM_RSP_CONNECT
MODEM_RSP_RING
MODEM_RSP_NO_CARRIER
MODEM_RSP_ERROR
MODEM_RSP_CONNECT_1200
MODEM_RSP_NO_DIAL_TONE
MODEM_RSP_BUSY
MODEM_RSP_NO_ANSWER
MODEM_RSP_UNKNOWN

string reason

Figure 5-226. FieldCommunications (Class Diagram)

CHART R3B3 Detailed Design 5-360 12/23/2008

5.18.1.8.1 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

5.18.1.8.2 DataBits (Class)

This enumeration defines the valid values for data bits that may be set in a

CommPortConfig structure.

5.18.1.8.3 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type

support a receive method that allows a chunk of all available data to be received. This

method prevents callers from having to issue many receive calls to parse a device response.

Instead, this receive call returns all available data received within the timeout parameters.

The caller can then parse the data within a local buffer. Using this mechanism, device

command and response should require only one call to send and one call to receive.

5.18.1.8.4 DirectPort (Class)

A DirectPort is a Port that is directly connected to the target of communications. The

connect call needs only to open the communications port.

5.18.1.8.5 DisconnectException (Class)

This exception is thrown when an error is encountered while disconnecting. There is no

action that can be taken by the catch handler for this exception except to warn the user. The

port will be closed and should be released as normal even if this exception is caught.

5.18.1.8.6 FlowControl (Class)

This enumeration defines the valid types of flow control that may be set in a

CommPortConfig structure.

5.18.1.8.7 ModemConnectFailure (Class)

This exception is thrown when there is an error establishing a remote connection via a

modem during a connection attempt on a ModemPort. This exception is generated when

there is an unfavorable result to the ATDT command on the modem.

5.18.1.8.8 ModemInitFailure (Class)

This exception is thrown when there is an error initializing the modem during a connection

attempt on a ModemPort.

5.18.1.8.9 ModemNotResponding (Class)

This exception is thrown when there is a failure to command a modem because the modem

is not responding to commands.

CHART R3B3 Detailed Design 5-361 12/23/2008

5.18.1.8.10 ModemPort (Class)

A ModemPort is a communications port that is capable of connecting to a remote modem.

ISDN and POTS modems can be implemented under this interface.

5.18.1.8.11 ModemResponseCode (Class)

This enum defines the result codes for a standard modem.

5.18.1.8.12 NoPortsFound (Class)

This exception is thrown when a port is requested from a PortManager that does not have

any of the requested type of port (available or in-use).

5.18.1.8.13 Parity (Class)

This enumeration defines the valid values for parity that may be set in a CommPortConfig

structure.

5.18.1.8.14 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces

specify various types of ports. All ports must be able to supply their status when requested.

5.18.1.8.15 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources.

The getPort method is used to request the use of a port from the PortManager. Requests for

ports specify the type of port needed, the priority of the request, and the maximum time the

requester is willing to wait if a port is not immediately available. When the port manager

returns a port, the requester has exclusive use of the port until the requester releases the port

back to the PortManager or the PortManager reclaims the port due to inactivity.

5.18.1.8.16 PortType (Class)

This enumeration defines the types of ports that may be requested from a PortManager.

5.18.1.8.17 Priority (Class)

This enumeration specifies the priority levels used when requesting a port from a

PortManager. ON_DEMAND is given higher priority than POLLING.

5.18.1.8.18 StopBits (Class)

This enumeration defines the valid values for stop bits that may be set in a

CommPortConfig structure.

5.18.1.8.19 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

CHART R3B3 Detailed Design 5-362 12/23/2008

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.18.1.8.20 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect

it to a destination phone number and perform send and receive operations while connected

that result in DTMF or voice being sent across the telephone connection to or from the

device.

5.18.1.8.21 VoicePortConnectFailure (Class)

This exception is thrown when the voice port fails to connect because of one of the

following reasons: no dial tone, line busy or no answer.

CHART R3B3 Detailed Design 5-363 12/23/2008

5.18.1.9 GeoAreaManagement (Class Diagram)

GeoAreaEventType
is GeoAreaUpdated

GeoAreaEventType
is GeoAreaAdded

GeoAreaEventType
is GeoAreaRemoved

1

Identifier

GeoAreaEventType
is GeoAreaRemoved

1

1
pushes events

defined as

GeoArea

«struct»

1

GeoAreaData

«struct»

PointLocationProfile

«struct»

From Common IDL

GeoAreaEventType

«enumeration»
GeoAreaEvent

«union»

GeoAreaEventType
is GeoAreaAdded

1

1

EVENT_CHANNEL_GEO_AREA_MANAGEMENT

«type»

*

1

1

1

GeoAreaEventType
is GeoAreaUpdated

1

1

1

GeoAreaFactory

«interface»

UniquelyIdentifiable

«interface»

1

getID()
getName()

getGeoAreas() : GeoArea[]
addGeoArea(token AccessToken,
 newGeoArea : GeoAreaData) : GeoArea
updateGeoArea(token AccessToken,
 geoArea : GeoArea)
removeGeoArea(token AccessToken,
 id : Identifier)

geoAreaId : Identifier
geoArea : GeoAreaData

discriminator : GeoAreaEventType
geoAreaList : GeoArea[]

name : string
desc : string
points : PointLocationProfile[]

string

GeoAreaAdded
GeoAreaUpdated
GeoAreaRemoved

m_latitudeUDeg : int
m_longitudeUDeg : int

Figure 5-227. GeoAreaManagement (Class Diagram)

5.18.1.9.1 EVENT_CHANNEL_GEO_AREA_MANAGEMENT (Class)

Event Channel defined for pushing events related to Geo Area Management.

5.18.1.9.2 GeoArea (Class)

The GeoArea struct defines a unique GeoArea within the CHART system. It has a unique

id and a GeoAreaData struct.

5.18.1.9.3 GeoAreaData (Class)

The GeoArea struct is a simple representation of a polygon (ordered list of points) defining

a Geographical Area within the CHART system.

5.18.1.9.4 GeoAreaEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of

the discriminator. This union provides updates about GeoAreas.

If the discriminator is GeoAreaAdded this union contains a GeoArea object.

CHART R3B3 Detailed Design 5-364 12/23/2008

If the discriminator is GeoAreaUpdated this union contains a GeoArea object.

If the discriminator is GeoAreaRemoved this union contains an Common:Identifier (byte[])

object.

5.18.1.9.5 GeoAreaEventType (Class)

This enumeration defines the types of events that may be pushed on an event channel by a

GeoAreaFactory object. The values in this enumeration are used as the discriminator in the

GeoAreaEvent union.

5.18.1.9.6 GeoAreaFactory (Class)

This interface defines a factory responsible for managing GeoAreas with the CHART

system.

5.18.1.9.7 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

5.18.1.9.8 PointLocationProfile (Class)

This struct represents a geographical point defined as a latitude / longitude pair. The

latitude and longitude are defined in microdegrees.

5.18.1.9.9 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-365 12/23/2008

5.18.1.10 HARControl (Class Diagram)

This class diagram contains the interfaces used relating to the control of Highway Advisory

Radio (HAR).

HARMessageAudioClip HARMessagePrestoredClip

HARFactory

«interface»

HAR

«interface»

SharedResource

«interface»

HARSlotUsageIndicator

«enumeration»

HARSlotData

«typedef»

HARList

«typedef»

StoredMessage

«interface»

HARStatusEventInfo

«typedef»

HAREventType

«enumeration»

HARRPIData

HARConfiguration

«typedef»

1

*

*

*

*

1

1

*

1

1

1

1

1

* *

1

1

1

*

1

1

* *

1

1

1

1

1

*

*

HARMessage

CommEnabled

«interface»

HARMessageNotifierList

«typedef»

Header/Trailer (optional)

HARArbQueueEntry

HARMessageAudioDataClip

SharedResourceManager

«interface»

MODIFIED FOR R3B3.
setLocation() is new.
setConfiguration() to ignore Location changes.

ResponsePlanItemTarget

«interface»

1

HARMessageNotifier

«interface»

ArbitrationQueue

«interface»

GeoLocatable

«interface»

HARConfigurationEventInfo

«typedef»

HARStatus

«typedef»

*

1

1

1

Message

«interface»

HARMessageNotifierStruct

UniquelyIdentifiable

«interface»

Body

ArbQueueEntry

«valuetype»

HARMessageClip

HARMessageTextClip

HARMessageClipList

«typedef»

HARSlotNumber

«type»

HARPlanItemData

HARSlotDataList

«typedef»

AudioClipOwner

«interface»

1

1

*

*

*

R3B3
Changed device location

1

*

createHAR(AccessToken,
 HARConfiguration) : HAR
getHARs():HARList

setHAR(HAR theHAR):void
getHARID():Identifier
setMessage(StoredMessage msg):void
getMessageID():Identifier
factory createHARPlanItemData():
 HARPlanItemData

HAR m_har
Identifier m_harID
StoredMessage m_storedMsg
Identifier m_storedMsgID
Direction m_direction

setConfiguration(AccessToken, HARConfiguration, CommandStatus):void
getConfiguration(AccessToken) : HARConfiguration
getStatus():HARStatus
putInMaintModeWithSHAZAMs(AccessToken, HARMsgNotiferIDList, CommandStatus): void
putOnlineWithSHAZAMs(AccessToken, HARMsgNotifierIDList, CommandStatus): void
setMessage(AccessToken, HARMessage, HARMsgNotifierIDList, CommandStatus):void
blank(AccessToken, CommandStatus):void
getClipInSlot(HARSlotNumber): HARMessageClip
storeSlotMessage(AccessToken, HARSlotData, CommandStatus):void
deleteSlotMessage(AccessToken, HARSlotNumber, CommandStatus):void
isBlank():boolean
isMessageActive():boolean
reset(AccessToken, CommandStatus):void
setup(AccessToken, CommandStatus):void
setTransmitterOff(AccessToken, CommandStatus):void
setTransmitterOn(AccessToken, CommandStatus):void
monitorBroadcast(AccessToken, long seconds, long maxChunkSize,
 AudioPushConsumer, CommandStatus):void
monitorSlot(AccessToken, long seconds, HARSlotNumber, long maxChunkSize,
 AudioPushConsumer, CommandStatus)
remove(AccessToken):void
msgNotifierDeactivated(AccessToken, Identifier notifierID): void
msgNotifierRemoved(AccessToken, Identifier notifierID): void
shouldHARNoticeBeActive(Identifier notifierID): void
setLocation(accesstoken:AccessToken,location:ObjectLocation):void

ResponsePlanItem m_responsePlanItem
HARMsgNotifierList m_notifiersToActivate

HARAdded
HARRemoved
HARStatusChanged
HARConfigurationChanged

HAR theHAR
Identifier id
HARConfiguration config

string m_name
ObjectLocation m_deviceLocation
string m_devicePhoneNumber
string m_deviceMonitorPhoneNumber
string m_deviceAccessCode
long m_maxStoredVoiceSeconds
HARMessageNotifierList m_msgNotifiers
Identifier m_owningOrgID
string m_networkConnectionSite
PortLocationData m_portLocationData
PortLocationData m_monitorPortLocationData

Identifier id
HARStatus status

setHAR(HAR har):void
getHAR():HAR
setMessage(HARMessage msg):void
getMessage():HARMessage
getMsgNotifiers():HARMsgNotifierIDList
setMsgNotifiers(HARMsgNotifierIDList): void
factory createHARRPIData():HARRPIData

HAR m_har
HARMessage m_message
HARMsgNotifierList m_notifiersToActivate

factory createAudioDataClip(in AudioDataFormat format,
 in AudioData data):HARMessageAudioDataClip

AudioDataFormat m_audioDataFormat
AudioData m_audioData

HARMessageNotifier m_harNotifier
Identifier m_harNotifierID

HARMessage m_currentMessage
HARSlotDataList m_slotData
boolean m_transmitterOn
CommMode m_commMode
OperationalStatus m_OpStatus
OpCenterInfo m_controllingOpCenter
long m_statusChangeTime
long m_lastContactTime

getHeader():HARMessageClip
getTrailer():HARMessageClip
getBody():HARMessageClipList
useDefaultHeader():boolean
useTrailer():boolean
useDefaultTrailer():boolean
setUseDefaultHeader(boolean):void
setUseTrailer(boolean):void
setUseDefaultTrailer(boolean):void
setHeader(HARMessageClip):void
setTrailer(HARMessageClip):void
setBody(HARMessageClip):void
addBodyClip(HARMessageClip):void
getBodyRunTime(): long
getTotalRunTime() : long
getNewDataRuntTime(): long
factory createHARMessage():HARMessage

HARMessageClipList m_body
boolean m_useDefaultHeader
HARMessageClip m_header
boolean m_useTrailer
boolean m_useDefaultTrailer
HARMessageClip m_trailer

DEFAULT_HEADER
DEFAULT_TRAILER
DEFAULT_MESSAGE
IMMEDIATE
USER

registerInterest(AudioClipOwner owner): void
deregisterInterest(AudioClipOwner owner): void
stream(in long maxChunkSize,
 in AudioPushConsumer consumer:void
)factory createAudioClip(Identifier,
 AudioClipManager):HARMessageAudioClip

Identifier m_audioClipID
AudioClipManager m_clipMgr

HARSlotNumber m_slotNumber
HARMessageClip m_slotMessageClip
HARSlotUsageIndicator m_slotUsageIndicator

getMessageText():string
setMessageText(string):void
stream(in AudioDataFormat format,
 in long maxChunkSize,
 in TTSPriority priority,
 in AudioPushConsumer consumer):void
factory createTextClip(string text):HARMessageTextClip

string m_messageText

getDescription():string
setDescription(string):void
getVoiceSeconds():long
setVoiceSeconds(long voiceSeconds):void
matches(HARMessageClip): boolean

string m_description
long m_voiceSeconds

getSlotNumber():HARSlotNumber
setSlotNumber(HARSlotNumber):void
stream(in AudioDataFormat format,
 in long maxChunkSize,
 in TTSPriority priority,
 in AudioPushConsumer consumer):void
factory createPrestoredClip():HARMessagePrestoredClip

HARSlotNumber m_slotNumber
Identifier m_harID

Figure 5-228. HARControl (Class Diagram)

5.18.1.10.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the

queue determines which message(s) should be on the device, based upon the priority of the

queue entries. When entries are added to the queue, they are assigned a priority level based

on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are

CHART R3B3 Detailed Design 5-366 12/23/2008

added to the queue. The queue is evaluated when the device is online and queue entries are

added or removed, when an entry's priority is modified, or when the device is put online.

5.18.1.10.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a

single traffic event. (It is possible, in the case of HARNotifierArbQueueEntry objects, that

certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In such cases, one

TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in

m_indicator, the ArbQueueEntryIndicator for the entry.)

5.18.1.10.3 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties

interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be

deleted.

5.18.1.10.4 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.18.1.10.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.18.1.10.6 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to

broadcast traffic related information over a localized radio transmitter, making the

information available to the traveler. This interface contains methods for getting and

setting configuration, getting status, changing communications modes of a HAR, and

manipulating and monitoring the HAR in maintenance and online modes.

5.18.1.10.7 HARArbQueueEntry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a

traffic event. This entry also specifies the HARMessageNotifiers to be activated when the

message is activated.

CHART R3B3 Detailed Design 5-367 12/23/2008

5.18.1.10.8 HARConfiguration (Class)

This class (struct) contains configuration data for a HAR device. It is used to transmit

current configuration data from the HAR to the client, and to transmit proposed new

configuration data from the client to the HAR. It is also used internally by the HARService

to maintain its configuration in memory, and is used to transmit configuration data to/from

the HAR to the HARControlDB database interface class. Device Location member has

been modified for R3B3. Now it contains a detailed location information.

5.18.1.10.9 HARConfigurationEventInfo (Class)

This class defines data (HARConfiguration, and HAR ID and reference) pushed with a

HARConfigurationChanged and HARAdded CORBA event.

5.18.1.10.10 HAREventType (Class)

This enumeration defines the types of CORBA events that are pushed on a HARControl

event channel.

5.18.1.10.11 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a

requester to acquire a list of HAR objects under the domain of the specific HARFactory

object.

5.18.1.10.12 HARList (Class)

The HARList class is a collection of HAR objects.

5.18.1.10.13 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR. It stores

the HAR message as a HAR message header, body and footer. The HARMessage can be

configured to use the default header or can provide a custom header clip. The trailer can be

specified to use the default trailer, or no trailer, or a custom trailer clip can be provided.

The body can consist of one or more body clips. Users must specify one and only one body

clip, but the HAR Service can combine messages for broadcast as a single combined

message on a HAR, up to a maximum run length.

5.18.1.10.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is

passed around the system, wherever possible instead of passing the actual voice data

contained in the initial HARMessageAudioDataClip. When the actual voice data is needed

to play to the user or to program the HAR device, this object's streamer is used to stream

the actual voice data back to an AudioPushConsumer specified by the requester.

CHART R3B3 Detailed Design 5-368 12/23/2008

5.18.1.10.15 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data.

Because audio data can be very large, this type of clip is reserved for use when recorded

voice is first entered into the system. Recorded voice that already exists in the system is

passed throughout the system using HARMessageAudioClip to avoid sending the large

audio data when possible. A HARMessageAudioClip can stream the associated data back

to an audio consumer when needed, by contacting its AudioClipManager.

5.18.1.10.16 HARMessageClip (Class)

This class represents a section of a HAR message. A HARMessage typically contains one

to three clips: a body plus an optional header and optional trailer. A combined

HARMessage which is stored on (broadcast from) a HAR can one or more clips, an

optional header, optional trailer, and one or more body clips. See HARMessage for details.

A HARMessageClip can be either plain text which would need to be converted to audio

prior to broadcast, or audio (WAV) format, or it can refer to a clip which is prestored in a

specific target HAR already. Audio clips are normally passed around as lightweight

HARMessageAudioClips, which are created from HARMessageAudioDataClips typically

at the point where the HARMessageAudioClip first enters a server.

5.18.1.10.17 HARMessageClipList (Class)

The HARMessageClipList is a collection of HARMessageClip objects. It is used to specify

multiple clips contained in the body of a HARMessage. While a HARMessage specified by

a user can contain only one body clip, a HARMessage generated by the HAR Service can

contain multiple body clips, as a result of combining more than one message into a single

message for download to and broadcast by a HAR.

5.18.1.10.18 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

5.18.1.10.19 HARMessageNotifierList (Class)

This class defines a list of HARMessageNotifierStruct objects.

5.18.1.10.20 HARMessageNotifierStruct (Class)

This class (struct) defines structure used for specifying a HARMessageNotifier, containing

the notifier's ID and reference.

CHART R3B3 Detailed Design 5-369 12/23/2008

5.18.1.10.21 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a

specific HAR device.

5.18.1.10.22 HARMessageTextClip (Class)

This class represents a HAR message content object which is in plain text format. This

message can be checked for banned words and will be converted into a voice message using

a speech engine, for downloading to a HAR device or to preview the voice audio to a user.

5.18.1.10.23 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

5.18.1.10.24 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a

command to put a message on a HAR when executed. When the item is executed, it adds

an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue.

When the item's execution is revoked, or the item is removed from the response plan

(manually or implicitly through closing the traffic event) the item asks the HAR to remove

the entry. The HARRPIData object also allows specification of a subset (0 to all) of the

HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if

and while the message is being broadcast on the HAR.

5.18.1.10.25 HARSlotData (Class)

This struct defines the data used to identify the contents and usage of a slot in the HAR

controller.

5.18.1.10.26 HARSlotDataList (Class)

The HARSlotDataList class is simply a collection of HARSlotData objects.

5.18.1.10.27 HARSlotNumber (Class)

The HARSlotNumber is an integer used to specify slot numbers on a HAR controller.

5.18.1.10.28 HARSlotUsageIndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

5.18.1.10.29 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data

contained in this class is that status information which can be transmitted from the HAR to

the client as necessary. This struct is also used to within the HAR Service to transmit data

to/from the HARControlDB database interface class. (The HAR implementation also

contains other private status data elements which are not elements of this class.)

CHART R3B3 Detailed Design 5-370 12/23/2008

5.18.1.10.30 HARStatusEventInfo (Class)

This class contains data (HARStatus) that is pushed when the HARStatusChanged CORBA

event is pushed on the HARControl event channel.

5.18.1.10.31 Message (Class)

This class represents a message that will be used while activating devices. This class

provides a means to check if the message contains any banned words given a Dictionary

object. Derived classes extend this class to provide device specific message data.

5.18.1.10.32 ResponsePlanItemTarget (Class)

This interface represents an object that can be a target of a response plan item.

5.18.1.10.33 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

5.18.1.10.34 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

5.18.1.10.35 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains

attributes such as category and message description which are used to allow the user to

organize messages.

5.18.1.10.36 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-371 12/23/2008

5.18.1.11 HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message

notifications. The HAR notifiers can be SHAZAMs or DMS devices that are acting as

SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from overwriting another

type of DMS message.

R3B3
Modified m_location

MODIFIED FOR R3B3.
setLocation() is new.
setConfiguration() to ignore Location changes.

*

HARMessageNotifier

«interface»

SHAZAM

«interface»

CommEnabled

«interface»

GeoLocatable

«interface»

SharedResource

«interface»

UniquelyIdentifiable

«interface»

SHAZAMStatusChangeEventInfo

«typedef»
SHAZAMConfigurationEventInfo

«typedef»
SHAZAMEventType

«enumeration»

Identifier

HARMsgNotifier IDList

«typedef»

SHAZAMStatus

«typedef»

SHAZAMConfiguration

«typedef»

SharedResourceManager

«interface»

SHAZAMFactory

«interface»

DMSFactory

«interface»

1

*

1

*

11 1 1

1 *

*

getControllingOpCenter():OpCenterInfo
getOwnerOrgID():Identifier

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putInMaintenanceMode(AccessToken, CommandStatus):void
getCommMode() :CommunicationMode

createSHAZAM(AccessToken,
 SHAZAMConfiguration) : SHAZAM
getSHAZAMList():SHAZAMList

boolean m_activated
CommunicationMode m_commMode
OperationalStatus m_opStatus
OpcenterInfo m_controllingOpCenter
long m_lastContactTime
long m_lastStatusChangeTime

SHAZAMAdded
SHAZAMRemoved
SHAZAMStatusChanged
SHAZAMConfigurationChanged

getLocationDesc():string
getLocationProfileles()
LocationProfile[] ()

SHAZAM theSHAZAM
Identifier id;
SHAZAMConfiguration config

setBeaconsOn(AccessToken, CommandStatus):void
setBeaconsOff(AccessToken, CommandStatus):void
refresh(AccessToken, CommandStatus):void
setConfiguration(AccessToken, SHAZAMConfiguration, CommandStatus)
getConfiguration(AccessToken) : OnOffDeviceConfiguration
getStatus() : SHAZAMStatus
remove(AccessToken):void
setLocation(token:AccessToken, location:ObjectLocation):void

getID()
getName()

Identifier id
SHAZAMStatus status

activateHARNotice(AccessToken, ArbQueueEntryIndicator,
 TrafficEventList, CommandStatus):void
deactivateHARNotice(AccessToken, boolean onlineFlag,
 CommandStatus):void
modifyHARNotice(AccessToken, TrafficEventList): void
isHARNoticeActive() : boolean
setAssociatedHAR(AccessToken, HAR, Identifier harID):void
getAssociatedHAR() : HAR
getDirection():DirectionValues
setDirection(Direction):void

string m_name
ObjectLocation m_location
Identifier owningOrgID
string m_messageText
Direction m_direction
string m_devicePhoneNumber
string m_deviceAccessCode
PortLocationData m_portLocationData
long m_refreshIntervalMins
boolean m_refreshEnabled
NetworkConnectionSite m_networkConnectionSite
Identifier m_associatedHARID
Identifier m_associatedHARID

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

Figure 5-229. HARNotification (Class Diagram)

5.18.1.11.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.18.1.11.2 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the

Chart II system. It also provides a method to get a list of DMS devices currently in the

system.

CHART R3B3 Detailed Design 5-372 12/23/2008

5.18.1.11.3 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.18.1.11.4 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that

can be used to notify the traveler to tune in to a radio station to hear a traffic message being

broadcast by a HAR. A HARMessageNotifier is directional and allows users of the device

to better determine if activation of the device is warranted for the message being broadcast

by the HAR. This interface can be implemented by SHAZAM devices and by DMS

devices which are allowed to provide a SHAZAM-like message.

5.18.1.11.5 HARMsgNotifierIDList (Class)

This typedef is a sequence of HARMessageNotifier identifiers.

5.18.1.11.6 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

5.18.1.11.7 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

center responsible for the disposition of the resource while the resource is in use.

5.18.1.11.8 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

5.18.1.11.9 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to

interface with a SHAZAM field device. It specifies methods for activating and deactivating

the SHAZAM in maintenance mode, refreshing the SHAZAM (commanding the device to

its last known status), changing the configuration of the SHAZAM, and removing the

SHAZAM. This interface is implemented by a SHAZAMImpl class, which uses a helper

ProtocolHdlr class to perform the model specific protocol for device command and control.

CHART R3B3 Detailed Design 5-373 12/23/2008

5.18.1.11.10 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to

communicate configuration information to/from the database, and to/from the GUI clients.

The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the

configuration of an existing SHAZAM.Device Location member has been modified for

R3B3. Now it contains a detailed location information.

5.18.1.11.11 SHAZAMConfigurationEventInfo (Class)

This class contains data (a SHAZAMConfiguration object) that is pushed on the

SHAZAMControl CORBA event channel with a SHAZAMConfigurationChanged or

SHAZAMAdded event type.

5.18.1.11.12 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control

event channel.

5.18.1.11.13 SHAZAMFactory (Class)

The SHAZAMFactory class specifies the interface to be used to create SHAZAM objects

within the Chart II system. It also provides a method to get a list of SHAZAM devices

currently in the system.

5.18.1.11.14 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store

status within the SHAZAM object, and is also used to communicate configuration

information to/from the database, and to the GUI clients (one-way).

5.18.1.11.15 SHAZAMStatusChangeEventInfo (Class)

This class contains data (a SHAZAMStatus object) that is pushed on a SHAZAMControl

event channel with a SHAZAMStatusChanged event.

5.18.1.11.16 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-374 12/23/2008

5.18.1.12 MessageTemplateManagement (Class Diagram)

M essageTemplateFormats

«s truc t»

1

1

0 ..1

0 ..1

0 ..1

1

1

TollRateFormat

«s truc t»

TollRateTimeFormat

«s truc t»

0 ..1

0..1

0..1

TravelTimeFormat

«s truc t»

1

1

1

1

DistanceFormat

«s truc t»

1

0 ..*0 ..*0 ..*0 ..*

M essageTemplateAlignment

«enum era ti on»0 ..1

1

0..1

TravelTimeRangeFormat

«s truc t»

Identifie r

1

M essageTemplateFactory

«interfac e»

DM STrav InfoM sgTemplateConfig

«s truc t»

DM STrav InfoM sgTemplate

« in te rfac e»

DM STrav InfoM sgTemplate Info

«s truc t»

1

1

0..*1

M sgTemplateTagConstants

« interfac e»

Uniquely Identifiable

« in te rfac e»

1

1

0..*

0 ..1

0 ..1

1

1 1
DM STrav InfoM s gTem pla teAdded

1

1

M es s ageTem pla teRem ov ed

DM STrav InfoM s gTem plateConfigChanged

M essageTemplateEventType

«enum era ti on»

M essageTemplateEvent

«union»

0 ..*
RouteM issingDataOption

«enum eration»

11

1

1

1

1

des tTag :s tring "DEST"
tv lTim eTag:s tring "TT"
rangeTag:s tring "TTRANGE"
to l lTag:s tring "TR"
di s tanc eTag:s tring "DISTANCE"
to l lRa teTim eTag:s tring "TRTIM E"
tagOpen:s tring "<"
tagClos e:s tring ">"

i d:Iden ti fie r
nam e:s tring
form atString :s tri ng
ex am ple :s tring
l eng th :in t
hours Sta rtIndex :in t
hours EndIndex :in t
m ins Sta rtIndex :in t
m ins EndIndex :i nt
am PM StartIndex :i nt
am PM EndIndex :in t

c reateDM STrav In foM s gTem pla te (tok en :(tok en: Ac c es s Tok en ,
 c onfig :DM STrav InfoM s gTem pla teConfig) :DM STrav InfoM s gTem pla te In fo ()
getDM STrav In foM s gTem plates (tok en: Ac c es s Tok en):DM STrav InfoM s gTem pla te In fo []
getTo l lRa teTim eForm ats (tok en : Ac c es s Tok en):To l lRa teTim eForm at[]
getTrav e lTim eForm ats (tok en : Ac c es s Tok en):Trav e lTim eForm at[]
getTrav e lTim eRangeForm ats (tok en: Ac c es s Tok en):Trav e lTim eRangeForm at[]
getTo l lRa teForm ats (tok en: Ac c es s Tok en):Tol lRateForm at[]
getDi s tanc eForm ats (tok en : Ac c es s Tok en):Dis tanc eForm at[]
getConfig (tem p la te Id) :DM STrav InfoM s gTem pla teConfig

id :Identi fi er
nam e:s tri ng
fo rm atStri ng :s tring
ex am ple:s tring
leng th :i nt
hours StartIndex :i nt
hours EndIndex :in t
s uppres s Hrs LeadZeros :boolean
m ins Sta rtIndex :in t
m ins EndIndex :in t
s uppres s M inLeadZeros :boo lean
s tartHRIndex :in t
endHRIndex :i nt
s uppres s HRLite ra l :boo lean
c olon Index :in t
s uppres s Co lon :boo lean

id :Identi fi er
nam e:s tri ng
fo rm atStri ng :s tring
ex am ple:s tring
leng th :i nt
lowStartIndex :in t
lowEndIndex :in t
h ighSta rtIndex :in t
h ighEndIndex :i nt
s uppres s LeadingZeros :boolean

tem p la te Id : Iden ti fie r
tem p la teConfi g:DM STrav In foM s gTem plateConfig
tem p la teRef: DM STrav In foM s gTem pla te

ge tConfi g(tok en : Ac c es s Tok en) :
 DM STrav In foM s gTem plateConfig
s e tConfi g(tok en : Ac c es s Tok en ,
 c onfig : DM STrav In foM s gTem plateConfi g) : v o id
rem ov e(tok en : Ac c es s Tok en) :v o id ()

DM S_TRAV_INFO_M SG_TEM PLATE_ADDED
DM S_TRAV_INFO_M SG_TEM PLATE_CONFIG_CHANGED
DM S_TRAV_INFO_M SG_TEM PLATE_REM OVED

id :Iden ti f ier
nam e:s tring
fo rm atString :s tring
ex am ple :s tring
length:in t
dol la rs StartIndex :in t
dol la rs EndIndex :in t
c en ts Sta rtIndex :i nt
c en ts EndIndex :in t
dol la rSignIndex :i nt
s uppres s Do l l arSign :boolean
s uppres s LeadingZeros InDol la r:
 boo lean

id :Iden ti f ier
nam e:s tring
fo rm atString :s tring
ex am ple :s tring
length:in t
m i l es Sta rtIndex :i nt
m i l es EndIndex :in t
ten ths Sta rtIndex :in t
ten ths EndIndex :i nt
s uppres s LeadingZeros IfNoM il es :
 boo lean

tem p la teDes c ri ption:s tring
num Rows :in t
num Columns :in t
num Pages :in t
tem p la teMes s age:s tring
m es s ageTem pla teForm ats :M es s ageTem plateForm ats
des tTagAl ignm ent:M es s ageTem pla teAl ignm ent
m is s ingDataOption :RouteM is s ingDataOpti on

d is c rim ina to r :M es s ageTem pla teEv entTy pe
m s gTem plateInfo : DM STrav In foM s gTem plateInfo
m s gTem plateRem ov edId : Iden ti f ie r

Iden ti fie r(by te [] c hartID)
equal s (Ob jec t ob j)
has hCode()
by te [] getID()

m _id

trav e lTim eForm at:Trav elTim eForm at
trav e lTim eRangeForm at:Trav e lTim eRangeForm at
to l lRa teForm at:To l lRa teForm at
to l lRa teTim eForm at:To l lRa teTim eForm at
rou teLengthForm at:Dis tanc eForm at

RTE_M ISSING_DATA_DISGARD_M SG
RTE_M ISSING_DATA_DISGARD_PAGE
RTE_M ISSING_DATA_DISGARD_ROW

M SG_TEM P_ALIGN_LEFT
M SG_TEM P_ALIGN_CENTER
M SG_TEM P_ALIGN_RIGHT

Figure 5-230. MessageTemplateManagement (Class Diagram)

5.18.1.12.1 DistanceFormat (Class)

This object contains the data for a distance format in the CHART DB.

5.18.1.12.2 DMSTravInfoMsgTemplate (Class)

The DMSTravlInfoMsgTemplate interface is implemented by objects that allow execution

of tasks associated with DMS travel information message templates.

5.18.1.12.3 DMSTravInfoMsgTemplateAdded (Composition)

5.18.1.12.4 DMSTravInfoMsgTemplateConfig (Class)

This object contains the configuration data for a message template that represents a

DMSTravlInfoMsgTemplate in the CHART DB

CHART R3B3 Detailed Design 5-375 12/23/2008

5.18.1.12.5 DMSTravInfoMsgTemplateInfo (Class)

This struct contains a DMS travel information message configuration and a CORBA

reference to the DMS travel information message template object.

5.18.1.12.6 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

5.18.1.12.7 MessageTemplateAlignment (Class)

This IDL enumeration defines the message template alignment options supported in the

DMSTravlInfoMsgTemplateConfig. These can either be align left, align center or align

right.

5.18.1.12.8 MessageTemplateEvent (Class)

This union identifies the data to be passed with events that are pushed through the CORBA

event service in relation to message templates.

5.18.1.12.9 MessageTemplateEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the

MessageTemplateModule. These can either be DMS message Created, Changed, or

Removed.

5.18.1.12.10 MessageTemplateFactory (Class)

Interface whose implementation is used to create message templates, retrieve travel

information message templates and retrieve travel time and toll rate formats.

5.18.1.12.11 MessageTemplateFormats (Class)

This structure contains all travel time and toll rate format that are specified within a given

DMSTravInfoMsgTemplate.

5.18.1.12.12 MsgTemplateTagConstants (Class)

The MesssageTemplateTagConstants interface contains constants that are used to define

tags used to create DMS travel information message templates.

5.18.1.12.13 RouteMissingDataOption (Class)

This IDL enumeration defines the route missing data options supported in the

DMSTravlInfoMsgTemplateConfig. These can either be discard row, discard page or

discard row.

CHART R3B3 Detailed Design 5-376 12/23/2008

5.18.1.12.14 TollRateFormat (Class)

This object contains the data for a toll rate format in the CHART DB.

5.18.1.12.15 TollRateTimeFormat (Class)

This object contains the data for a toll rate time format in the CHART DB.

5.18.1.12.16 TravelTimeFormat (Class)

This object contains the data for a travel time format in the CHART DB.

5.18.1.12.17 TravelTimeRangeFormat (Class)

This object contains the data for a travel time range format in the CHART DB.

5.18.1.12.18 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-377 12/23/2008

5.18.1.13 ResourceManagement (Class Diagram)

This class diagram contains the interfaces pertaining to shared resources, operations centers,

user login sessions, and organizations.

1

1*

1 *

11

*

*

**

MODIFIED FOR R3B3.

Added owningOrganization

1

OpCenterStatus2

«datatype»

*

1

ResponseParticipantList

«typedef»

*

1

TransferableResourceList

«typedef»

* 1

UsersLoggedIn

«exception»

OperationsCenterList

«typedef»

*1

OpCenterConfiguration

«datatype»

OpCenterConfigInfo

«typedef»

1

1

ResponseParticipantEventInfo

«typedef»

SharedResource

«interface»

TransferableSharedResource

«interface»

LogoutFailure

«exception»

LoginFailure

«exception»
ResourceControlConflict

«exception»

HasControlledResources

«exception»

Organization

«interface»

UnhandledControlledResourcesInfo

«typedef»

ResponsePar ticipant

«typedef»

ResponsePar ticipantType

«enumeration»

OpCenter Info

«typedef»

SharedResourceList

«typedef»

LoginSessionList

«typedef»

ResourceEventType

«enumeration»

UniquelyIdentifiable

«interface»

OperationsCenter

«interface»

OperationsCenterFactory

SharedResourceManager

«interface»

UserLoginSession

«interface»

InvalidOperationsCenter

«exception»

1 *

getOperationCenters():OpCenterList
createOperationsCenter(
 AccessToken token,
 OpCenterConfiguration config):
 OperationsCenter

loginUser(UserLoginSession loginSession,
 UserName name,
 string password,
 string hostname):AccessToken
logoutUser(AccessToken token,
 UserLoginSession loginSession):void
changeUser(AccessToken token,
 UserLoginSession oldSession,
 UserLoginSession newSession,
 UserName userName,
 string password):AccessToken
getControlledResources():SharedResourceList
getLoginSessions(AccessToken token):LoginSessionList
forceLogout(AccessToken token,
 UserLoginSession loginSession):void
isUserLoggedIn(UserName userName):boolean
sUserLoggedInWithRight(right : FunctionalRight) : boolean
isAnyUserLoggedInWithAnyRights(rights : FunctionalRight[]) : boolean
isAnyOneUserLoggedInWithAllRights(rights : FunctionalRight[]) : boolean
getNumLoggedInUsers():long
transferSharedResources(AccessToken token,
 TransferableSharedResourceList resources,
 OperationsCenter targetOpCenter):void
verifyUserPassword(UserName userName,
 string password):boolean
getConfiguration() : OpCenterConfiguration
getStatus() : OpCenterStatus
getAllSystemResponseParticipants() : ResponseParticipant[]
getEligibleResponseParticipants(
 ResponseParticipantType type) :
 ResponseParticipant[]
addEligibleResponseParticipant(AccessToken token,
 ResponseParticipant participant) :void
removeEligibleResponseParticipant(AccessToken token,
 ResponseParticipant participant) :void
remove(AccessToken token):void
setConfiguration(AccessToken token,
 OpCenterConfiguration config):void

getID()
getName()

TYPE_UNSPECIFIED
TYPE_AGENCY
TYPE_RESOURCE
TYPE_SPECIAL_NEEDS
TYPE_CHART_UNIT

getControllingOpCenter():OpCenterInfo
getOwnerOrgID():Identifier

string m_name
ResponseParticipantType m_type

void setControllingOpCenter(AccessToken token,
 OpCtrInfo opCtrInfo)

getResources() : SharedResourceList
getControlledResources(Identifier opCtrID) : SharedResourceList
hasControlledResources(Identifier opCtrID) : boolean

string m_opCtrName
defaultMonitorGroup : Identifier
backupOpCenters : Identifier[]
owningOrganization : Identifier

numLoggedInUsers : int
allUsersRightsUnion : FunctionalRight[]

getOpCenter():OperationsCenter
getUsername():UserName
ping():boolean
void forceLogout(AccessToken token)

UnhandledControlledResourcesEvent
ResponseParticipantAdded
ResponseParticipantRemoved
OpCenterAdded
OpCenterRemoved
OpCenterConfigChanged

string reason

Identifier opCtrID
OpCenterConfiguration config

string reason

Identifier opCtrID
ResponseParticipant participant

string reason
string controllingOpCenterName

OpCenterInfo opCtrInfo

string reason string reason

Identifier m_id
string m_name

string reason

Figure 5-231. ResourceManagement (Class Diagram)

5.18.1.13.1 HasControlledResources (Class)

This class represents an exception which describes a failure caused when the user tries to do

CHART R3B3 Detailed Design 5-378 12/23/2008

something which requires that no resources be controlled, yet the Operations Center which

the user is logged in to is still controlling one or more shared resources.

5.18.1.13.2 InvalidOperationsCenter (Class)

Exception which describes a failure caused when the operations center specified is not valid

for the attempted operation.

5.18.1.13.3 LoginFailure (Class)

This class represents an exception which describes a login failure.

5.18.1.13.4 LoginSessionList (Class)

A LoginSessionList is simply a collection of UserLoginSession objects.

5.18.1.13.5 LogoutFailure (Class)

This exception is thrown when an error occurs while logging a user out of the system.

5.18.1.13.6 OpCenterConfigInfo (Class)

This structure contains information pertaining to a change in the configuration of an

operations center.

5.18.1.13.7 OpCenterConfiguration (Class)

This structure contains the configuration data for an operations center.

5.18.1.13.8 OpCenterInfo (Class)

This structure contains the information about an OperationsCenter.

5.18.1.13.9 OpCenterStatus2 (Class)

The actual name of this class is OpCenterStatus. It represents the status of an operations

center. This class was introduced for R3B1 to transmit status of operations centers from the

Resource Manger serving it to other intereested parties. The data stored in the

OpCenterStatus includes the number of users currently logged into the center and the union

of all functional rights held by all users currently logged into that center.

5.18.1.13.10 OperationsCenter (Class)

The OperationsCenter represents a center where one or more users are located. This class is

used to log users into the system. If the username and password provided to the loginUser

method are valid, the caller is given a token that contains information about the user and the

functional rights of the user. This token is then used to call privileged methods within the

system. Shared resources in the system are either available or under the control of an

OperationsCenter. The OperationsCenter keeps track of users that are logged in so that it

can ensure that the last user does not log out while there are shared resources under its

CHART R3B3 Detailed Design 5-379 12/23/2008

control. This list of logged in users is also available for monitoring system usage or to

force users to logout for system maintenance.

5.18.1.13.11 OperationsCenterFactory (Class)

This class is used to create new operations centers and maintain them in a collection.

5.18.1.13.12 OperationsCenterList (Class)

This represents a collection of OperationsCenter objects.

5.18.1.13.13 Organization (Class)

The Organization interface extends the UniquelyIdentifiable interface and will represent an

organization, that is an administrative body which can control or own resources.

5.18.1.13.14 ResourceControlConflict (Class)

This exception is thrown when attempt to gain control of a shared resource fails because the

resource is under the control of a different operations center and the requesting user does

not have the functional right to override the restriction.

5.18.1.13.15 ResourceEventType (Class)

The ResourceEventType enumeration defines all of the resource related event types.

5.18.1.13.16 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in

a response.

5.18.1.13.17 ResponseParticipantEventInfo (Class)

This structure contains information about an eligible response participant that is added to an

operations center.

5.18.1.13.18 ResponseParticipantList (Class)

This represents a collection of ResponseParticipant objects.

5.18.1.13.19 ResponseParticipantType (Class)

The ResponseParticipantType enumeration defines a type of entity participating in a

response to an event. This could be an external organization, a mobile unit, a mobile device

or special purpose vehicle, or a special needs vehicle equipped to handle unusual or

hazardous situations.

5.18.1.13.20 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations

CHART R3B3 Detailed Design 5-380 12/23/2008

center responsible for the disposition of the resource while the resource is in use.

5.18.1.13.21 SharedResourceList (Class)

A SharedResourceList is simply a collection of SharedResource objects.

5.18.1.13.22 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared

resources. Implementing classes must be able to provide a list of all shared resources under

their management. Implementing classes must also be able to tell others if there are any

resources under its management that are controlled by a given operations center. The

shared resource manager is also responsible for periodically monitoring its shared resources

to detect if the operations center controlling a resource doesn't have at least one user logged

into the system. When this condition is detected, the shared resource manager must push an

event on the ResourceManagement event channel to notify others of this condition.

5.18.1.13.23 TransferableResourceList (Class)

This represents a collection of transferable shared resources.

5.18.1.13.24 TransferableSharedResource (Class)

The TransferrableSharedResource interface extends the SharedResource interface, which is

implemented by SharedResource objects whose control can be transferred from one

operations center to another.

5.18.1.13.25 UnhandledControlledResourcesInfo (Class)

The UnhandledControlledResourcesEvent class is an event pushed when it is detected that

an OperationsCenter is controlling one or more controlled resources but has no users logged

in.

5.18.1.13.26 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.18.1.13.27 UserLoginSession (Class)

The UserLoginSession CORBA interface is used to store information about a user that is

logged into the system. This object is served from the GUI and provides a means for the

servers to call back into the GUI process.

5.18.1.13.28 UsersLoggedIn (Class)

This exception is thrown if an attempt is made to remove the operations center when users

are logged in.

CHART R3B3 Detailed Design 5-381 12/23/2008

5.18.1.14 TSSManagement (Class Diagram)

This class diagram contains the interfaces, structs, and typedefs that are to be defined in

IDL and provide the external interface to the TSSManagement package of the CHART II

system.

discriminator
equals

CurrentStatus

Mode
Changed

OpStatus
Changed

discriminator
equals

ConfigChanged

discriminator
equals

ObjectAdded

discriminator
equals

ObjectRemoved

MODIFIED FOR R3B3.
setLocation() is new.
setConfiguration() to ignore Location changes.

ExternalTSS

«interface»

ExternalTSSFactory

«interface»
ExternalTSSConfiguration

«typedef»

NEW FOR R3B3

NEW FOR R3B3.

ZoneTrafficParms

«struct»

MODIFIED FOR R3B3
.
Add zone level
Traffic Parameters.

*

SpeedRange

«struct»

MODIFIED FOR R3B3:

Changed location from
String to ObjectLocation
object.
PortLocationData is an array
with 0 or 1 element.
IPPortLocationData is an
array with 0 or 1 element.

1

1*

1

1

discriminator
equals

ConfigChanged

1

1

communicates to
field device with

1 1

acquires port
using

RTMSFactory

«interface»

Transpor tationSensorSystemFactory

«interface»

Transpor tationSensorSystem

«interface»

CommEnabled

«interface»

UniquelyIdentifiable

«interface»

Por tManagerCommsData

«typedef»

PortLocationData

«typedef»

1

1 1

*

1 1

1

1

*

*

1

1

1

1

1

Mode
Changed

1

1

returns TSS objects in
list using

1

1

1

1

1

1 1

1

1

1

1

*

1

pushes
updates
within

1

*

1

1

OpStatus
Changed

*

1 discriminator
equals

ObjectAdded

NEW FOR R3B3.

MODIFIED FOR
R3B3:
Added average
speed and
speed range for
TSS.

1

1

discriminator
equals

ObjectRemoved

DirectionValues

«interface»

Direction

«typedef»

RTMS

«interface»

Identifier

TSSStatus

«typedef»

TSSEventType

«enumeration»

TSSEvent

«typedef»

TSSConfiguration

«typedef»

GeoLocatable

«interface»

DataPort

«interface»

PortManager

«interface»

OperationalStatus

«enumeration»
CommunicationMode

«enumeration»

TrafficParameters

«struct»

EVENT_CHANNEL_TSS_DATA

«type»

EVENT_CHANNEL_TSS_STATUS

«type»

ModeChangedEventInfo

«typedef»

OpStatusChangedEventInfo

«typedef»

ZoneGroupTrafficParms

«struct»

ZoneGroup

«typedef»

TSSListEntry

«typedef»

ObjectAddedEventInfo

«typedef»

1
*

discriminator
equals

CurrentStatus

1

1

*

1

MODIFIED FOR R3B3:

Added m_speedRange
to TrafficParameters. Note:
SpeedRange.m_beginSpeed
and m_endSpeed == NO_DATA
means no data available
summary or otherwise.

byte[] m_id
String m_name
ObjectLocation m_location
Identifier m_ownerOrg
int m_dropAddress
ZoneGroup[] m_zoneGroups
int m_pollIntervalSecs
CommPortConfig m_commPortCfg
PortLocationData m_portLocData[]
IPPortLocationData m_ipportLocData[]
boolean m_debugComms

int m_zoneGroupNum
string m_description
Direction m_direction
int[] m_zoneNumbers
int m_defaultSpeed

baseTSSConfig : TSSConfiguration
extID : Common.ExternalObjectIdentificationData

TransportationSensorSystem m_tss
TSSConfiguration m_config
TSSStatus m_status

discriminator():TSSEventType
configInfo():TSSConfiguration
statusInfo():TSSStatus
opStatusInfo():OpStatusChangedEventInfo
modeChangeInfo():ModeChangedEventInfo
objAddedInfo():ObjectAddedEventInfo
id():byte[]

getList():TSSListEntry[]
remove(byte[] token, byte[] id):void

getStatus():TSSStatus
getConfiguration(byte[] token):TSSConfiguration
setConfiguration(byte[] token, TSSConfiguration):void
remove(byte[] token);()
setLocation(token:AccessToken, location:ObjectLocation)
 :void

string

ObjectAdded
ObjectRemoved
CurrentStatus
ConfigChanged
ModeChanged
OpStatusChanged

string

TransportationSensorSystem m_tssRef
byte[] m_tssID

createRTMS(byte[] token, TSSConfiguration):RTMS

byte[] m_id
CommunicationMode m_mode

createExternalTSS(byte[] token, ExternalTSSConfiguration) :
 ExternalTSS

byte[] m_id;
ZoneGroupTrafficParms[] m_zoneGrpTrafficParms
int m_avgSpeed
SpeedRange m_speedRange
CommunicationMode m_mode;
OperationalStatus m_opStatus;
long m_trafficParameterTimestamp;

byte[] m_id
OperationalStatus m_opStatus

updateStatus(byte[] token, TSSStatus status)
updateZoneGroups(byte[] token, ZoneGroupTrafficParms[] data)

int m_zoneGroupNum
TrafficParameters m_trafficParms
ZoneTrafficParms[] m_zoneTrafficParms

int m_speedData;
int m_volumeData;
int m_percentOccupancy
SpeedRange m_speedRange;

int m_beginSpeed;
int m_endSpeed;

int m_zoneNum
TrafficParameters m_trafficParms

Figure 5-232. TSSManagement (Class Diagram)

CHART R3B3 Detailed Design 5-382 12/23/2008

5.18.1.15 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put

online, or put in maintenance mode through a standard interface. These states typically

apply only to field devices. When a device is taken offline, it is no longer available for use

through the system and automated polling (if any) is halted. When put online, a device is

again available for use by TrafficEvents within the system and automated polling is enabled

(if applicable). When put in maintenance mode a device is offline (i.e., cannot be used by

TrafficEvents), and maintenance commands appropriate for the particular type of device are

allowed to help in troubleshooting.

5.18.1.16 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE,

OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the

operational system. OFFLINE is used to indicate the device is not available to the online

system and communications to the device have been disabled. MAINT_MODE is used to

indicate that the device is available only for maintenance / repair activities and testing.

5.18.1.17 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type

support a receive method that allows a chunk of all available data to be received. This

method prevents callers from having to issue many receive calls to parse a device response.

Instead, this receive call returns all available data received within the timeout parameters.

The caller can then parse the data within a local buffer. Using this mechanism, device

command and response should require only one call to send and one call to receive.

5.18.1.18 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in

DirectionValues.

5.18.1.19 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

5.18.1.20 EVENT_CHANNEL_TSS_DATA (Class)

This is a static string that contains the name of the event channel used to push events that

contain Transportation Sensor System traffic parameter data. The following

TSSEventTypes are pushed on EVENT_CHANNEL_TSS_DATA channels:

CurrentStatus

CHART R3B3 Detailed Design 5-383 12/23/2008

5.18.1.21 EVENT_CHANNEL_TSS_STATUS (Class)

This is a static string that contains the name of the event channel used to push events

relating to the change in a Transportation Sensor System status and/or configuration. The

following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_STATUS channels:

ObjectAdded

ObjectRemoved

ConfigChanged

ModeChanged

OpStatusChanged

5.18.1.22 ExternalTSS (Class)

This interface represents an External Systems TSS in the Chart System. I.E. a proxy for a

physical TSS outside of Chart.

5.18.1.23 ExternalTSSConfiguration (Class)

This class holds configuration data for an ExternalTSS. It extends the TSSConfiguration

data by including a reference to the base TSSConfig.

baseTSSConfig - Refernce to the base TSSConfig.

extID - This objects holds the External System Name / Ext Agency / Ext id for this

Extenral TSS. This uniquely identifies it in Chart.

5.18.1.24 ExternalTSSFactory (Class)

This interface extends the TransportationSensorSystemFactory interface to allow support of

ExternalTSS objects in Chart.

5.18.1.25 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their

users.

5.18.1.26 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

CHART R3B3 Detailed Design 5-384 12/23/2008

5.18.1.27 ModeChangedEventInfo (Class)

This struct contains information pushed with a ModeChanged event.

m_id - The ID of the TSS whose communication mode has changed.

m_mode - The new communication mode for the TSS.

5.18.1.28 ObjectAddedEventInfo (Class)

This structure contains information passed in the ObjectAdded event pushed on a TSS

status event channel. It contains the object reference that has been added along with its

configuration values and current status values.

5.18.1.29 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have:

OK (normal mode), COMM_FAILURE (no communications to the device), or

HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

5.18.1.30 OpStatusChangedEventInfo (Class)

This struct contains data passed with an OpStatusChanged event.

m_id - The ID of the TSS whose operational status has changed.

m_opStatus - The new operational status for the device.

5.18.1.31 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to

communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager)

to use to communicate with the device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem,

POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to

acquire a port from a port manager.

5.18.1.32 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources.

The getPort method is used to request the use of a port from the PortManager. Requests for

ports specify the type of port needed, the priority of the request, and the maximum time the

requester is willing to wait if a port is not immediately available. When the port manager

returns a port, the requester has exclusive use of the port until the requester releases the port

CHART R3B3 Detailed Design 5-385 12/23/2008

back to the PortManager or the PortManager reclaims the port due to inactivity.

5.18.1.33 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to

access a device from the given port manager. This class exists to allow for the phone

number used to access a device to differ based on the port manager to take into account the

physical location of the port manager within the telephone network. For example, when

dialing a device from one location the call may be long distance but when dialing from

another location the call may be local.

5.18.1.34 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc.

capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a

roadway at a single location. This interface serves to identify TransportationSensorSystem

objects as being of the type RTMS. It also provides a place holder for future operations that

may not apply to TSS objects in general and are instead RTMS specific.

5.18.1.35 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

5.18.1.36 SpeedRange (Class)

This struct is used to specify a speed range. The speed range is defined in MPH and has an

upper and lower limint inclusive. Note: m_endSpeed of zero means range is >

m_beginSpeed. MPH is implied.

5.18.1.37 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor

System such as the RTMS.

m_speedData - The arithmetic mean of the speeds collected over a sample period in miles

per hour in tenths. (thus 550 == 55.0 MPH) Valid values are 0 to 2550. A value of 65535

is used to indicate a missing or invalid value (such as when the volume for the sample

period is zero).

m_volumeData - The count of vehicles for the sample period. Valid values 0 to 65535. A

value of 65535 represents a missing value.

m_percentOccupancy - The percentage of occupancy of the roadway in tenths of a percent.

(thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a

missing or invalid value.

CHART R3B3 Detailed Design 5-386 12/23/2008

5.18.1.38 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of

technology used for detection within the transportation industry. Examples of TSS devices

range from the advanced devices, such as RTMS, to basic devices, such as single loop

detectors.

This software interface is implemented by objects that provide access to the traffic

parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are

capable of providing detection for one or more detection zones. A single loop detector

would have one detection zone, while an RTMS would have 8 detection zones.

5.18.1.39 TransportationSensorSystemFactory (Class)

This interface is implemented by objects that are used to create and serve

TransportationSensorSystem (TSS) Objects. All factories of TSS objects can return the list

of TSS objects which they have created and serve. Derived interfaces are used to provide

factories to create specific make, models, and types of TransportationSensorSystem objects.

5.18.1.40 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to

the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of

traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic

parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should

be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this

TSS. When enabled, command and response packets exchanged with the device are logged

to a debugging log file.

CHART R3B3 Detailed Design 5-387 12/23/2008

5.18.1.41 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of

the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique

identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus

objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo

object.

5.18.1.42 TSSEventType (Class)

This enumeration defines the types of events that may be pushed on an event channel by a

Transportation Sensor Status object. The values in this enumeration are used as the

discriminator in the TSSEvent union.

ObjectAdded - a TransportationSensorSystem has been added to the system.

ObjectRemoved - a TransportationSensorSystem has been removed from the system.

CurrentStatus - The event contains the current status of one or more Transportation Sensor

System objects.

ConfigChanged - One or more configuration values for the Transportation Sensor System

have been changed.

ModeChanged - The communications mode of the TransportationSensorSystem has

changed.

OpStatusChanged - The operational status of the TransportationSensorSystem has changed.

5.18.1.43 TSSListEntry (Class)

This struct is used to pass a TransporationSensorSystem object together with its ID. This

struct is provided for convenience because when discovering an object, it is usually

required to make a call to the object's getID() method.

5.18.1.44 TSSStatus (Class)

This class holds current status information for a TSS as follows:

CHART R3B3 Detailed Design 5-388 12/23/2008

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation

Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data

was collected from the device.

m_avgSpeed - average speed at the detector leve.

m_speedRange - speed range at the detector level (avg speed).

5.18.1.45 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

5.18.1.46 ZoneGroup (Class)

This class is used to group one or more detection zones of a Transportation Sensor System

into a logical grouping. Traffic parameters for all detection zones included in the group are

averaged to provide a single set of traffic parameters for the group.

5.18.1.47 ZoneGroupTrafficParms (Class)

This struct contains traffic parameters for a ZoneGroup.

m_zoneGroupNumber - The number of the zone group for which the traffic parameters

apply.

m_trafficParms - The traffic parameter values for the zone group.

m_zoneTrafficParms - zone parms for each zone in the group.

5.18.1.48 ZoneTrafficParms (Class)

This struct contains traffic parameters for a Zone.

m_zoneNumber - The number of the zone for which the traffic parameters apply.

m_trafficParms - The traffic parameter values for the zone.

CHART R3B3 Detailed Design 5-389 12/23/2008

5.18.1.49 TrafficEventManagement (Class Diagram)

This class diagram contains all classes relating to Traffic Events

1

1

Tra fficEvent

«i nte rfac e»

LaneConfigurationList

« ty pedef»

Tra fficEventLis t

«ty pedef»

Lane

LaneTra fficFlowDirec tion

«enum erati on»

M ergeInfo

*

1

ResponsePlanItem

« interfac e»

ResponsePlanItemData

Organiz a tionPartic ipa tion

« interfac e»

1

M ODIFIED FOR R3B3 .

Added s e tLoc a tion()

1

*

1

1

MergeAction

«enum erati on»

AudioClipOwner

«in te rfac e»

EventInitiator

«un ion»

1

1

1

M ergeSection

«enumeration»

FUTURE.

1

*

*

MODIFIED FOR R3B3:

Added c rea teTra ffi c Ev entFromEx ternal Ev en t().

Inc ident

«i nte rfac e»

DisabledVehic leEvent

« in terfac e»

Specia lEvent

« in terfac e»

1

1

Tra fficEventFactory

« interfac e»

ResponsePlanItemLis t

« ty pede f»

LaneConfiguration

1

1

1

RoadwayEvent

« in terfac e»

WeatherServiceEvent

« in terfac e»

WeatherSensorEvent

« in terfac e»

PlannedRoadwayClosure

«i nte rfac e»

1

ActionEvent

« in terfac e»

ResponsePlanItemStatus

« ty pede f»

LaneType

«enumera tion»

DM SRPIData

CommandSta tus

«in te rfac e»

1

1

1

EntryOwner

« in terfac e»

SafetyM essageEvent

« in terfac e»

1

CongestionEvent

«in te rfac e»

LaneState

«enum erati on»

ResponseParticipationList

« ty pede f»

HARRPIData

1

*

*

*

1

1

1

LaneConfigReferenceDirec tion

«enumeration»

ResponsePartic ipa tion

«i nte rfac e»

1

*

ResourceDeployment

« in terfac e»

getName() : s tring
c reateTraffi c Ev ent(Ac c es s Tok en tok en , Ev entIni t iator :ev en tIi ni t iator,
 Traffic Ev entTy pe ty pe , Bas ic Ev entDa ta ev en tDa ta ,
 Res pons eParti c ipationDa ta [] partic ipantDa ta, Res pons ePl an ItemData[] rp iDa ta ,
 LogEn try [] in i ti alEntries , boolean c rea teAs Pend ing) : Traff ic Ev entCreationRes u l t
c reateEx terna lTraff ic Ev ent(Ac c es s Tok en tok en , Ev entIni tia tor :ev entI ini tia tor,
 Traffic Ev entTy pe ty pe , Bas ic Ev entDa ta ev en tDa ta ,
 Res pons eParti c ipationDa ta [] partic ipantDa ta, Res pons ePl an ItemData[] rp iDa ta ,
 LogEn try [] in i ti alEntries , boolean m ark As In te res ting) : Tra ffic Ev en tCrea tionRes ul t
c reateTraffi c Ev entFromEx ternal Ev en t(Ac c es s Tok en tok en, Ev en tIn i ti ato r :ev en tIin i tia to r,
 Traffic Ev entTy pe ty pe , Bas ic Ev entDa ta ev en tDa ta ,
 Tra ffic Ev en t as s oc iatedEv en t, Identi fie r as s oc ia tedEv en tId ,
 LogEn try [] i ni t ial En tries , bool ean m ark As Inte res ti ng) : Tra ffi c Ev entCreati onRes u l t
c reateTraffi c Ev entHel pe r(Ac c es s Tok en tok en, Ev en tIn i tia to r :ev entIin i tia to r,
 Traffic Ev entTy pe ty pe , Bas ic Ev entDa ta ev en tDa ta ,
 Res pons eParti c ipationDa ta [] partic ipantDa ta, Res pons ePl an ItemData[] rp iDa ta ,
 LogEn try [] in i ti alEntries , boolean c rea teAs Pend ing , boo lean c rea teAs Ex ternal ,
 boo lean m ark As Inte res ti ng) : Tra ffi c Ev entCreati onRes u l t
getTra ffi c Ev en ts ():Tra ffic Ev en tL is t
getStandardLaneConfigu ra tions ():LaneCon figurati onLis t
getEORSPerm i ts ():Perm itLis t

getTy pe() : Tra ffi c Ev entTy pe
addLogEntry () :v oid
addLogEntry WithStats () : v oid
addRes pons e Item() : v o id
addRes pons ePartic ipati on () :v od
as s oc iateEv ent() :v oi d
rem ov eEv entAs s oc ia tion() : v oi d
c los e() : v o id
ov e rrideClos u reTim e() : v o id
ex ec u teRes pons e() : v o id
getAs s oc ia tedEv en ts () : Iden ti fi er[]
getHis tory (f i l te r : LogFi l ter, m ax Coun t) : LogQuery Res u l ts
getRoadway Loc a tion() : Roadway Loc ati on
is Prim ary () : boo lean
s etPrim ary () : v o id
s etSec ondary () : v o id
getRes pons ePartic ipa tions () : Res pons ePartic i pant[]
getBas ic Ev en tDa ta () : Bas i c Ev entData
getRes pons ePlanItem s () : Res pons ePlanItem []
s etNam e() : v o id
s etSourc e() : v oi d
s etDirec tion () : v oid
s etDel ay Cleared () : v o id
s etFal s eAla rm () : v oid
s etLoc ation (tok en : Ac c es s Tok en ,
 loc a tion : Objec tLoc a tion) : v oid
s etNam eAndLoc ati on (tok en:Ac c es s Tok en ,boo lean is Ov erri dden ,
 theLoc a tion:Obj ec tLoc a tion):v oid
s etSc eneCl ea red () : v oid
s etCon fi rmed() : v o id
s etM ax QueueLeng th() :v oi d
ov e rrideSc eneCl ea redTi me() : v oid
ov e rrideDel ay ClearedTim e() : v o id
ov e rrideCon fi rmedTim e() : v o id
ov e rrideLogEn try Ti me() : v oid
rev ok eEx ec ution () : v oid
m ergeEv en t(tok en : Ac c es s Tok en , s rc Ev entID : Iden ti f ier,
 m ergeInfoLi s t : M erge InfoL is t,
 c om mandStatus : Com m andStatus) : v o id
openPending(Ac c es s Tok en, ini tia torTy pe : Ev entIni tia torTy pe ,
 in i tia to rId : Identi fie r) : v o id
dele tePend ing (Ac c es s Tok en) : v o id
s etEx ternal Interes ting (Ac c es s Tok en tok en, boolean fl ag):v oid

MergeSec tion s ec tion
MergeCom pl eti onv a lue v alue

ge tParti c ipationDa ta () : Res pons ePartic ipati onDa ta
s e tNo ti f ied (Ac c es s Tok en tok en ,
 boolean has BeenNoti fied) : v oi d
ov errideNo ti f ic a tionTim e(Ac c es s Tok en tok en ,
 Tim eStamp noti fic ati onTim e) : v o id
rem ov e(Ac c es s Tok en tok en) : v o id

M ERGE_USE_TARGET_DATA
M ERGE_USE_SOURCE_DATA
M ERGE_USE_UNION_OF_DATA

s e tRes pondedToEv ent(Ac c es s Tok en tok en ,
 boolean has Res ponded) : v o id
ov errideRes pondedTim e(Ac c es s Tok en tok en ,
 Tim eStamp res pondedTim e) : v oid

M ERGE_SECTION_BASIC_EVENT
M ERGE_SECTION_ROAD_CONDITION
INCIDENT_EVENT
INCIDENT_VEHICLES_INVOLVED
DISABLED_VEHICLES_TAG_AND_MAKE
DISABLED_VEHICLES_REASON
ACTION_EVENT
CONGESTION_EVENT
SPECIAL_EVENT
PLANNED_EVENT
WEATHER_EVENT
M ERGE_SECTION_ASSOCIATED_EVENTS
M ERGE_SECTION_PARTICIPANTS
M ERGE_SECTION_RESPONSE_PLAN

ge tTargetID():Iden ti f ier
ex ec ute(Ac c es s Tok en tok en):v o id
s e tItem Data (Ac c es s Tok en tok en ,
 Res pons ePlanItem Data data):v oi d
ge tItem Data (Ac c es s Tok en tok en):Res pons ePlan Item Data
is Ac tiv e():bool ean
has BeenEx ec u ted():bool ean
s e tState(Ac c es s Tok en tok en, Item Sta te rp iState):v oid
ge tDes c ri pti on ():s tri ng
s e tDes c ri pti on (Ac c es s Tok en tok en ,
 s tring des c ri pti on):v oid
is Us ingOb jec t(Identi fie r[] ob jec tIDs):boo lean
remov e(Ac c es s Tok en tok en):v o id
ge tItem Status ():Res pons ePlan Item Sta tus
rev ok eEx ec uti on (Ac c es s Ti k en tok en):v oid

getLaneCon figurati on ():LaneCon figurati on
s etLaneCon figurati on (Ac c es s Tok en tok en ,
 LaneConfi gu ration laneConfig)
ov e rrideLaneOpenClos eTim e(Ac c es s Tok en tok en ,
 Lane c hangedLane):v oid

s e tArriv edOnSc ene(Ac c es s Tok en tok en,
 bool ean has Arriv ed) : v o id
s e tDepartedFromSc ene(Ac c es s Tok en tok en,
 boo lean has Departed) : v oi d
ov errideArriv alTim e(Ac c es s Tok en tok en ,
 Tim eStamp a rriv al Tim e) : v oi d
ov errideDepartu reTim e(Ac c es s Tok en tok en ,
 Tim eStam pdepartureTi me) : v o id

dis c rim ina to r: Ev entIni tia torTy pe
us erIni t iator: Ev en tIn i ti ato rUs erDa ta
s c hedu leIUs ern i ti ato r : Ev en tIn i ti ato rSc heduleUs erDa ta

s etVeh ic leData(Ac c es s Tok en tok en,
 Inc i dentVeh ic leData v eh ic leData):v o id
s etTy pe(Ac c es s Tok en tok en ,
 Inc identTy pe ty pe):v oid
s etRoadCondi tions (Ac c es s Tok e tok en,
 RoadCondi tions Da ta roadCondi tions):v oid
ov e rrideLaneOpenClos eTim e(
 Ac c es s Tok en tok en ,
 long laneOffs etFrom Le ft,
 Tim eStam p tim eOpenedOrCl os ed):v oid

s tri ng las tKnownState
boo lean is Ac tiv e
boo lean has BeenEx ec u ted
boo lean m _m od ifi ed

NORTH
EAST
OUTER_LOOP

ge tTargetID():Iden ti f ier
is Ex ec utabl e() : boo lean
ex ec ute(Ac c es s Tok en tok en,
 Traffic Ev en t traff ic Ev t,
 Com m andStatus s tatus):v o id
rev ok eEx ec uti on (Ac c es s Ti k en tok en,
 Tra ffic Ev en t traff ic Ev t,
 Identi fie r i tem ID):v o id
is Us ingOb jec t(Identi fie r[] ob jec tIDs):bool ean
ge tVerbos eDes c ription (): s tring
ge tTraffic Ev en tTy pe(): in t
ge tTargetOwningOrg ID():Iden ti fi er

s tring m _des c rip tion
Iden ti fi er m_ ta rge tOwn ingOrgID
Iden ti fi er m_ ta rge tID
-in t m _ tra ffic Ev en tTy pe

getLanes ():Lane []

s tring m_c onfigu ra tionNam e
s tring m_c onfigu ra tionDes c ri pti on
Lane[] m _lanes
LaneCon figRe ferenc eDirec tion m _referenc eDir

LANE_OPEN
LANE_CLOSED
LANE_UNKNOWN
LANE_NOT_EXIST

is Rec urri ng(Ac c es s Tok en tok en)
s etRec urring (Ac c es s Tok e tok en ,
 boo lean is Rec urring):v o id

m _rec urring

PRIMARY
OPPOSITE
BIDIRECTIONAL
NONE

LaneState m _c urren tState
LaneTraff ic FlowDirec ti on m _di rec tionOfTrav el
Ti meStam p m_tim eSta teChanged
LaneTy pe m _ty pe
s tring m _des c rip tion
bool ean m _ori en tedSam eAs ConfigReferenc eDir

SHOULDER
TRAFFIC_LANE
COLLECTOR_DISTRIBUTOR
TUNNEL_LANE
TOLL_LANE
CENTER_TURN_LANE
RIGHT_ON_RAM P
RIGHT_OFF_RAM P
RIGHT_M ERGE_LANE
RIGHT_ACCELERATION_LANE
RIGHT_TURN_LANE
RIGHT_DECELERATION_LANE
LEFT_ON_RAMP
LEFT_OFF_RAM P
LEFT_ACCELERATION_LANE
LEFT_M ERGE_LANE
LEFT_TURN_LANE
LEFT_DECELERATION_LANE
DOUBLE_YELLOW_LINE
MEDIA

Figure 5-233. TrafficEventManagement (Class Diagram)

CHART R3B3 Detailed Design 5-390 12/23/2008

5.18.1.49.1 ActionEvent (Class)

This class models roadway events that require an operations center to take action but do not

fit well into the other event categories. An example of this type of event would be debris in

the roadway.

5.18.1.49.2 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties

interested in an audio clip. If no AudioClipOwners claim interest in a clip, the clip can be

deleted.

5.18.1.49.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of

the progress of a long-running asynchronous operation. This is normally used when field

communications are involved to complete a method call. The most common use is to allow

a GUI to show the user the progress of an operation. It can also be used and watched by a

server process when it needs to call on another server process to complete an operation.

The long running operation typically calls back to the CommandStatus object periodically

as the command is being executed, to provide in-progress status information, and it always

makes a final call to the CommandStatus when the operation has completed. The final call

to the CommandStatus from the long running operation indicates the success or failure of

the command.

5.18.1.49.4 CongestionEvent (Class)

This class models roadway congestion which may be tagged as recurring or non-recurring

through the use of an attribute.

5.18.1.49.5 DisabledVehicleEvent (Class)

This class models disabled vehicles on the roadway.

5.18.1.49.6 DMSRPIData (Class)

The DMSRPIData class is an abstract class which describes a response plan item for a

DMS. It contains the unique identifier of the DMS to contain the DMSMessage, and the

DMSMessage itself.

5.18.1.49.7 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an

ArbQueueEntry on a device's arbitration queue. This validate method of this interface can

be called by the device to determine continued validity of the entry (either during recovery

or as a final check of the validity of an entry before putting its message on the device).

CHART R3B3 Detailed Design 5-391 12/23/2008

5.18.1.49.8 EventInitiator (Class)

This union contains information about the entity or entities involved in the initiation of a

traffic event. This can be the schedule, if a schedule was involved in initating the event,

and/or a user, if a user was involved in initating the event. This union allows for possible

expansion in future releases, where traffic events may be initiated by a schedule without

user confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external

interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

5.18.1.49.9 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a

command to put a message on a HAR when executed. When the item is executed, it adds

an ArbQueueEntry to the specified HAR, which stores the entry in its MessageQueue.

When the item's execution is revoked, or the item is removed from the response plan

(manually or implicitly through closing the traffic event) the item asks the HAR to remove

the entry. The HARRPIData object also allows specification of a subset (0 to all) of the

HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be activated if

and while the message is being broadcast on the HAR.

5.18.1.49.10 Incident (Class)

This class models objects representing roadway incidents. An incident typically involves

one or more vehicles and roadway lane closures.

5.18.1.49.11 Lane (Class)

This class represents a single traffic lane at the scene of a RoadwayEvent.

5.18.1.49.12 LaneConfigReferenceDirection (Class)

This enumeration restricts the possible reference directions for a lane configuration, which

is necessary because the lane offsets are defined relative to the "left" side, which is an

ambiguous term. For example, if the direction is North then "left" to the West, but if the

direction is South (also valid on a North-South roadway) then "left" could be considered (if

not for this enumeratiion) to East. Thus if the direction of the lane config were to change

from North to South, the lanes would "flip" unintentionally. This enumeration holds the

reference direction for a North-South roadway to always be to the West (regardless of

whether the direction of the event is North or South), and holds similarly for East-West

roadways and beltways (Inner-Outer loops).

5.18.1.49.13 LaneConfiguration (Class)

This class contains data that represents the configuration of the lanes.

5.18.1.49.14 LaneConfigurationList (Class)

A collection of LaneConfiguration objects.

CHART R3B3 Detailed Design 5-392 12/23/2008

5.18.1.49.15 LaneState (Class)

This enumeration lists the possible states that a traffic lane may be in.

5.18.1.49.16 LaneTrafficFlowDirection (Class)

Defines the possible directions of traffic flow, relative to the lane orientation.

5.18.1.49.17 LaneType (Class)

This enumeration lists the types of lanes.

5.18.1.49.18 MergeAction (Class)

This enumeration specifies how to merge a section of data during a traffic event merge

operation.

5.18.1.49.19 MergeInfo (Class)

This valuetype is passed between Chartlite to Chart to provide instructions for performing

the merge

5.18.1.49.20 MergeSection (Class)

This idl enum defines values for each merge section

5.18.1.49.21 OrganizationParticipation (Class)

This class is used to manage the data captured when an operator notifies another

organization of a traffic event.

5.18.1.49.22 PlannedRoadwayClosure (Class)

This class models planned roadway closures such as road construction. This interface will

be expanded in future releases to include interfacing with the EORS system.

5.18.1.49.23 ResourceDeployment (Class)

This class is used to store the data captured when an operator deploys resources to the scene

of a traffic event.

5.18.1.49.24 ResponseParticipation (Class)

This interface represents the involvement of one particular resource or organization in

response to a particular traffic event.

5.18.1.49.25 ResponseParticipationList (Class)

A collection of ResponseParticipation objects.

CHART R3B3 Detailed Design 5-393 12/23/2008

5.18.1.49.26 ResponsePlanItem (Class)

Objects of this type can be executed as part of a traffic event response plan. A

ResponsePlanItem can be executed by an operator, at which time it becomes the

responsibility of the System to activate the item on the ResponseDevice as soon as it is

appropriate.

5.18.1.49.27 ResponsePlanItemData (Class)

This class is a delegate used to perform the execute and remove tasks for the response plan

item. Derived classes of this base class have specific implementations for the type of

device the response plan item is used to control.

5.18.1.49.28 ResponsePlanItemList (Class)

A collection of ResponsePlanItem objects.

5.18.1.49.29 ResponsePlanItemStatus (Class)

This stucture contains data that describes the current state of a response plan item.

5.18.1.49.30 RoadwayEvent (Class)

This class models any type of incident that can occur on a roadway. This point in the

heirarchy provides a break off point for traffic event types that pertain to other modals.

5.18.1.49.31 SafetyMessageEvent (Class)

This type of event is created by an operator when he/she would like to send a safety

message to a device.

5.18.1.49.32 SpecialEvent (Class)

This class models special events that affect roadway conditions such as a concert or

professional sporting event.

5.18.1.49.33 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.18.1.49.34 TrafficEventFactory (Class)

This interface is supported by objects that are capable of creating traffic event objects in the

system.

5.18.1.49.35 TrafficEventList (Class)

A collection of TrafficEvent objects.

CHART R3B3 Detailed Design 5-394 12/23/2008

5.18.1.49.36 WeatherSensorEvent (Class)

This class models roadway weather events such as snow or fog that are reported by the

system's weather monitoring devices. Operators will need to manually enter the

information in these events for this release. In future releases, these events will be

automatically generated by the system.

5.18.1.49.37 WeatherServiceEvent (Class)

This class models roadway weather events such as snow or fog that are manually entered by

an operator in response to receiving an alert from the national weather service.

CHART R3B3 Detailed Design 5-395 12/23/2008

5.18.1.50 TrafficEventManagement2 (Class Diagram)

EVENT_INITIATOR_SCHEDULE_USEREVENT_INITATOR_USER

R3B3:
m _l oc a tion c hanged to
Objec tLoc a tion ty pe

IncidentType

« ty pe»

WeatherConditions

« ty pedef»

TrafficEventTypeVa lues

« inte rfac e»

RoadCondition

«enum era tion»

TrafficEventAssociatedInfo

«ty pedef»

TrafficEventCrea tionResult

«ty pede f»

ResponseParticipationAddedInfo

« ty pedef»

Inc identTypeValues

«in terfac e»

LogEntriesAdded

«ty pedef»

1

EventInitiatorType

«enum era tion»

WeatherServ iceEventDa ta

1

1

1

AbsoluteOrRe lativeTime

«union»

REM OVED FOR R3B2:
Ac tionEv entAdded
Conges tionEv entAdded
Dis abl edVehic leEv en tAdded
Inc identAdded
PlannedRoadway Clos ureEv en tAdded
Sa fety Ev entAdded
Spec ia lEv entAdded
WeatherSe rv ic eEv entAdded
ADDED FOR R3B2:
Tra ffic Ev entAdded

Uni on bas ed on is Abs olute.
If true, has abs olu teRem inderTim e
If fa ls e , has re lativ eRem inderTim eSec s

TrafficEventState

«enum eration»

1

1

1

EVENT_INITIATOR_SCHEDULE_USER

1

1

EventInita torUserData

«s truc t»

1

1

1

1

EVENT_INITATOR_USER

1

LaneConfigurationChangedInfo

«ty pedef»

ResponseParticipa tionChangedInfo

«ty pedef»

CountyState

«enum era tion»

1

ResponseParticipant

«ty pedef»

EventInita torScheduleUserData

«s truc t»

ResponsePlanItemInfo

« ty pedef»

PlannedRoadwayClosureEventData

ResponsePartic ipationData

RevokeExecutionFailure

«ex c eption»

Tra fficEventTypeChangedInfo

« ty pede f»

Inc identDa ta

1

ResponseParticipationRemovedInfo

«ty pede f»

EventInitiator

«union»

Bas icEventData

«v aluety pe»

1

1

UnknownEventType

«ex c eption»

TrafficEventEventType

«enum eration»

1

1

ActionEventDa ta

1 1

DisabledVehicleData

1

1

1

1

ResponsePlanItemsRemovedInfo

«ty pedef»

TrafficEventAssocia tionRemovedInfo

«ty pedef»

1

1

1

ResourceDeploymentData

1

1

Inc identVehic leDa ta

«ty pedef»

1

Organiz ationParticipa tionData

Tra fficEventType

« ty pe»

TrafficEventAddedInfo

«ty pedef»

M ODIFIED FOR R3B3:

Added m _pub l ic Nam e and
m _own ingOrg..

M ODIFIED FOR R3B3:

Added m _pub l ic Ev en tTy pe.

EVENT_PENDING
EVENT_OPEN
EVENT_CLOSED

di s c ri m inato r Tim eSpec i fic a tionTy pe
Ti m es tam p2 abs Tim e i f TIM E_ABSOLUTE
long relTi m eSec s re lTim eSec s i f TIM E_RELATIVE

OTHER_NO_ADDL_INFO
OTHER_ADDL_INFO
VEHICLE_FIRE
WEATHER
DEBRIS_IN_ROADWAY
PERSONAL_INJ URY
PROPERTY_DAM AGE
FATAL ITY
DISABLED_IN_ROADWAY
ROADWORK
COLLISION
M AINTENANCE
SIGNAL_CALL
POLICE_ACTIVITY
OFF_ROAD_ACTIVITY
DECLARATION_OF_EM ERGENCY

ge tID():Identi fi er

-m _id : Identi f ier
+m _nam e : s tring
+m _publ ic Nam e : s tri ng
+m _loc ati on : Obj ec tLoc a tion
+m _s ourc e : Sourc e
+m _ev entIni ti ator : Ev entIni ta tor
+m _ev entTy pe : Traff ic Ev entTy pe
+m _ev entState : Traff ic Ev entState
+m _is Fals eAl arm : boolean
+m _is Sc eneCleared : boo lean
+m _s c eneClearedTim e : Tim es tam p
+m _is Delay Cl eared : boo lean
+m _de lay Clea redTim e : Tim es tam p
+m _is Con fi rm ed : boo lean
+m _c onfi rm edTim e : Tim es tam p
+m _openedOrCrea tedTim e : Tim es tam p
+m _c l os edTim e : Tim es tam p
+m _ev entSti l l OpenRem inderTim e :
 Abs o luteOrRelativ eTim e
+m _openedTi m e : Tim es tam p
+m _m ax QueueLength : long
+m _c ontro l l ingOpCen ter : OpCenterIn fo
+m _owningOrg : Identi fier
+m _prim a ry : boo lean
+m _di s play WebSiteTraffi c Ale rt : boo lean
+m _webSi teTraffic Ale rtTex t : s tring
+m _ne tConnec tionSi te : s tring

long num Cars Inv o lv ed
long num Cars Ov e rturned
long num Pic k upVanSuv s Inv o lv ed
long num Pic k upVanSuv s Ov e rturned
long num Sing leUn i tTruc k s Inv olv ed
long num Sing leUn i tTruc k s Ov ertu rned
long num Sing leUn i tTruc k s Los tLoad
long num Trac torTrai le rs Inv ol v ed
long num Trac torTrai le rs Ov erturned
long num Trac torTrai le rs Los tLoad
long num Trac torTrai le rs J ac k Kni fed
long num M oto rc y c les Inv olv ed
long num LoadedCom m erc ial Bus Inv o lv ed
long num LoadedCom m erc ial Bus Ov e rturned
long num UnloadedCom m erc i alBus Inv olv ed
long num UnloadedCom m erc i alBus Ov ertu rned
long num LoadedSc hoolBus Inv ol v ed
long num LoadedSc hoolBus Ov erturned
long num UnloadedSc hoo lBus Inv olv ed
long num UnloadedSc hoo lBus Ov e rturned

EVENT_INITIATOR_USER
EVENT_INITIATOR_SCHEDULE_USER

Inc identTy pe m _ inc iden tTy pe
Inc identTy pe m _pub l ic Inc identTy pe
RoadCondi tion m _roadCond i tions
Inc identVehi c leData m _v eh ic leData
boolean m _haz m at

d is c rim i nato r: Ev en tIni t iato rTy pe
us erIni ti ator: Ev entIni tia torUs e rData
s c hedul eIUs ern i tiator : Ev entIn i tia torSc heduleUs e rDa ta

His tory LogEntries Added
His tory LogEntries Updated
LaneConfi gura tionChanged
Organi z ati onPartic ipa tionAdded
Organi z ati onPartic ipa tionChanged
Pa rtic i pati onRem ov ed
Res ou rc eDepl oy m entAdded
Res ou rc eDepl oy m entChanged
Res pons ePlan Item Added
Res pons ePlan Item M odi fi ed
Res pons ePlan Item Rem ov ed
Res pons ePlanSta tus Changed
Tra ffic Ev entAdded
Tra ffic Ev entAs s oc iated
Tra ffic Ev entAs s oc iati onRem ov ed
Tra ffic Ev entCl os ed
Tra ffic Ev entDe leted
Tra ffic Ev entStateChanged

m _nam e : s tri ng
m _opCtrId : Identi fier

boo lean m _s ignal
boo lean m _debris
boo lean m _uti l i ty
boo lean m _other
s tri ng m _o therDes c rip tion

ROAD_CONDITION_UNSPECIFIED
DRY
WET
ICE_OR_SNOW
CHEM ICAL_WET

Iden ti fie r tra ffic Ev entAID
Iden ti fie r tra ffic Ev entBID

m _s c hedu leId : Identi fier
m _us erIni t iato r : Ev en tIni t iato rUs e rDa ta

Identi fi er m _pa rtic ipationID
Res pons eParti c ipant m _partic ipant
boo lean m _no ti fied
Tim eStam p m _ tim eNo ti fied

s tring m _v ehic l eTagInfo
s tring m _v ehic l eM ak eColo r
bool ean m _ ti reChange
bool ean m _hotShot
bool ean m _wate r
bool ean m _gas
bool ean m _direc tions
bool ean m _ownDis pos i tion
bool ean m _c al l ForServ ic e
bool ean m _goneOnArriv al
bool ean m _abandonedVeh ic le
bool ean m _relay Operator
bool ean m _othe r
s tring m _otherDes c ripti on

Iden ti fie r tra ffic Ev entID
LogEntry [] l ogEntries

boolean m _a rriv ed
Ti m eStam p m _tim eArriv ed
boolean m _depa rted
Ti m eStam p m _tim eDepa rted

Identi fier traff ic Ev entID
Identi fier plan Item ID
s tring planItem Nam e
Res pons ePlanItem p lanItem
Res pons ePlanItem Da ta p lan Item Data

RoadCondi tion m _ roadCondi ti on
Wea the rCondi t ions m _wea the rCondi ti ons
boo lean m _ev ac uationRequired
boo lean m _c leanupRequi red

s tring m _nam e
Res pons ePa rtic i pan tTy pe m _ty pe

Identi fier ev entID
LaneConfiguration newConfigura tion

Tra ffic Ev entTy pe ev entTy pe
Tra ffic Ev ent theTraffic Ev ent
Bas ic Ev en tDa ta traffic Ev entData
Res pons ePart ic ipationDa ta[] partic ipantData
Res pons ePlan Item Da ta[] rpiData
LogEn try L is t l ogEntries

boolean m _res ponded
Ti m eStam p m _tim eRes ponded

Identi fier traffic Ev en tID
Repons ePart ic ipationDa ta partic ipa tionData
Res pons ePa rtic i pati on parti c ipa tion

boo lean hu rric ane
boo lean tornado
boo lean s now
boo lean s ev ereWind
boo lean rai n
boo lean reduc edVi s ibi l i ty
boo lean oz one
boo lean highWater
boo lean flood
boo lean lands l ide
boo lean other
s tring o the rDes c rip tion

s tring m _eo rs Perm itTrac k i ngNum ber

Identi f ier traffi c Ev entID
Identi f ier[] p lanItem IDs

Identi fi er ev en tID
Tra ffic Ev en t newTraffic Ev ent
Bas ic Ev en tData newEv entData

Identi fier traffic Ev en tID
Identi fier partic ipationID

TYPE_PLANNED_ROADWAY_CLOSURE
TYPE_INCIDENT
TYPE_DISABLED_VEHICLE
TYPE_WEATHER_SENSOR_ALERT
TYPE_WEATHER_SERVICE_ALERT
TYPE_ACTION
TYPE_CONGESTION
TYPE_RECURRING_CONGESTION
TYPE_SAFETY
TYPE_SPECIAL_EVENT

Identi fier traff ic Ev entID
Res pons ePartic ipationDa ta parti c ipa tionData

Iden ti fie r prim a ry Ev entID
Traffic Ev en t pri m ary Ev ent
Iden ti fie r s ec ondary Ev entID
Traffic Ev en t s ec ondary Ev ent

s tring reas on
s tring debug
Identi f ierL is t targe tIDs

Tra ffic Ev en t theTra ffic Ev ent
Bas ic Ev en tData tra ffic Ev entDa ta
LogEntry Li s t fa i led Ini t ia lLogEntries
s tri ng c rea tionWarningM es s age

Figure 5-234. TrafficEventManagement2 (Class Diagram)

5.18.1.50.1 AbsoluteOrRelativeTime (Class)

This union stores a time, in either absolute or relative terms.

5.18.1.50.2 ActionEventData (Class)

This class represents all data specific to an Action event type traffic event.

CHART R3B3 Detailed Design 5-396 12/23/2008

5.18.1.50.3 BasicEventData (Class)

This class represents the data common to all traffic events. All derived data types will

inherit all data shown in this class.

5.18.1.50.4 CountyState (Class)

This enumeration defines the various counties in Maryland and the states surrounding

Maryland that will be used for defining the traffic event.

5.18.1.50.5 DisabledVehicleData (Class)

This class represents all data specific to a disabled vehicle traffic event.

5.18.1.50.6 EventInitatorScheduleUserData (Class)

This structure contains data about a schedule involved in the initiation of a traffic event. It

is contained within the EventInitiator union.

5.18.1.50.7 EventInitatorUserData (Class)

This structure contains data about a user involved in the initiation of a traffic event. It is

contained within the EventInitator union.

5.18.1.50.8 EventInitiator (Class)

This union contains information about the entity or entities involved in the initiation of a

traffic event. This can be the schedule, if a schedule was involved in initating the event,

and/or a user, if a user was involved in initating the event. This union allows for possible

expansion in future releases, where traffic events may be initiated by a schedule without

user confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external

interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

5.18.1.50.9 EventInitiatorType (Class)

This enumeration identifies the types of initiators which can initiate traffic events. Traffic

events can be initiated by a user (directly), or by a schedule (with user involvement). This

enumeration, and the union in which it is a discriminator, allows for possible expansion in

future releases, where traffic events may be initiated by a schedule without user

confirmation, or by CHART devices (traffic sensors, weather sensors, etc.) or external

interfaces (RITIS, etc.) initially with, or possibly later without, user involvement.

5.18.1.50.10 IncidentData (Class)

This class represents data specific to an Incident type traffic event.

5.18.1.50.11 IncidentType (Class)

This typedef defines the type of the incident.

CHART R3B3 Detailed Design 5-397 12/23/2008

5.18.1.50.12 IncidentTypeValues (Class)

This interface lists all possible incident types.

5.18.1.50.13 IncidentVehicleData (Class)

This class represents the vehicles involved data for incidents. Its purpose is to simplify the

exchange of data between GUI and server.

5.18.1.50.14 LaneConfigurationChangedInfo (Class)

This structure contains the data that is broadcast when the lane configuration of a traffic

event is changed.

5.18.1.50.15 LogEntriesAdded (Class)

This structure contains the data that is broadcast when new entries are added to the event

history log of a traffic event.

5.18.1.50.16 OrganizationParticipationData (Class)

This class represents the data required to describe an organization's participation in the

response to a traffic event.

5.18.1.50.17 PlannedRoadwayClosureEventData (Class)

This class contains data specific to the PlannedRoadwayEvent type of traffic event.

5.18.1.50.18 ResourceDeploymentData (Class)

This class represents the data required to describe a resource's participation in the response

to a traffic event.

5.18.1.50.19 ResponseParticipant (Class)

The ResponseParticipant class is a non-behavioral structure which specifies a participant in

a response.

5.18.1.50.20 ResponseParticipationAddedInfo (Class)

This structure contains the data that is broadcast when a response participant is added to the

response to a particular traffic event.

5.18.1.50.21 ResponseParticipationChangedInfo (Class)

This structure contains the data pushed in a CORBA event any time any type of response

participation object changes state.

5.18.1.50.22 ResponseParticipationData (Class)

This class contains all data pertinent to any class that represents a response participation.

CHART R3B3 Detailed Design 5-398 12/23/2008

5.18.1.50.23 ResponseParticipationRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are

removed from a traffic event.

5.18.1.50.24 ResponsePlanItemInfo (Class)

This structure contains the data that is broadcast any time a new response plan item is added

or an existing response plan item is modified.

5.18.1.50.25 ResponsePlanItemsRemovedInfo (Class)

This structure contains the data that is broadcast when one or more response plan items are

removed from a traffic event.

5.18.1.50.26 RevokeExecutionFailure (Class)

This class defines a exception thrown when failed to revoke a response plan item's

execution.

5.18.1.50.27 RoadCondition (Class)

This enumeration lists the possible roadway conditions at the scene of a traffic event.

5.18.1.50.28 TrafficEventAddedInfo (Class)

This structure contains the data that is broadcast when a new traffic event is added to the

system.

5.18.1.50.29 TrafficEventAssociatedInfo (Class)

This structure contains the data that is broadcast when two traffic events are associated.

5.18.1.50.30 TrafficEventAssociationRemovedInfo (Class)

This structure contains the data that is broadcast when the association between two traffic

events is removed.

5.18.1.50.31 TrafficEventCreationResult (Class)

This result is returned from createEvent() to indicate warning messages if the event was not

created cleanly.

5.18.1.50.32 TrafficEventEventType (Class)

his enumeration defines the types of CORBA events that can be broadcast on a Traffic

Event related CORBA Event channel.

5.18.1.50.33 TrafficEventState (Class)

This enumeration lists the possible states for a traffic event. The states are pending, open,

CHART R3B3 Detailed Design 5-399 12/23/2008

and closed. A false alarmed "state" is considered a special case of "closed", so false

alarmed events will have a TrafficEventState of EVENT_STATE_CLOSED. They will

also have the m_isFalseAlarm flag in their BasicEventData set to true to distinguish them

from normally closed events.

5.18.1.50.34 TrafficEventType (Class)

This typedef defines the type of traffic event.

5.18.1.50.35 TrafficEventTypeChangedInfo (Class)

This structure contains the data that is broadcast when a traffic event changes types. The

traffic event object that represented the traffic event previously is removed from the system

and is replaced by the newTrafficEvent reference contained in this structure. If the

consumer of this CORBA event has stored any references to the traffic event previously,

those references should be replaced with this new reference.

5.18.1.50.36 TrafficEventTypeValues (Class)

This interface defines the types of traffic events that are supported by the system.

5.18.1.50.37 UnknownEventType (Class)

This class defines a exception thrown when the type of a traffic event type is not known and

is not defined in TrafficEventTypeValues.

5.18.1.50.38 WeatherConditions (Class)

This structure contains all possible weather conditions. Each member should be set to true

if that condition applies, false otherwise. The m_otherDescription member will only be

considered valid if the m_other member is set to true.

5.18.1.50.39 WeatherServiceEventData (Class)

This class contains data specific to the WeatherServiceEvent type of traffic event.

5.18.1.51 TrafficEventRule (Class Diagram)

CHART R3B3 Detailed Design 5-400 12/23/2008

NotificationRecipientData
«datatype»

TrafficEventType

«type»

Identifier

GeoAreaData
«struct»

CountyState
«enumeration»

OpCenterInfo
«typedef»

0..11

1

1

1

1

0..* 1

0..1

1

GeoArea
«struct»

1

1

0,0..*

1

UniquelyIdentifiable
«interface»

TrafficEventRuleFactory
«interface» TrafficEventRule

«interface»

TrafficEventRuleConfig
«struct»

*1

createTrafficEventRule(token: AccessToken,
 theData : TrafficEventRuleConfig) : TrafficEventRuleResult
getTrafficEventRules(): TrafficEventRuleConfig[]
removeTrafficEventRule(token: AccessToken, id : Identifier)

getID()
getName()

COUNTY_STATE_UNSPECIFIED
ALLEGANY_COUNTY
ANNEARUNDEL_COUNTY
BALTIMORE_CITY
BALTIMORE_COUNTY
CALVERT_COUNTY
CAROLINE_COUNTY
CARROL_COUNTY
CECIL_COUNTY
CHARLES_COUNTY
DORCHESTER_COUNTY
FREDERICK_COUNTY
GARRETT_COUNTY
HARFORD_COUNTY
HOWARD_COUNTY
KENT_COUNTY
MONTGOMERY_COUNTY
PRINCEGEORGES_COUNTY
QUEENANNES_COUNTY
SAINTMARYS_COUNTY
SOMERSET_COUNTY
TALBOT_COUNTY
WASHINGTON_COUNTY
WICOMICO_COUNTY
WORCESTER_COUNTY
WASHINGTON_DC
WEST_VIRGINIA
VIRGINIA
DELAWARE
PENNSYLVANIA

getData() : TrafficEventRuleConfig
remove(token: AccessToken) : void

id : Identifier
name : String
description: String?
closedLaneFlag: Boolean
closedLaneCount: int
eventTypes[]: TrafficEventType
geoArea[]: GeoAreaData
includeEmptyClosedLane: boolean
includeEmptyGeoArea: boolean
includeEmptyRoute: boolean
includeEmptyState: boolean
interesting : Boolean
notificationTarget: NotificationRecipientData
routes[]: RouteType
sendAlert: boolean
alertTarget: OpCenterInfo
usStates[]: CountyState
searchText: String

Identifier(byte[] chartID)
equals(Object obj)
hashCode()
byte[] getID()

m_id

targetType : NotificationTargetType
recipientId : string
recipientName : string

Identifier m_id
string m_name

geoAreaId : Identifier
geoArea : GeoAreaData

name : string
desc : string
points : PointLocationProfile[]

Figure 5-235. TrafficEventRule (Class Diagram)

5.18.1.51.1 CountyState (Class)

This enumeration defines the various counties in Maryland and the states surrounding

Maryland that will be used for defining the traffic event.

5.18.1.51.2 GeoArea (Class)

The GeoArea struct defines a unique GeoArea within the CHART system. It has a unique

id and a GeoAreaData struct.

5.18.1.51.3 GeoAreaData (Class)

The GeoArea struct is a simple representation of a polygon (ordered list of points) defining

a Geographical Area within the CHART system.

5.18.1.51.4 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

CHART R3B3 Detailed Design 5-401 12/23/2008

identifiable objects to hash tables and perform subsequent lookup operations.

5.18.1.51.5 NotificationRecipientData (Class)

This object contains the data that is returned as a result of an object get recipient (groups or

individuals) request..

5.18.1.51.6 OpCenterInfo (Class)

This structure contains the information about an OperationsCenter.

5.18.1.51.7 TrafficEventRule (Class)

5.18.1.51.8 TrafficEventRuleConfig (Class)

5.18.1.51.9 TrafficEventRuleFactory (Class)

5.18.1.51.10 TrafficEventType (Class)

This typedef defines the type of traffic event.

5.18.1.51.11 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-402 12/23/2008

5.18.1.52 TravelRouteManagement (Class Diagram)

This Class Diagram shows the CORBA system interface classes and methods used to

manage Roadway Links and Travel Routes, added in R3B3. Each travel route in the system

can track travel times (accumulated from roadway links configured into the route) and/or

toll rates. Link travel times and toll rates are acquired by separate CHART import

processes which call in when data updates are available (every few minutes).

A factory serves roadway links read from the database and travel routes configured by

CHART administrators. Roadway links are imported into the database as an offline process

from a large dataset provided by from CHART's travel time provider(s), and are passed

around as configuration and data (stats) structures (i.e., there is no RoadwayLink

"interface"). Travel routes are created and configured on as necessary by CHART

administrators, and each travel route is modeled as a TravelRoute interface which provides

access to its own configuration and data directly.

CHART R3B3 Detailed Design 5-403 12/23/2008

StatsState codes ROUTE_DISABLED, DATA_MISSING,
DATA_EXPIRED, BAD_QUALITY, MAX_EXCEEDED are used to
populate routeTvlTimeStateCode if a route is disabled, link data is
missing, current link data too stale, quality threshold not met, or
max travel time exceeded. Lower numbered stats have higher
priority. (If trouble getting any data from INRIX at all, the entry will
simply be skipped (no stats record in that time period), until the
data expires.). routeTravTimeStateString will contain any details
e.g.,time route expired, linkIDs with bad qual, max val and actual
val, etc. DATA_MISSING should rarely/never happen.

routeTollRateEffTimeSecs: TimeStamp2
routeTollRateCents: short
routeTollRateStateCode: StatsState

«struct»
RouteTollRateHistRecord

Circular list. RouteXxxXxxHistStats points to oldest
element; index proceeds upward from there and
wraps. Newest element is the one before the
oldest: oldest-1 (mod size), and it is the current data
point (which is also in the RouteXxxXxxStats struct).

StatsState codes ROUTE_DISABLED
and DATA_EXPIRED are used to
populate routeTollRateStateCode if
route is disabled, or toll rate expiration
time has passed. ROUTE_DISABLED
has higher priority. (If trouble getting
any data from VECTOR at all,, the entry
will simply be skipped (no stats record
in that time period, until it expires).
routeTollRateStateString will contain any
details (e.g. exp time).

INRIXLinkDataConsumer

routeTollRateOldestRecordIndex: short
routeTollRateHistory: RouteTollRateHistRecord[]

«struct»
RouteTollRateHistStats

Not keeping trend in historical data.
Keeping speed. Even though GUI in
current proto does not display speed
for historical data, it might want to.
(Historical trend would just confuse.)

routeTravTimeEffTimeSecs: TimeStamp2
routeTravTimeSecs: short
routeTravTimeSpeedMph: short
routeTravTimeStateCode: StatsState
routeTravTimeStateString: string

«struct»
RouteTravTimeHistRecord

linkSpec: ExtLinkSpec
linkTravTimeEffTimeSecs: TimeStamp2
linkTravTimeSecs: short
linkSpeedMph: byte
linkTravTimeQual: TravTimeQuality

«struct»
LinkRawData

SS_DATA_OK 0
SS_ROUTE_DISABLED 1
SS_DATA_MISSING 2
SS_DATA_EXPIRED 3
SS_BAD_QUALITY 4
SS_MAX_EXCEEDED 5

«enumeration»
StatsState

travTimeHist: RouteTravelTimeHistStats[]
tollRateHist: RouteTollRateHistStats[]

«struct»
RouteHistStats

routeTollRateEffTimeSecs: TimeStamp2
routeTollRateExpTimeSecs: TimeStamp2
routeTollRateCents: short
routeTollRateStateCode: StatsState
routeTollRateStateString: string

«struct»
RouteTollRateStats

routeTravTimeOldestRecordIndex: short
routeTravTimeHistory: RouteTravTimeHistRecord[]

«struct»
RouteTravTimeHistStats

updateTollRateData(token:byte[], data:TollRateData):TollRateUpdateResult

«interface»
TollDataConsumer

TT_TREND_DOWN -1
TT_TREND_FLAT 0
TT_TREND_UP 1

«enumeration»
TravTimeTrend

routeTravTimeEffTimeSecs: TimeStamp2
routeTravTimeSecs: short
routeTravTimeSpeedMph: short
routeTravTimeTrend: TravTimeTrend
routeTravTimeStateCode:StatsState
routeTravTimeStateString: string

«struct»
RouteTravTimeStats

travTimeStats: RouteTravelTimeStats[]
tollRateStats: RouteTollRateStats[]

«struct»
RouteStats

getTravelRoutes(): TravelRouteInfo[]
getTollRateRoutes(): TollRateRouteInfo[]
getLinksConfigs(token: AccessToken): RoadwayLinkConfigInfo[]
getLinksFullInfo(token: AccessToken): RoadwayLinkFullInfo[]
getLinkConfig(token: AccessToken, linkId: Identifier): RoadwayLinkConfigInfo
getLinkStats(token: AccessToken, linkId: Identifier): LinkTravTimeStats
getLinkHistStats(token: AccessToken, linkId: Identifier): LinkTravTimeHistStats
addRoute(token: AccessToken, config: TravelRouteConfig): TravelRouteInfo
updateLinkData(token: AccessToken, linkData: LinkRawData[]): void

«interface»
TravelRouteFactory

DMS calls addConsumer() as Tvlr Info Msg
activated; removeConsumer() on deactivate.
TravelRouteConfig.consumerList ignored on
incoming setConfig() requests.

TT_QUAL_LOW 1
TT_QUAL_MEDIUM 2
TT_QUAL_HIGH 3

«enumeration»
TravTimeQuality

Not keeping trend in historical data. Keeping speed. Even though
GUI in current proto does not display speed for historical data, it
might want to. (Historical trend would just confuse.)

Circular list. LinkTravelTimeHistStats points to oldest element;
index proceeds upward from there and wraps. Newest element
is the one before the oldest: oldest-1 (mod size), and it is the
current data point (which is also in the LinkTravelTimeStats struct).

rteStats: RouteStats
rteHistStats: RouteHistStats
linkStats: RouteLinkStats[]
linkHistStats: RouteLinkHistStats[]

«struct»
RouteFullStats

getRouteConfig(token: AccessToken): TravelRouteConfig
getRouteAndLinkConfig(token: AccessToken): RouteAndLinkConfig
getLinkConfigs(token: AccessToken): RoadwayLinkConfigInfo[]
getRouteStats(token: AccessToken): RouteStats
getRouteHistStats(token: AccessToken): RouteHistStats
getLinkStats(token: AccessToken): RouteLinkStats[]
getLinkHistStats(token: AccessToken): RouteLinkHistStats[]
getFullStats(token: AccessToken): RouteFullStats
getTravTimeStats(token: AccessToken): RouteTravTimeStats
getTollRateStats(token: AccessToken): RouteTollRateStats
setConfig(token: AccessToken,
 config: TravelRouteConfig): void
setTravTimeConfig(token: AccessToken,
 config: TravTimeConfig): void
setTollRateConfig(token: AccessToken,
 config: TollRateConfig): void
remove(token: AccessToken): void
addConsumer(token: AccessToken,
 consInfo: TravelRouteConsumerInfo): RouteStats
removeConsumer(token: AccessToken, consId: Identifier): void

«interface»
TravelRoute

getID()
getName()

«interface»
UniquelyIdentifiable

linkTravTimeEffTimeSecs: TimeStamp2
linkTravTimeSecs: short
linkTravTimeQual: TravTimeQuality
linkTravTimeSpeedMph: short

«struct»
LinkTravTimeHistRecord

routeId: Identifier
routeRef: TravelRoute

«struct»
TravelRouteInfo

linkId: Identifier
linkHistStats: LinkTravTimeHistStats

«struct»
RouteLinkHistStats

linkTravTimeOldestRecordIndex: short
linkTravTimeHistory: RouteTravTimeHistRecord[]

«struct»
LinkTravTimeHistStats

linkTravTimeHistory will be empty for links
not used by at least one TravelRoute.

routeSpec: ExtTollSpec
routeTollRateEffTimeSecs: Timestamp2
routeTollRateExpTimeSecs: Timestamp2
routeTollRateCents: short

«struct»
TollRawData

linkTraveTimeSpeedMph will not be computed for
links not used by at least one TravelRoute.

routeSpec: ExtTollSpec
lastReceived: TimeStamp2

«struct»
TollRateRouteInfo

linkId: Identifier
linkStats: LinkTravTimeStats

«struct»
RouteLinkStats

name: string
displayConfig: TravelRouteDisplayConfig
routeList: RoadwayLocation[]
countyList: CountyInfo[]
stateList: StateInfo[]
locationUserSpecified: boolean
consumerList: TravelRouteConsumerInfo[]
travTimeCfg: TravTimeConfig
tollRateCfg: TollRateConfig

«struct»
TravelRouteConfig

tollSpec: ExtTollSpec
tollRateEnabled: boolean

«struct»
TollRateConfig

extSystemName:string
extStartId: string
extEndId: string
extDescription: string

«struct»
ExtTollSpec

Passing updates to the DMS via a listener-type interface,
whereas we push the same updates to the GUIs via an
event channel. Not a a big deal if GUI misses an update, but
the one DMS that cares about this route really wants every
update, guaranteed.

linkTravTimeEffTimeSecs: TimeStamp2
linkTravTimeSecs: short
linkTravTimeQual: TravTimeQuality
linkTravTimeSpeedMph: short
linkTravTimeTrend: TravTimeTrend

«struct»
LinkTravTimeStats

routeConfig: TravelRouteConfig
linkConfigs: RoadwayLinkConfigInfo[]

«struct»
RouteAndLinkConfig

Travel Times and Toll Rates
come from separate sources,
so no point in having a combined
routeStatsUpdate() operation.

milliMiles: long
destText: string[]

TravelRouteDisplayConfig

routeTravTimeStatsUpdated(routeId: Identifier,
 timeData: RouteTravTimeStats): void
routeTollRouteStatsUpdated(routeId: Identifier,
 tollData: RouteTollRateStats): void
routeUpdatesCompleted(): void
routeDisplayConfigUpdated(routeId: Identifier,
 config: TravelRouteDisplayConfig): void
routeDeleted(routeId: Identifier): void

«interface»
TravelRouteConsumer

consumerType: TravelRouteConsumerType
consumerId: Identifier
consumerRef: TravelRouteConsumer

«struct»
TravelRouteConsumerInfo

linkId: Identifier
linkConfig: RoadwayLinkConfig
linkStats: LinkTravTimeStats[]
linkHistStats: LinkTravTimeHistStats

«struct»
RoadwayLinkFullInfo

linkId: Identifier
linkConfig: RoadwayLinkConfig

«struct»
RoadwayLinkConfigInfo

linkId: Identifier
percentToInclude: short
minAllowedQual: TravTimeQuality

«struct»
RouteLink

Part of config that
DMSs care about
(sent to DMSs via
TravelRouteConsumer).

destText[] is pirmary,
1st alt,2nd alt, etc.
Supporting N options
instead of exactly 3.

linkSpec: ExtLinkSpec
linkName: string
state: StateInfo
county: CountyInfo
routeData: RoadwayLocation
milliMiles: int
startLatUDeg: int
startLongUDeg: int
endLatUDeg: int
endLongUDeg: int

«struct»
RoadwayLinkConfig

extSystemName: string
extLinkId: string

«struct»
ExtLinkSpec

CONSUMER_DMS

«enumeration»
TravelRouteConsumerType

routelinkList: RouteLink[]
travelTimeEnabled: boolean
maxBadLinks: short
minTravTimeMins: short
maxTravTimeMins: short
alertTravTimeMins: short
alertsEnabled: boolean
alertOpCtr: Identifier
notifsEnabled: boolean
notifRecipient: string

«struct»
TravTimeConfig

Note, no
events for
links. Links
added maybe
once per year,
never deleted,
probably never
modified. GUI
restart to pick
up new links
~ once/year.

updates: RouteTravelTimeUpdate[]

RouteTravTimeUpdateEvent

ROUTE_ADDED
ROUTE_CONFIG_CHANGED
ROUTE_DELETED
ROUTE_TRAV_TIME_UPDATED
ROUTE_TOLL_RATE UPDATED

«enumeration»
TravelRouteEventType

<discriminator>: TravelRouteEventType
ROUTE_ADDED: RouteConfigEvent
ROUTE_CONFIG_CHANGED: RouteConfigEvent
ROUTE_DELETED: Identifier
ROUTE_TRAV_TIME_UPDATED: RouteTravTimeUpdateEvent
ROUTE_TOLL_RATE_UPDATED: RouteTollRateUpdateEvent

«union»
TravelRouteEvent

routeId: Identifier
timeData: RouteTravTimeStats
linkData: RouteLinkStats[]

«struct»
RouteTravTimeUpdate

updates: RouteTollRateUpdate[]

RouteTollRateUpdateEvent

routeId: Identifier
tollData: RouteTollRateStats

«struct»
RouteTollRateUpdate

routeId: Identifier
routeRef: TravelRoute
routeConfig: TravelRouteConfig
routeStats: RouteFullStats

«struct»
RouteConfigEvent

1

1

1
1

1

1

1 1

11

1

1

1

1..*

1

1..*

1 0..*

1

1

1

1

1

0..*

1

0..*

1

1

1

1

11

1

1

0..1

1

1

1

1 1

1

1

1

0..*

1

0..*

1

0..1

1

0..*

1

1

1

0..*

1

0..*

0..*

1

0..1

1

0..1

1

10..*

1

1

1

0..1

1

1

10..1

0..*1

1

1

1

0..*

1 1

1

1

1

1

1

0..*

1

0..*

0..1

1

1

1

11

1

1

10..*

10..1

0..*1
0..*1

ROUTE_TRAV_TIME_UPDATED
1

1

ROUTE_TRAV_TIME_UPDATED

ROUTE_TOLL_RATE_UPDATED
1

1

ROUTE_TOLL_RATE_UPDATED

ROUTE_ADDED or
ROUTE_CONFIG_CHANGED

1

ROUTE_ADDED or
ROUTE_CONFIG_CHANGED

1

1

1

1

0..*

1

0..*

11

11

1

1

1

0..1

0..1 1

Figure 5-236. TravelRouteManagement (Class Diagram)

5.18.1.52.1 ExtLinkSpec (Class)

This structure is used to hold all the identifying information about a link as known to an

external system (link data supplier).

5.18.1.52.2 ExtTollSpec (Class)

This structure is used to identify a toll rate route. It contains the supplying external system,

the start ID and end ID of the toll rate route (which is the "key" used to identify the toll rate

route, and the name by which the external system refers to the route.

5.18.1.52.3 INRIXLinkDataConsumer (Class)

This interface is implemented by classes which wish to consume (be supplied with) link

travel time data from a link data supplier (such as INRIX). This interface requires that the

implementing class implement an updateLinkData() operation which a LinkDataSupplier

CHART R3B3 Detailed Design 5-404 12/23/2008

can call when it has updated link travel time available to provide.

5.18.1.52.4 LinkRawData (Class)

This structure is used by the CHART roadway link travel time import service to pass raw

link travel time data acquired by a third party travel time provider into the CHART

TravelRoute system. Many of these is expected to be passed in, in an array, at one time.

An update does not have to contain the entire collection of links tracked by CHART, but it

is expected to be a large chunk of them (for example, all freeways in Maryland is one

chunk). In R3B3, INRIX was added as a travel time provider for the CHART system.

5.18.1.52.5 LinkTravTimeHistRecord (Class)

This structure is used to store the most recent X historical link travel time data points

acquired by the system. This is a circular array, with the head (oldest record) referenced in

the LinkTravelTimeHistStats. The tail (newest record) is head-1 (mod X), and is always

the same data point as is contained in the LinkTravelTimeStats structure.

5.18.1.52.6 LinkTravTimeHistStats (Class)

This structure (together with the LinkTravelTimeHistRecord) stores the most recent X

historical link travel time data points. It contains the head pointer and the

LinkTravelTimeHistRecord array which contains the actual data. This structure is not

pushed on the event channel, because it normally contains data which clients could have

already accumumlated themselves, but is available on demand.

5.18.1.52.7 LinkTravTimeStats (Class)

This structure contains the most recent travel time data point acquired for a roadway link.

It matches the most recent record in the LinkTravelTimeHistStats.

5.18.1.52.8 RoadwayLinkConfig (Class)

This structure contains the configuration data for a roadway link. It includes the external

system name (e.g., "INRIX"), the ID by which the external system identifies the link, and

location data.

5.18.1.52.9 RoadwayLinkConfigInfo (Class)

This is a convenience structure which combines a roadway link ID with the

RoadwayLinkConfig. It is used for passing configuration data about all links in the system

or all links in one route from the Travel Route Module to clients.

5.18.1.52.10 RoadwayLinkFullInfo (Class)

This is a convenience structure which combines a roadway link ID with its configuration,

current, and historical stats. It is used for passing the full set of data for all links in the

system or all links in one route from the Travel Route Module to clients.

CHART R3B3 Detailed Design 5-405 12/23/2008

5.18.1.52.11 RouteAndLinkConfig (Class)

This convenience structure is used to pass configuration data for a travel route plus

configuration data for all the route's links from the Travel Route Module to clients.

5.18.1.52.12 RouteConfigEvent (Class)

This structure is contained in a TravelRouteEvent CORBA event union which is pushed

when a route is added or a route configuration is updated.

5.18.1.52.13 RouteFullStats (Class)

This convenience structure holds all stats data for a single travel route -- current stats and

recent historical stats for the route and for the constituent links (if any).

5.18.1.52.14 RouteHistStats (Class)

This structure is used to store historical statistical data (travel times and toll rates) for a

Travel Route. It consists of an array of zero or one RouteTravelTimeHistStats, storing

Travel Time historical statistics (if configured with links), and an array of zero or one

RouteTollRateHistStats, storing Toll Rate historical statistics (if configured to track toll

rates).

5.18.1.52.15 RouteLink (Class)

This structure makes the association between a travel route and one roadway link which

helps comprise the route, together with parameters associated with the use of the link within

that particular route: the percent of the link to include in the route, and the minimum

acceptable quality for link travel time data as used in that particular route.

5.18.1.52.16 RouteLinkHistStats (Class)

This convenience structure contains historical travel time stats for a travel route and for all

the links which comprise the route. It is available on demand from TravelRoute.

5.18.1.52.17 RouteLinkStats (Class)

This convenience structure contains current travel time stats for a travel route and for all the

links which comprise the route. It is available on demand from TravelRoute.

5.18.1.52.18 RouteStats (Class)

This convenience structure combines the current travel time data and toll rate data for a

travel route. (It contains zero or one of each, depending on what types of data the route is

configured to track.) It is available on demand via the TravelRoute.

5.18.1.52.19 RouteTollRateHistRecord (Class)

This structure is used to store the most recent X historical route toll rate data points

accuumlated by the system. This is a circular array, with the head (oldest record)

CHART R3B3 Detailed Design 5-406 12/23/2008

referenced in the RouteTollRateHistStats. The tail (newest record) is head-1 (mod X), and

is always the same data point as is contained in the RouteTollRateStats structure.

5.18.1.52.20 RouteTollRateHistStats (Class)

This structure (together with the RouteTollRateHistRecord) stores the most recent X

historical route toll rate data points. It contains the head pointer and the

RouteTollRateHistRecord array which contains the actual data. This structure is not pushed

on the event channel, because it normally contains data which clients could have already

accumumlated themselves, but is available on demand.

5.18.1.52.21 RouteTollRateStats (Class)

This structure contains the current toll rate data for a travel route. This includes the time the

rate became effective and the toll rate itself. This data is also provided in the most recent

entry in the history structure. The toll rate field may contain a negative number defined by

StatsConstants, which indicates an error. There are two other fields NOT provided in the

history structure -- the time the toll rate expires, and a reason string. This will be the empty

string if the toll rate has been successfully provided recently, or details on the error

condition if an error constant is specified.

5.18.1.52.22 RouteTollRateUpdate (Class)

This structure is contained in a TravelRouteEvent for toll rate updates. It contains the ID of

the route being updated and the RouteTollRateStats containing the new toll rate data (only

the current toll rate data is provided in the event, to reduce the CORBA event size. GUIs

are expected to cache toll rate data and build up their own history data (although history

data is available on demand from the TravelRoute).

5.18.1.52.23 RouteTollRateUpdateEvent (Class)

This structure is one of several which can be the element of a TravelRouteEvent union. It

contains the ID of the Travel Route to which the toll rate statistics apply, and the toll rate

data itself.

5.18.1.52.24 RouteTravTimeHistRecord (Class)

This structure is used to store the most recent X historical route travel time data points

accuumlated by the system. This is a circular array, with the head (oldest record)

referenced in the RouteTravelTimeHistStats. The tail (newest record) is head-1 (mod X),

and is always the same data point as is contained in the RouteTravelTimeStats structure.

5.18.1.52.25 RouteTravTimeHistStats (Class)

This structure (together with the RouteTravelTimeHistRecord) stores the most recent X

historical route travel time data points. It contains the head pointer and the

RouteTravelTimeHistRecord array which contains the actual data. This structure is not

pushed on the event channel, because it normally contains data which clients could have

CHART R3B3 Detailed Design 5-407 12/23/2008

already accumumlated themselves, but is available on demand.

5.18.1.52.26 RouteTravTimeStats (Class)

This structure contains the current travel time data for a travel route. This includes the time

the travel time was computed, and the computed speed. This data is also provided in the

most recent entry in the history structure. The travel time may contain a negative number

defined by StatsConstants, which indicates an error. There are two other fields NOT

provided in the history structure -- a computed trend (UP, DOWN, or FLAT) and a reason

string. This will be the travel time calculation if it has been computed successfully, or

details on the error condition if an error constant is specified.

5.18.1.52.27 RouteTravTimeUpdate (Class)

This structure is contained in a TravelRouteEvent for travel time updates. It contains the ID

of the route being updated and the RouteTravelTimeStats containing the new travel time

data and the RouteLinkStats containing the new travel times for all the links in the route.

(Only the current travel time data for the route and links is provided in the event, to reduce

the CORBA event size. GUIs are expected to cache travel time data and build up their own

history data -- although history data is available on demand from the TravelRoute.)

5.18.1.52.28 RouteTravTimeUpdateEvent (Class)

This structure is one of several which can be the element of a TravelRouteEvent union. It

contains the ID of the Travel Route to which the travel time data applies, and the travel time

data itself.

5.18.1.52.29 StatsState (Class)

This interface defines constants that can be used to populate the various "Stats" objects:

routeTollRateCents in RouteTollRateStats and RouteTollRateHistRecord; and

routeTvlTimeSecs in RouteTravelTimeStats and RouteTravelTimeHistRecord. These

constants are not used in link-level stats objects.

5.18.1.52.30 TollDataConsumer (Class)

CORBA interface that must be implemented by any CHART component that wants to be

notified when toll rates changes.

5.18.1.52.31 TollRateConfig (Class)

This structure holds the part of the Travel Route configuration pertaining to toll rates, if the

travel route is configured to track toll rates. This structure holds the part of the Travel

Route configuration pertaining to toll rates. One of these is contained in the

TravelRouteConfig if the travel route is configured to track toll rates, otherwise there is

none.

CHART R3B3 Detailed Design 5-408 12/23/2008

5.18.1.52.32 TollRateRouteInfo (Class)

This structure is used to pass information on toll rate routes for which we are currently

receiving toll rates. Only toll rate routes which were included in the most recent post of toll

rate data are maintained at any given time.

5.18.1.52.33 TollRawData (Class)

This structure is used by the CHART importer of toll rates to pass toll rate data into the

travel route factory. The intent is that the importer will receive all toll rates in one

transaction and will pass all toll rates on to the TravelRouteFactory in one transaction. In

R3B3, Vector was added as a toll rate provider for the CHART system.

5.18.1.52.34 TravelRoute (Class)

This is the primary CORBA interface for working with travel routes in CHART. This

interface provides methods for getting various collections of configuration and/or statistical

data for a travel route. It also provides methods for objects to register to be

TravelRouteConsumer for the travel route (for instances, DMSs that have the route enabled

in a traveler information message). Finally it provides methods for updating and removing

travel routes.

5.18.1.52.35 TravelRouteConfig (Class)

This structure holds the part of the Travel Route configuration pertaining to travel times, if

the travel route is configured to track travel times. It contains the IDs of the links

comprising the route, but not the link configurations themselves. (See

RouteAndLinkConfig.)

5.18.1.52.36 TravelRouteConsumer (Class)

This interface allows other CHART objects to register as a direct consumer of travel route

statistical data. It provides operations for the travel route to call when the travel time or toll

rate for the route is updated. A DMS registers as a TravelRouteConsumer when a

TravelerInfoMsg is enabled.

5.18.1.52.37 TravelRouteConsumerInfo (Class)

This convenience structure lists a TravelRouteConsumer ID, reference, and type.

5.18.1.52.38 TravelRouteConsumerType (Class)

This enumeration lists the types of CHART objects which can be a TravelRouteConsumer.

Starting in R3B3, the CHART2DMS is configured to implement the TravelRouteConsumer

interface.

CHART R3B3 Detailed Design 5-409 12/23/2008

5.18.1.52.39 TravelRouteDisplayConfig (Class)

5.18.1.52.40 TravelRouteEvent (Class)

This union defines the various types of CORBA events pushed on the Travel Route

CORBA event channel, and the content of the events for each type of events. Events are

configured for routes being added, reconfigured, and deleted, and for updates to route travel

time data and toll rate data. Note that there are no link management events, as links cannot

be added, modified, or removed. Link data updates are included in the

RouteTravelTimeUpdateEvent for each route which they are a part of.

5.18.1.52.41 TravelRouteEventType (Class)

This enumeration lists the various types of events pushed on the Travel Route CORBA

event channel. This enumeration is the discriminator for the TravelRouteEvent union

pushed in every CORBA event.

5.18.1.52.42 TravelRouteFactory (Class)

This interface is the entry point for the Travel Route Management. It serves up travel

routes (also an interface) and roadway links (structure data). It provides various operations

for acquiring travel routes and roadway links. Since roadway links are not maintained as a

separate interface, the factory provides the primary operations for acquiring link

configuration and statistical data (although a TravelRoute interface also provides methods

for acquiring such data about the links directly associated with it).

5.18.1.52.43 TravelRouteInfo (Class)

This convenience structure contains the ID of and a reference to a TravelRoute. It is used

by the factory when informing clients of travel routes.

5.18.1.52.44 TravTimeConfig (Class)

This structure holds the part of the Travel Route configuration pertaining to travel times.

One of these is contained in the TravelRouteConfig if the travel route is configured to track

travel times, otherwise there is none.

5.18.1.52.45 TravTimeQuality (Class)

This enumeration has been replaced with a simple integer indication of quality for a link

travel time. The raw integer travel time quality indicator provided by the provider (e.g.,

INRIX currently uses 30, 20, 10), will be used directly (untranslated) to populate the travel

time quality indicator in the CHART classes which were originally designed with a

TravTimeQuality enumeration. This will work for any travel time provider who provides

an integer quality indicator where higher numbers indicate greater quality. (There have

recently been suggestions intimated that INRIX may modify their quality indicator scheme,

to 10, 20, 25, 30; 1-5; 1-10; or possibly even 1-100.)

CHART R3B3 Detailed Design 5-410 12/23/2008

5.18.1.52.46 TravTimeTrend (Class)

This enumeration lists the possible values for a travel time trend. A travel route's trend can

be either UP, FLAT, or DOWN, or the trend can be undefined (for instance if the link

quality threshold has not been met).

5.18.1.52.47 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness..

CHART R3B3 Detailed Design 5-411 12/23/2008

5.18.1.53 TravelRouteManagement2 (Class Diagram)

This diagram shows some toll rate specific classes related to travel routes.

LinkDataUpdateResult
«struct»

11 creates
and

returns

*

1

When used in the context of a LinkDataUpdateResult
the links member will contain only those links that were missing
for the identifier Route.

TravelRouteLinksDesc

«struct»

LinkRawData

«struct»

*1

LinkDataConsumer
«interface»

LinkDataProvider
«interface»

LinkData

«struct» *

1

receives the latest

creates
and

returns

TollRateUpdateResult

«struct»

1

1

TravelRouteRateDesc
«struct»

ExtTollSpec
«struct»

11

1

1

*

TollRawData
«struct»

*

1

1

1

provides access to the latest

*

1

receives the latest

1

TollDataProvider

«interface»

TollRateData

«struct»

TollDataConsumer

«interface»

1

provides access to the latest

1

getTollRateData():TollRateData
getTollRateDataRecvdTimeStamp():timestamp2

recvdTimeMillis :Timestamp2
tollRates:TollRawData[]

updateTollRateData(token:byte[], data:TollRateData):TollRateUpdateResult

getLinkData():LinkData
getLastDataChangedTimestamp():timestamp2

routeSpec: ExtTollSpec
routeTollRateEffTimeSecs: Timestamp2
routeTollRateExpTimeSecs: Timestamp2
routeTollRateCents: short

missingRoutes:TravelRouteRateDesc[]

updateINRIXLinkData(data:LinkData):LinkDataUpdateResult

dataReceivedTimeMillis :timestamp2
linkData:LinkRawData[]

routeID:Identifier
routeName:String
routeSpec:ExtTollSpec

extSystemName:string
extStartId: s tring
extEndId: string
extDescription: string

linkSpec: ExtLinkSpec
linkTravTimeEffTimeSecs: TimeStamp2
linkTravTimeSecs: short
linkSpeedMph: byte
linkTravTimeQual: TravTimeQuality

missingRouteLinks:TravelRouteLinksDesc[]

routeID:Identifier
routeName:String
links:ExtLinkSpec[]

Figure 5-237. TravelRouteManagement2 (Class Diagram)

5.18.1.53.1 ExtTollSpec (Class)

This structure is used to identify a toll rate route. It contains the supplying external system,

the start ID and end ID of the toll rate route (which is the "key" used to identify the toll rate

route, and the name by which the external system refers to the route.

CHART R3B3 Detailed Design 5-412 12/23/2008

5.18.1.53.2 LinkData (Class)

This class contains the latest LinkRawData along with a timestamp that indicates when it

was obtained by the CHART system.

5.18.1.53.3 LinkDataConsumer (Class)

This CORBA interface defines the methods that a consumer of INRIX link data must

implement in order to be updated when data changes.

5.18.1.53.4 LinkDataProvider (Class)

This CORBA interface defines the methods that a provider of INRIX link data must

implement.

5.18.1.53.5 LinkDataUpdateResult (Class)

This class is used to return results from a consumer link data update.

5.18.1.53.6 LinkRawData (Class)

This structure is used by the CHART roadway link travel time import service to pass raw

link travel time data acquired by a third party travel time provider into the CHART

TravelRoute system. Many of these is expected to be passed in, in an array, at one time.

An update does not have to contain the entire collection of links tracked by CHART, but it

is expected to be a large chunk of them (for example, all freeways in Maryland is one

chunk). In R3B3, INRIX was added as a travel time provider for the CHART system.

5.18.1.53.7 TollDataConsumer (Class)

CORBA interface that must be implemented by any CHART component that wants to be

notified when toll rates changes.

5.18.1.53.8 TollDataProvider (Class)

System interface that is implemented by services that provide toll rate data to the system.

5.18.1.53.9 TollRateData (Class)

This struct provides a collection of TollRawData objects along with a timestamp of when

they were posted by the toll rate source.

5.18.1.53.10 TollRateUpdateResult (Class)

This class is used to return results from a call to a TollDataConsumer to update toll rates.

5.18.1.53.11 TollRawData (Class)

This structure is used by the CHART importer of toll rates to pass toll rate data into the

travel route factory. The intent is that the importer will receive all toll rates in one

CHART R3B3 Detailed Design 5-413 12/23/2008

transaction and will pass all toll rates on to the TravelRouteFactory in one transaction. In

R3B3, Vector was added as a toll rate provider for the CHART system.

5.18.1.53.12 TravelRouteLinksDesc (Class)

This struct provides the id and name of a route and alist of links that are associated with that

route.

5.18.1.53.13 TravelRouteRateDesc (Class)

This class describes the toll rate that is currently configured for a CHART Travel route.

5.18.1.54 UserManagement (Class Diagram)

This class diagram contains the interfaces necessary to manage and utilize user profiles.

CHART R3B3 Detailed Design 5-414 12/23/2008

createUser(AccessToken,UserName,Password):void
deleteUser(AccessToken,UserName):void
getUsers(AccessToken):UserList
getRoles(AccessToken):RoleList
getUserRoles(AccessToken,UserName):RoleList
getRoleFunctionalRights(AccessToken,RoleName):FunctionalRightList
setRoleFunctionalRights(AccessToken,RoleName,FunctionalRightList):void
createRole(AccessToken, Role):void
deleteRole(AccessToken,RoleName):void
changeUserPassword(AccessToken, UserName,Password,Password):void
setUserRoles(AccessToken, UserName, RoleList):void
grantRole(AccessToken, UserName,RoleName):void
revokeRole(AccessToken,UserName,RoleName):void
setUserPassword(AccessToken, UserName,Password):void
ping():void
setUserProfileProperties(AccessToken, ProfilePorpertyList):void
deleteUserProfileProperties(AccessToken, ProfilePropertyKeyList):void
setSystemProfileProperties(AccesssToken, ProfilePropertyList):void
deleteSystemProfileProperties(AccessToken, ProfilePropertyKeyList):void
getSystemProfileProperties(AccessToken):ProfilePropertyList
getUserProfileProperties(AccessToken):ProfilePropertyList
createExternalApplication(token, config:ExternalApplicationConfig):
 void
getExternalApplications(token):ExternalApplicationData[]
getExternalApplicationData(token, appID:String):
 ExternalApplicationData
setExternalApplicationConfig(token, appConfig:ExternalApplicationConfig):
 ExternalApplicationData
generateKeyPair(token, appID:String):CryptoKeyPair
setExternalApplicationRoles(token, appID:String, roles:Role[]):
 ExternalApplicationData

«interface»
UserManager

«typedef»
ProfilePropertyList

publicKey:CryptoKey
privateKey:CryptoKey

«struct»
CryptoKeyPair

string key
string value

«typedef»
ProfileProperty

config:ExternalApplicationConfig
publicKey:CryptoKey
assignedRoles:Role[]
token:AccessToken

«struct»
ExternalApplicationData

«type»
UserName

«struct»
CryptoKey

UserName name
string reason

«exception»
InvalidUserName

Added for R3B3

«typedef»
UserList

string description
RoleName name

«typedef»
Role

id:Identifier
name:String
description:String
contactPerson:Contact

«struct»
ExternalApplicationConfig

FunctionalRight right
string reason

«exception»
InvalidFunctionalRight

Password password
string reason

«exception»
InvalidPassword

«type»
RoleName

«typedef»
RoleList

firstName:String
lastName:String
email:String
primaryPhone:String

«struct»
Contact

«exception»
UnknownUser

«exception»
DuplicateRole

long id
Identifier orgFilter

«typedef»
FunctionalRight

«exception»
IncorrectPassword

«exception»
InvalidRole

«typedef»
FunctionalRightList

«exception»
RoleInUse

«exception»
UserLoggedIn

1

1

1 *
1

1

1

2

generates
and

stores

1 *generates
and

stores

*

1

11

*

1
*

1

*

1

Figure 5-238. UserManagement (Class Diagram)

5.18.1.54.1 Contact (Class)

This class defines basic Contact data.

5.18.1.54.2 CryptoKey (Class)

This class represents a single key in a public/private key pair. It is an abstraction for an

CHART R3B3 Detailed Design 5-415 12/23/2008

array of bytes.

5.18.1.54.3 CryptoKeyPair (Class)

This class represents a public/private key pair used by external client applications when

communicating with CHART.

5.18.1.54.4 DuplicateRole (Class)

This class represents an exception thrown when an attempt is made to define a role which

already exists.

5.18.1.54.5 ExternalApplicationConfig (Class)

This class holds configuration data for an extneral application.

5.18.1.54.6 ExternalApplicationData (Class)

This class defines the data available for an external application.

5.18.1.54.7 FunctionalRight (Class)

A functional right epresents a particular user capability. A functional right grants a

particular capability to perform system functions. Each functional right may be limited by

attaching the identifier of a particular organization to which this right is constrained. This

capability allows an administrator to grant a particular Role the ability to modify only

shared resources owned by the identified organization. The orgFilter identifier CHART2

will allow access to any organizations shared resources.

5.18.1.54.8 FunctionalRightList (Class)

A list of functional rights.

5.18.1.54.9 IncorrectPassword (Class)

This class represents an exception thrown when the password specified for a user does not

match that user's password in the database.

5.18.1.54.10 InvalidFunctionalRight (Class)

This class represents an exception thrown when an attempt is made to add an invalid

functional right to a role.

5.18.1.54.11 InvalidPassword (Class)

This class represents an exception thrown when the password specified is invalid.

5.18.1.54.12 InvalidRole (Class)

This class represents the exception thrown when the specified role name does not exist in

CHART R3B3 Detailed Design 5-416 12/23/2008

the database.

5.18.1.54.13 InvalidUserName (Class)

This class represents an exception thrown when the username specified is not valid.

5.18.1.54.14 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the

system database.

5.18.1.54.15 ProfilePropertyList (Class)

A list of profile properties.

5.18.1.54.16 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting

the user all functional rights contained within the role.

5.18.1.54.17 RoleInUse (Class)

This class represents an exception thrown when an attempt is made to delete a role which

has users assigned to it.

5.18.1.54.18 RoleList (Class)

This structure contains a list of roles.

5.18.1.54.19 RoleName (Class)

Name assigned to a role. The role name must be unique and must be no longer than 32

bytes.

5.18.1.54.20 UnknownUser (Class)

This class represents an exception thrown when a user name is passed that is not in the user

database.

5.18.1.54.21 UserList (Class)

A list of user names.

5.18.1.54.22 UserLoggedIn (Class)

This class represents an exception thrown when an attempt is made to delete a user who is

currently logged in.

5.18.1.54.23 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes

CHART R3B3 Detailed Design 5-417 12/23/2008

users, roles, and functional rights. The UserManager is largely an interface to the User

Management database tables.

5.18.1.54.24 UserName (Class)

This typedef defines the type of UserName fields used in system interfaces.

CHART R3B3 Detailed Design 5-418 12/23/2008

5.19 TSSManagementModulePkg

5.19.1 Classes

5.19.1.1 RTMSObject (Class Diagram)

This diagram shows classes in the TSSManagementModule relating to the RTMSImpl

class. The RTMSImpl obtains most of its functionality from its base class, PolledTSSImpl.

The RTMSImpl object provides logic that allows the base class to obtain traffic parameters

from an RTMS device.

R3B3:
Added setLocation()

*

1

11

*

1

2 event channels , one
for status change,
one for traffic parameter data

TSSPollResults

PolledTSSImpl

RTMSImpl

RTMS
«interface»

java.util.TimerTask

TSSPollingTask

Raw Data Log
LogFile

Used to log debugging
information only.

LogFile

TSSManagementDB

TSSStatus
«typedef»

TSSConfiguration
«typedef»

RTMSProtocolHdlrRTMSDeviceStatus

RTMSFactoryImpl

TransportationSensorSystem
«interface»

java.util.Timer

PushEventSupplier

TSSEvent
«typedef»

ModemPortLocator

TSSDBData

CommFailureDB

* 1

11

R3B3:
Modified m_location

1 1

1

1

*

1

1

1

1*

1

1

11

returns status info
us ing

1

1

1

1

1

1 pushes
event
data in

1

1

1

1
returns persisted
TSS data in

run()

getStatus():TSSStatus
getConfiguration(byte[] token):TSSConfiguration
setConfiguration(byte[] token, TSSConfiguration):void
remove(byte[] token);()
setLocation(token:AccessToken, location:ObjectLocation)
 :void

schedule() : void
cancel() : void

byte[] m_id;
ZoneGroupTrafficParms[] m_zoneGrpTrafficParms
int m_avgSpeed
SpeedRange m_speedRange
CommunicationMode m_mode;
OperationalStatus m_opStatus;
long m_trafficParameterTimestamp;

byte[] m_id
String m_name
ObjectLocation m_location
Identifier m_ownerOrg
int m_dropAddress
ZoneGroup[] m_zoneGroups
int m_pollIntervalSecs
CommPortConfig m_commPortCfg
PortLocationData m_portLocData[]
IPPortLocationData m_ipportLocData[]
boolean m_debugComms

TSSImpl(TSSConfiguration, TSSStatus, TSSManagementDB,
 TransportationSensorSystemFactoryl,
 PushEventSupplier, PortLocator)
abstract poll(DataPort):TSSPollResults
pollDevice():void
getStatus(boolean resetAvg):void
setLocation(token:byte[], dev iceLocation:ObjectLocation):void
computeZoneGroupTrafficParams(results : TSSPollResults) :
 ZoneGroupTrafficParams[]

toString()

TrafficParameters [] m_trafficParms
byte m_healthStatus
byte m_msgNum

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

TrafficParameters[] m_trafficParms
OperationalStatus m_opStatus

getStatus():RTMSDeviceStatus

byte m_sensorID;
LogFile m_debugLog;

getList(int TSSType):TSSDBData[]
add(byte[] id, int TSSType, TSSConfiguration):void
remove(byte[] id):void
updateConfig(byte[] id, TSSConfiguration):void
updateCommMode(byte[] id, int mode):void
updateOpStatus(byte[] id, int opStatus):void

DBConnectionManager m_dbConn

RTMSFactory Impl(Serv iceApplication,
 TSSManagementProperties ,
 TSSManagementDB,
 LogFile, PushEventSupplier,
 PushEventSupplier)
remove(byte[] token, byte[] idl):void

TSSConfiguration m_config
CommunicationMode m_mode
OperationalStatus m_opStatus

Figure 5-239. RTMSObject (Class Diagram)

CHART R3B3 Detailed Design 5-419 12/23/2008

5.19.1.1.1 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.

This table is used to log details about any comm failure that occurs in the system.

5.19.1.1.2 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.19.1.1.3 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.19.1.1.4 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user

specified interval. The log files created by this class are used for system debugging and

maintenance only and are not to be confused with the system operations log which is

modeled by the OperationsLog class.

5.19.1.1.5 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method

that can connect a ModemPort that has been acquired by the PortLocator base class. This

derived class logs information in the comm failure database table relating to connection

problems that may occur.

5.19.1.1.6 PolledTSSImpl (Class)

This object implements the Transportation Sensor System interface as defined in IDL. This

implementation provides the base functionality required for Transporation Sensor Systems

that are polled periodically to retrieve traffic parameters. The only requirement for derived

classes is to provide an implmentation of the abstract poll method, which communicates

over a previously connected Port to obtain the traffic parameters from a TSS.

This implementation periodically polls the field device using the derived class

implementation of the poll method. This implementation provides services such as raw

data logging, averaging/summation of data into configured zone groups, asynchronous

notification of configuration changes, and persistence/depersistence.

A DeviceFailure alert is created each time the device transitions into

HARDWARE_FAILURE. Devices that cycle in and out of HARDWARE_FAILURE will

send multiple DeviceFailure alerts so it is up to the AlertModule to prevent duplicate open

DeviceFailure alerts for the same device.

CHART R3B3 Detailed Design 5-420 12/23/2008

5.19.1.1.7 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.19.1.1.8 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc.

capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a

roadway at a single location. This interface serves to identify TransportationSensorSystem

objects as being of the type RTMS. It also provides a place holder for future operations that

may not apply to TSS objects in general and are instead RTMS specific.

5.19.1.1.9 RTMSDeviceStatus (Class)

This class is used to pass raw data retrieved from the RTMS to the caller of the

RTMSProtocolHdlr getStatus() method.

m_trafficParameters - the traffic parameters sensed by the device, such as volume, speed,

and occupancy.

m_healthStatus - The health status byte reported from the RTMS. A value other than 10,

20, 30, 40, 50, 60, or 70 indicates a hardware problem.

m_msgNum - The message number reported by the RTMS. This number is incremented

sequentially when the RTMS dumps averaged data to a retrieval area at the end of a

message period. It can be used to determine if the device is being polled too frequently or

infrequently.

5.19.1.1.10 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all

RTMSImpl objects that have been created within an instance of the

RTMSManagementModule and allows for the addition and removal of RTMS objects. It

also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to

collect the current status of each RTMSImpl and push the collective status in a single

CORBA event.

CHART R3B3 Detailed Design 5-421 12/23/2008

5.19.1.1.11 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the

current traffic parameters from an RTMS device. It makes use of an

RTMSProtocolHandler to perform the device specific protocol to obtain the traffic

parameters. It moves the data from the device specific format to the generic

TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone

group configuration, perform raw data logging, and other services that are common to

Transportation Sensor System objects.

5.19.1.1.12 RTMSProtocolHdlr (Class)

This class is a utility that encapsulates the communication protocol of the RTMS device. It

provides a high level method to get the status as an object. It formats a command and sends

it to the device and receives and interprets the response from the device, passing the data

back to the caller in the form of an RTMSDeviceStatus object.

5.19.1.1.13 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of

technology used for detection within the transportation industry. Examples of TSS devices

range from the advanced devices, such as RTMS, to basic devices, such as single loop

detectors.

This software interface is implemented by objects that provide access to the traffic

parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are

capable of providing detection for one or more detection zones. A single loop detector

would have one detection zone, while an RTMS would have 8 detection zones.

5.19.1.1.14 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to

the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of

traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic

parameters (in seconds).

m_commPortCfg - Communication configuration values.

CHART R3B3 Detailed Design 5-422 12/23/2008

m_portLocData - Configuration information that determines which port manager(s) should

be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this

TSS. When enabled, command and response packets exchanged with the device are logged

to a debugging log file.

5.19.1.1.15 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation

Sensor System object that existed in the system during a prior run of the software.

5.19.1.1.16 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of

the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique

identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus

objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo

object.

5.19.1.1.17 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database

data pertaining to Transportation Sensor Systems. Because this class is designed to be

generic and work for RTMS as well as other TSS derived objects, the add method requires

a model id to be passed. This allows data for a specific model to be retrieved by model

specific factories during system initialization.

5.19.1.1.18 TSSPollingTask (Class)

This class is a TimerTask that is used by an RTMS to schedule its asynchronous polling

with a Timer object.

CHART R3B3 Detailed Design 5-423 12/23/2008

5.19.1.1.19 TSSPollResults (Class)

This class is a data holder used to pass the results of device polling from the PolledTSSImpl

derived class back to the base class for processing. The traffic parameter data passed is lane

(detection zone) level. The operational status is the status as determined by the derived

class.

m_trafficParms - An array of traffic parameters for the current poll cycle, with one array

entry for each detection zone of the device.

m_opStatus - The operational status as determined by the derived class.

5.19.1.1.20 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation

Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data

was collected from the device.

m_avgSpeed - average speed at the detector leve.

m_speedRange - speed range at the detector level (avg speed).

CHART R3B3 Detailed Design 5-424 12/23/2008

5.19.1.2 TSSManagementModulePkg (Class Diagram)

This package manages all server activies related to Traffic Sensor Systems. Currently only

Remote Traffic Microwave Sensor (RTMS) type devices are supported however it is

designed to handle other TSS devices types. Devices are periodically polled (responding to

a device-created event is not supported) and results are reported on CORBA event channels.

UPDATED FOR R3B3
Modified computeZoneGroupParms().

R3B3: m_ocation is more detailed.
Added IPPortLocationData (0 or 1 element)
Modified PortLocationData (0 or 1 element)

New for R3B1.

Raw Data Log

LogFile

Used to log
debugging
information only.

LogFile

TSSManagementDB

TSSStatus

«typedef»

TSSConfiguration

«typedef»

RTMSProtocolHdlrRTMSDeviceStatus

RTMSFactoryImpl

PolledTSSImpl

TSSManagementModulePkg

RTMSFactory

«interface»

TransportationSensorSystem

«interface» Stores list of
RTMS objects

java.util.Vector

ServiceApplicationModule

«interface»

TSSPollingTask

java.util.TimerTask

java.util.Timer

PushEventSupplier

ServiceApplication

«interface»

TSSEvent

«typedef»

Por tLocator

TSSManagementProper ties

TSSDBData

CommFailureDB

TSSPollResults RTMSImpl

RTMS

«interface»

2 event channels, one
for status change,
one for traffic parameter data

TSSCurrentStatusPushTask

java.util.Timer

*

1

*

1

1

1

1

11

1

1

*

1

1

11

returns status info
using

1

1

1

1

pushes event data in

1

1

1

1

1

1

1

1

1

1

1

1

1

1 pushes
event
data in

1

1

1

1

1

1

1

1

returns persisted
TSS data in

1

1

1

1

1

1

11

1 1

1

1

1

*

*

1

1

1

AlertFactoryWrapper

1

1

1

*

1

1

*

1

run()

getStatus():TSSStatus
getConfiguration(byte[] token):TSSConfiguration
setConfiguration(byte[] token, TSSConfiguration):void
remove(byte[] token);()
setLocation(token:AccessToken, location:ObjectLocation)
 :void

schedule() : void
cancel() : void

byte[] m_id;
ZoneGroupTrafficParms[] m_zoneGrpTrafficParms
int m_avgSpeed
SpeedRange m_speedRange
CommunicationMode m_mode;
OperationalStatus m_opStatus;
long m_trafficParameterTimestamp;

byte[] m_id
String m_name
ObjectLocation m_location
Identifier m_ownerOrg
int m_dropAddress
ZoneGroup[] m_zoneGroups
int m_pollIntervalSecs
CommPortConfig m_commPortCfg
PortLocationData m_portLocData[]
IPPortLocationData m_ipportLocData[]
boolean m_debugComms

TSSImpl(TSSConfiguration, TSSStatus, TSSManagementDB,
 TransportationSensorSystemFactoryl,
 PushEventSupplier, PortLocator)
abstract poll(DataPort):TSSPollResults
pollDevice():void
getStatus(boolean resetAvg):void
setLocation(token:byte[], deviceLocation:ObjectLocation):void
computeZoneGroupTrafficParams(results : TSSPollResults) :
 ZoneGroupTrafficParams[]

createRTMS(byte[] token, TSSConfiguration):RTMS

toString()

TrafficParameters[] m_trafficParms
byte m_healthStatus
byte m_msgNum

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

TrafficParameters[] m_trafficParms
OperationalStatus m_opStatus

getStatus():RTMSDeviceStatus

byte m_sensorID;
LogFile m_debugLog;

RTMSFactoryImpl(ServiceApplication,
 TSSManagementProperties,
 TSSManagementDB,
 LogFile, PushEventSupplier,
 PushEventSupplier)
remove(byte[] token, byte[] idl):void

getList(int TSSType):TSSDBData[]
add(byte[] id, int TSSType, TSSConfiguration):void
remove(byte[] id):void
updateConfig(byte[] id, TSSConfiguration):void
updateCommMode(byte[] id, int mode):void
updateOpStatus(byte[] id, int opStatus):void

DBConnectionManager m_dbConn

TSSConfiguration m_config
CommunicationMode m_mode
OperationalStatus m_opStatus

start(args : string[]) : boolean
shutdown() : boolean
getORB() : ORB
getPOA(string poaName) : POA
getTradingRegister() : CosTrading.Register
getTradingLookup() : CosTrading.Lookup
getEventChannelFactory() : EventChannelFactory
getDBConnectionManager() : DBConnectionManager
getOperationsLog() : OperationsLog
getProperties() : java.util.Properties
getDefaultProperties() : java.util.Properties
registerObject(obj, id, name, type, publish) : void
registerEventChannel(EventChannel, name) : void
withdrawObject(id) : void
getIDGenerator() : IdentifierGenerator

getRawDataFileName():String
getDebugFileDir():String
getAutoStatusPushSecs():int

initialize(ServiceApplication app):boolean
getVersion() : ComponentVersion
traderGroupUpdated() : void
shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;
DefaultServiceApplicationProperties m_props;

run()

Figure 5-240. TSSManagementModulePkg (Class Diagram)

CHART R3B3 Detailed Design 5-425 12/23/2008

5.19.1.2.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.19.1.2.2 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.

This table is used to log details about any comm failure that occurs in the system.

5.19.1.2.3 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.19.1.2.4 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.19.1.2.5 java.util.Vector (Class)

A Vector is a growable array of objects.

5.19.1.2.6 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user

specified interval. The log files created by this class are used for system debugging and

maintenance only and are not to be confused with the system operations log which is

modeled by the OperationsLog class.

5.19.1.2.7 PolledTSSImpl (Class)

This object implements the Transportation Sensor System interface as defined in IDL. This

implementation provides the base functionality required for Transporation Sensor Systems

that are polled periodically to retrieve traffic parameters. The only requirement for derived

classes is to provide an implmentation of the abstract poll method, which communicates

over a previously connected Port to obtain the traffic parameters from a TSS.

CHART R3B3 Detailed Design 5-426 12/23/2008

This implementation periodically polls the field device using the derived class

implementation of the poll method. This implementation provides services such as raw

data logging, averaging/summation of data into configured zone groups, asynchronous

notification of configuration changes, and persistence/depersistence.

A DeviceFailure alert is created each time the device transitions into

HARDWARE_FAILURE. Devices that cycle in and out of HARDWARE_FAILURE will

send multiple DeviceFailure alerts so it is up to the AlertModule to prevent duplicate open

DeviceFailure alerts for the same device.

5.19.1.2.8 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device.

The actual implementation of the operations is done by the derived classes depending on

what protocol is used for communication.

5.19.1.2.9 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.19.1.2.10 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc.

capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a

roadway at a single location. This interface serves to identify TransportationSensorSystem

objects as being of the type RTMS. It also provides a place holder for future operations that

may not apply to TSS objects in general and are instead RTMS specific.

5.19.1.2.11 RTMSDeviceStatus (Class)

This class is used to pass raw data retrieved from the RTMS to the caller of the

RTMSProtocolHdlr getStatus() method.

m_trafficParameters - the traffic parameters sensed by the device, such as volume, speed,

and occupancy.

m_healthStatus - The health status byte reported from the RTMS. A value other than 10,

20, 30, 40, 50, 60, or 70 indicates a hardware problem.

CHART R3B3 Detailed Design 5-427 12/23/2008

m_msgNum - The message number reported by the RTMS. This number is incremented

sequentially when the RTMS dumps averaged data to a retrieval area at the end of a

message period. It can be used to determine if the device is being polled too frequently or

infrequently.

5.19.1.2.12 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

5.19.1.2.13 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all

RTMSImpl objects that have been created within an instance of the

RTMSManagementModule and allows for the addition and removal of RTMS objects. It

also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to

collect the current status of each RTMSImpl and push the collective status in a single

CORBA event.

5.19.1.2.14 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the

current traffic parameters from an RTMS device. It makes use of an

RTMSProtocolHandler to perform the device specific protocol to obtain the traffic

parameters. It moves the data from the device specific format to the generic

TSSPollResults object to allow the PolledTSSImpl to combine/average data based on zone

group configuration, perform raw data logging, and other services that are common to

Transportation Sensor System objects.

5.19.1.2.15 RTMSProtocolHdlr (Class)

This class is a utility that encapsulates the communication protocol of the RTMS device. It

provides a high level method to get the status as an object. It formats a command and sends

it to the device and receives and interprets the response from the device, passing the data

back to the caller in the form of an RTMSDeviceStatus object.

5.19.1.2.16 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.19.1.2.17 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

CHART R3B3 Detailed Design 5-428 12/23/2008

invoking ServiceApplication to perform actions such as object creation and publication.

5.19.1.2.18 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of

technology used for detection within the transportation industry. Examples of TSS devices

range from the advanced devices, such as RTMS, to basic devices, such as single loop

detectors.

This software interface is implemented by objects that provide access to the traffic

parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are

capable of providing detection for one or more detection zones. A single loop detector

would have one detection zone, while an RTMS would have 8 detection zones.

5.19.1.2.19 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id - The unique identifier for this TSS. This field is ignored when the object is passed to

the TSS to change its configuration.

m_name - The name used to identify the TSS.

m_location - A descriptive location of the TSS.

m_dropAddress - The drop address for the device.

m_zoneGroups - Logical groupings of detection zones, used to provide a single set of

traffic parameters for one or more detection zones.

m_pollIntervalSecs - The interval on which the TSS should be polled for its current traffic

parameters (in seconds).

m_commPortCfg - Communication configuration values.

m_portLocData - Configuration information that determines which port manager(s) should

be used to establish a connection with the SensorSystem.

m_debugComms - Flag used to enable/disable the logging of communications data for this

TSS. When enabled, command and response packets exchanged with the device are logged

to a debugging log file.

5.19.1.2.20 TSSCurrentStatusPushTask (Class)

This class is a timer task that is executed on a regular interval. When this task is run, it

calls into the RTMSFactoryImpl object to have it collect the status for all RTMSImpl

CHART R3B3 Detailed Design 5-429 12/23/2008

objects and to push a CurrentStatus event with the collected data.

5.19.1.2.21 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation

Sensor System object that existed in the system during a prior run of the software.

5.19.1.2.22 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of

the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique

identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus

objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo

object.

5.19.1.2.23 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database

data pertaining to Transportation Sensor Systems. Because this class is designed to be

generic and work for RTMS as well as other TSS derived objects, the add method requires

a model id to be passed. This allows data for a specific model to be retrieved by model

specific factories during system initialization.

5.19.1.2.24 TSSManagementModulePkg (Class)

This class is a ServiceApplicationModule used to serve an RTMSFactory object. The

RTMSFactory serves zero or more RTMS objects. By providing an implementation of the

ServiceApplicationModule interface, this class can be included in the CHART2 service

application framework, which provides common services needed to serve CORBA objects

within the CHART 2 system.

5.19.1.2.25 TSSManagementProperties (Class)

This class provides a wrapper to the application's properties file that provides easy access to

the properties specific to the TSSManagementModule. These properties include the name

of the file where raw traffic parameter data is to be logged, the directory where debug log

files are to be kept, and the interval at which the status of all TSS objects is to be collected

CHART R3B3 Detailed Design 5-430 12/23/2008

and pushed in a CORBA event.

5.19.1.2.26 TSSPollingTask (Class)

This class is a TimerTask that is used by an RTMS to schedule its asynchronous polling

with a Timer object.

5.19.1.2.27 TSSPollResults (Class)

This class is a data holder used to pass the results of device polling from the PolledTSSImpl

derived class back to the base class for processing. The traffic parameter data passed is lane

(detection zone) level. The operational status is the status as determined by the derived

class.

m_trafficParms - An array of traffic parameters for the current poll cycle, with one array

entry for each detection zone of the device.

m_opStatus - The operational status as determined by the derived class.

5.19.1.2.28 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id - The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms - The traffic parameters for each ZoneGroup of the Transporation

Sensor System as specified in the Sensor system's TSSConfiguration object.

m_mode - The communication mode of the TSS.

m_opStatus - The operational status for the TSS.

m_trafficParameterTimestamp - A timestamp that records when the traffic parameter data

was collected from the device.

m_avgSpeed - average speed at the detector leve.

m_speedRange - speed range at the detector level (avg speed).

CHART R3B3 Detailed Design 5-431 12/23/2008

5.19.2 SequenceDiagrams

5.19.2.1 PolledTSSImpl:computeZoneGroupTrafficParms (Sequence Diagram)

This diagram depicts changes to the PolledTSSImpl.computeZoneGroupTrafficParms()

method needed to support zone level detail data and TSS summary data (speed range)

enhancements for R3B3. Existing implementation details are diagrammed at a high level

or summarized using imbedded notes. This method uses a TSSPollResults object which

contains zone level data to create an array of ZoneGroupTrafficParms objects to return to

the caller. First, system wide SpeedRange values are retrieved from the

SystemProfileProperties. For each zone group, an array of ZoneTrafficParms objects,

representing zone level detail in R3B3, is created including new SpeedRange values. Each

ZoneGroup also has a ZoneGroup level SpeedRange for R3B3.

speedRanges:SpeedRange[] = getSpeedRanges()

set m_speedRange for the zone's
current speed.

ztp:ZoneTrafficParms =
create(zoneNumber, zoneParms)

zoneDetail:ZoneTrafficParms[] = toArray()

set current index Object's m_zoneTrafficParms = zoneDetail

add()

update the current index Object's m_trafficParms with the accumulated VSO data.

update current index Object's m_trafficParms with SpeedRange

computeZoneGroupTrafficParams(
pollResults:TSSPollResults)

create()

Existing method
modified for R3B3.

Loop on zoneGroups
for this TSS.

varriables
for accumulated
values.

PolledTSSImpl

Loop on zone
numbers for a
zone group.
Retrieve the
TrafficParameters
for each
specified zone
number from the
pollResults passed
in.

Return array of ZoneGroupTrafficParms

 Update VSO accumulators
defined above. This existing
functionality not diagrammed.

New for R3B3.
SpeedRanges are
retrieved from SysProfProps.

New for R3B3. Set the speedRange for the
current Zone Group's TrafficParams member.

New for R3B3. Set new m_speedRange
member in TrafficParamerters. It will not
be set by the Protocol Handler. Note: if
zone reads NO_DATA, set beginning
and ending of SpeedRange to NO_DATA.
Create new ZoneTrafficParmand add to
ArrayList.

zomeParams:
TrafficParameters

New for R3B3. Update the current ZoneGroupTrafficParms objects with the
ZoneTrafficParms[] created for this ZoneGroup.

zoneDetailParms:
ArrayList

<ZoneTrafficParams>

ZoneTrafficParms

trafficParmsArray:
ZoneGroupTrafficParms[]

SustemProfileProperties

[* m_config.m_zoneGroups]

create()

speed:int = 0

vol:int = 0

occ:int = 0

[* zoneGroup.zoneNumbers]

Figure 5-241. PolledTSSImpl:computeZoneGroupTrafficParms (Sequence Diagram)

CHART R3B3 Detailed Design 5-432 12/23/2008

5.19.2.2 PolledTSSImpl:processPollResults (Sequence Diagram)

This diagram depicts changes to the PolledTSSImpl.processPollResults() method needed to

support zone level detail data and TSS summary data (speed range) enhancements for

R3B3. Existing implementation details are diagrammed at a high level or summarized

using imbedded notes. This method processes the TSSPollResults returned from the

protocol handler as the result of a poll. If the TSSPollResulsts indicates the op status is OK,

the following processing is done. First, aw zone level detail is logged to a separate file.

Then the computeZoneGroupTrafficParms() method is called and returns an array of

ZoneGroupTrafficParms. The returned array is us to update the current TSSStatus. Then

the zone group data is used to calculate and average speed (TSSStatus.m_avgSpeed).

Previously the average speed was calculated on the GUI.

Existing method
modified for R3B3.

New for R3B3. New
TSSStatus.m_avgSpeed
average speed field will
be calculated using
zone details.

[pollResults.m_opStatus == OperationalStatus.OK]

log Raw zone data.

m_status.m_zoneGrpTrafficParms =
zoneDetails

PolledTSSImpl

Existing functionality not diagrammed.

processPollResults(
pollResults:PollResults)

else

zoneDetails:ZoneGroupTrafficParms[] =
computeZoneGroupTrafficParms(pollResults)

m_status.m_tafficParameterTimestamp
= NOW

calculate m_status.m_avgSpeed using
zoneDetails.

Figure 5-242. PolledTSSImpl:processPollResults (Sequence Diagram)

CHART R3B3 Detailed Design 5-433 12/23/2008

5.19.2.3 PolledTSSImpl:setConfiguration (Sequence Diagram)

A user with the proper functional rights can change the configuration of a Transportation

Sensor System. The previous configuration values are used to detect values that have been

changed. If the Port location data has been changed, a new PortLocator object is created

with the new values. If the polling interval has been changed and the device is not offline,

the existing polling timer is cancelled and destroyed, a new timer is created, and a new

polling task is scheduled. If any values were changed, an entry is made in the operations

log to record the values that the user has changed. A CORBA event is pushed on the Status

event channel to provide notification of the configuration change to other applications.

TSSManagementDB

updateConfig ()

R3B3: Set m_config
parameters except
device location

m_config=config

Tasks cannot be
removed from a
Timer, so we just
create a new one.

TSSPollingTask

java.util.Timer

PortLocator

java.util.Timer

Administrator

[at least one config value changed]
logList (configuration changed by user, enumerating items changed)

[poll interval seconds changed AND NOT offline]
create

[poll interval seconds changed AND NOT offline]
delete

[PortLocation data changed]
create

setConfiguration

R3B3: Create the appropriate one.
.FMSPortLocator or TCPPortLocator

If port location data
changed, create new
PortLocator and replace
the old one.

OperationsLog

PolledTSSImpl

PushEventSupplier
(status channel)

[poll interval seconds changed AND NOT offline]
schedule

[poll interval seconds changed AND NOT offline]
create

[poll interval seconds changed and NOT offline]
cancel

[not authorized]
AccessDenied

[at leas t one config value changed]
push (ConfigChanged)

Figure 5-243. PolledTSSImpl:setConfiguration (Sequence Diagram)

CHART R3B3 Detailed Design 5-434 12/23/2008

5.19.2.4 RTMSFactoryImpl:constructor (Sequence Diagram)

When the RTMSFactoryImpl is constructed, it obtains persisted data for each previously

existing RTMS from the database and constructs RTMSImpl objects using this data. Each

object is connected to the ORB and registered in the CORBA trading service. The factory

creates a timer that is used to cause it to periodically collect the status of all RTMS objects

and push the data as a CORBA event.

See RTMSImpl:constructor
for details on cons truction.

java.util.Vector

ORBServiceApplication

RTMSImpl

TSSManagementDB

RTMSFactoryImpl

TSSManagementModulePkg

TSSCurrentStatusPushTask

java.util.Timer

add

schedule

create

create

regis terObject

ac tivate_object

getORB

create

[*for each TSSDBData]

TSSDBData[]

getList (TSSTypeRTMS)

create

create

Figure 5-244. RTMSFactoryImpl:constructor (Sequence Diagram)

CHART R3B3 Detailed Design 5-435 12/23/2008

5.19.2.5 RTMSImpl:constructor (Sequence Diagram)

This diagram shows the construction of the RTMSImpl object. The RTMSImpl invokes the

base class constructor, allowing it to construct a PortLocator, LogFile (for debugging), and

a polling timer (if the status passed to the constructor does not indicate the device is

offline). After the base class is constructed, the RTMSImpl constructs an

RTMSProtocolHandler to be used to perform the RTMS specific protocol to obtain traffic

parameters from the RTMS device.

This could be the
FMSPortLocator
or TCPPortLocator

[NOT offline]
create TSSPollingTask

java.util.T imer

LogFile

PortLocator

RTMSProtocolHdlr

PolledTSSImpl

RTMSImpl

RTMSFactoryImpl

create

[NOT offline]
schedule

[NOT offline]
create

create

create

create

super

Figure 5-245. RTMSImpl:constructor (Sequence Diagram)

CHART R3B3 Detailed Design 5-436 12/23/2008

5.19.2.6 RTMSImpl:poll (Sequence Diagram)

The poll method of the RTMSImpl is called from its base class when it is time to poll the

RTMS device. At the point when this method is called, the base class has already

established a connection with the device. The RTMSImpl uses the RTMSProtocolHandler

to send a data request to the device and parse the device response. Any communication

failure, such as a non-responsive device, causes the base class to be notified that a

communication failure occurred. If a communication failure did not occur, the RTMS

health status is checked for an indication of a hardware failure. If no hardware failure

exists, the lane level data is passed back to the base class to process the data.

A DeviceFailureAlert is created only when the RTMS transitions from another state into

HARDWARE_FAILURE. Any future transitions into another state have no effect on the

alert. A device that cycles in and out of a hardware failure causes this class to generate

many DeviceFailure alerts however it is left to the AlertModule to not create duplicate open

alerts.

Port

New for R3B3.
DataPortWrapper redirects the call
to the appropriate DataPort.All other
 RTMS methods that command the
 device should use
dataportwrapper s imilar to this
diagram.

New for R3B1.

[HARDWARE_FAILURE]
TSSPollResults

RTMSProtocolHdlr

v irtual call to derived
class impl.

RTMSImpl
PolledTSSImpl

The remainder of this sequence is only carried out if a valid response was received from the RTMS device.

RTMSDeviceStatus

LogFile
(Debugging)

TSSPollResults

DataPortWrapper

[debug mode]
log (RTMSDeviceStatus.toString())

TSSPollResults

m_trafficParms[i] =
RTMSDeviceStatus.m_trafficParms[i]

[*for each TrafficParameters
object in RTMSDeviceStatus]

RTMSDeviceStatus

[debug mode]
log (packet received)

[CommFailure]
TSSPollResults

create

byte{}

send(RTMS Data Request)

[RTMSDeviceStatus.m_healthStatus
!= 10, 20, 30, 40, 50, 60, or 70]

m_opStatus = HARDWARE_FAILURE

create

[debug mode]
log (packet being sent)

[CommFailure]
m_opStatus = COMM_FAILURE

[no response, checksum error, or
invalid packet]
CommFailure

receive

getStatus

AlertFactoryWrapper

[newly trans itioned to HARDWARE_FAILURE]
createDeviceFailureAlert(token, deviceid, "TSS <name> is in Hardware Failure", owningCenter)

poll

Figure 5-246. RTMSImpl:poll (Sequence Diagram)

CHART R3B3 Detailed Design 5-437 12/23/2008

5.20 TravelRouteModulePkg

5.20.1 Classes

5.20.1.1 TravelRouteModule (Class Diagram)

This Class Diagram shows the classes involved in implementation of the Travel Route

Module. Key classes include the TravelRouteModule, the TravelRouteFactory, and the

TravelRouteImpl. There will be one module, one factory, and many TravelRouteImpl

objects.

CHART R3B3 Detailed Design 5-438 12/23/2008

TABLE TOLL_RATE_DOC

EXT_SYS_NAM E: v arc har2(35)
EXT_SYS_START_ID: c har(?)
EXT_SYS_END_ID: char(?)
TOLL_RATE_EFF_TIM E_SECS: date
TOLL_RATE_EXP_TIM E_SECS: date
TOLL_RATE_CENTS: num ber(5)

Expec t about 20 rows a t a l l tim es .

TravelRouteConsumerInfo

«s truc t»

1

TravelRouteDisplayConfig

1

1

1

1

1

1

0..*

UsedLinkElement

1 1

0..*

1

ExtLink IdKey

1

1

Proc es s ing Queue.
1 th read .

Pus her Queue.
N th reads .

1

1

QueueableCommand

«in te rfac e»

ConsumerPushCmd

0..*1
CommandQueue

ExtTollSpecKey

1

1

1

ExtLinkSpec

«s truc t»

0 ..*1CommandQueue

QueueableCommand

« in te rfac e»

ProcessLinkDataCmd ProcessTollDataCmd

1

1

1

java .util.Timer

java .util.TimerTask

TravelRouteSta lenessWatcherTask

1

1 1

1

ExtTollSpec

«s truc t»

1

1

1

RouteAndLinkConfig

«s truc t»

0 ..*

1

0 ..*

1

1

1

1

1

1

1

0..1 1

1 10..121

0..121

1

1

0..121

0..11

0 ..1 1

1 1

1 1

1

1

0..11

0 ..*

1

1

1

1

1

1

1

1

0..1

1

0 ..*

1

1

AlertFactoryWrapper

DBConnectionM anager

1

1

1 1

1

1

1*

1

1

1

1

PushEventSupplier

RoadwayLinkFullInfo

«s truc t»

TravelRouteConfig

«s truc t»

TravTimeConfig

«s truc t»

TollRateConfig

«s truc t»

RouteLink

«s truc t»

RoadwayLinkConfigInfo

«s truc t»

RoadwayLinkConfig

«s truc t»

RouteFullStats

«s truc t»

RouteStats

«s truc t»

RouteHistStats

«s truc t»

RouteLinkStats

«s truc t»

RouteLinkHistStats

«s truc t»

LinkTravTimeHistStats

«s truc t»

RouteTravTimeHistStats

«s truc t»

LinkTravTimeHistRecord

«s truc t»

RouteTravTimeHistRecord

«s truc t»

RouteTollRateStats

«s truc t»

RouteTollRateHistStats

«s truc t»

RouteTollRateHistRecord

«s truc t»

1

1

1

*

RouteTravTimeStats

«s truc t»

LinkTravTimeStats

«s truc t»

0 ..1

TABLE: UNPROCESSED_TOLL_DATA

SYSTEM _TIM ESTAM P: date
EXT_SYS_NAM E: v archar2(35)
EXT_SYS_START_ID: c har(?)
EXT_SYS_END_ID: c har(?)
TOLL_RATE_EFF_TIM E_SECS: da te
TOLL_RATE_EXP_TIM E_SECS: da te
TOLL_RATE_CENTS: num ber(5)

Ex pec t ei ther z ero rows or about 20 .
On eac h update from Vec to r, th is m any
rows wi l l be dum ped in . Rows wi l l be
m oved one by one to ROUTE_TOLL_RATE.

TABLE: ROUTE_TOLL_RATE

TR_ROUTE_ID: char(32)
TOLL_RATE_EFF_TIM E_SECS: date
TOLL_RATE_EXP_TIM E_SECS: date
TOLL_RATE_CENTS: num ber(5)

Expec t 20x12x8 = 1920 rows m ax .
20 rou tes x 12 /hour x 8 hours .
Every 4 hours , a rc hiv ing runs and
leav es on ly 4 hours o f da ta .

0 ..*

TABLE: L INK_TRAVEL_TIM E

RL_LINK_ID: c har(32)
L INK_TRAVEL_TIM E_EFF_TIM E: da te
L INK_TRAVEL_TIM E_SECS: num ber(5)
L INK_TRAVEL_TIM E_QUAL: num ber(1)
L INK_TRAVEL_TIM E_TREND: num ber(1)
Shou ld we s to re s peed (M PH)?
Speed eas i ly com puted.
�

Expec t 1000x 12x 8 = 96000 rows m ax .
1000 link s x 12/hour x 8 hours .
Every 4 hours , a rc hiv ing runs and c uts tab le in hal f.

Notes : Wi ll wri te unproces s ed
l ink data to a separa te
tim es tam ped DB table (e .g .,
UNPROCESSED_LINK_DATA)
from fac to ry .load Im portLink Data()
rea l quic k , then re turn to c a lle r
(INRIX Im port M odu le). Then
p roc ess the data . Ca l l eac h
Trav e lRoute , hav e it M OVE al l the
l ink data i t needs to the rea l l ink
data DB table . When a l l rou tes
hav e go tten a chanc e to update
the i r da ta , de lete any rem aining
unproces sed l ink da ta . Goal i s to
a llow s top and qu ick res ta rt o f
this m odu le a t any tim e wi thou t
los ing a round o f l ink data .

TravelRouteDB

TravelRouteM odule

« im plem entationClass »

TravelRouteM oduleProperties

TravelRouteFactory Impl

« im p lem enta tionClas s »

TravelRoute Impl

«im p lem enta tionClas s»

TravelRouteFactory

« in te rface»

TravelRoute

«in te rfac e»

Serv iceApplicationM odule

« in terface»

1 1

1

1

0..*

1

java .util.Properties

Chart2DM S

« in te rfac e»

TravelRouteConsumer

« inte rfac e»

0..*1

TABLE: ROUTE_TRAVEL_TIM E

TR_ROUTE_ID: c har(32)
ROUTE_TRAVEL_TIM E_EFF_TIM E: da te
ROUTE_TRAVEL_TIM E_SECS: num ber(5)
ROUTE_TRAVEL_TIM E_QUAL: num ber(1)
ROUTE_TRAVEL_TIM E_TREND: num ber(1)
Shou ld we s to re speed (M PH)?
Speed eas i ly c om puted .
�

Ex pec t 40x 12x 8 = 3840 rows m ax .
40 rou tes x 12 /hour x 8 hours .
Ev ery 4 hours , a rc h iv ing runs and leaves
on ly 4 hours o f da ta .

Do we figure only one Trav e lRouteM odu le
fo r a l l of CHART? One Trav e lRouteM odu le
and one INRIX Im port M odu le? There a re two
VECTOR Im port M odu les (p rim ary and back up).
If al l trav e l rou tes l iv e on ly on one s erv er, then
RL_ID can be a p rim ary k ey . If trav e l rou tes
c an be s p li t am ong m u ltip le Trave lRouteM odu les
on m u ltip le s erv ers , INRIX im port m odu le has to
load a ll l ink data to a l l runn ing Trav elRouteM odu les
every tim e. I think the UNPROCESSED_LINK_DATA
c onc ept work s fo r tha t. Whatev er does n ' t ge t
loaded fo r a trav e l rou te jus t ge ts th rown away .

1
1

1

1

TABLE: UNPROCESSED_LINK_DATA

SYSTEM _TIM ESTAM P: da te
EXT_SYS_NAM E: v arc har2(35)
EXT_LINK_ID: char(8)
L INK_TRAVEL_TIM E_EFF_TIM E: da te
L INK_TRAVEL_TIM E_SECS: num ber(5)
L INK_TRAVEL_TIM E_QUAL: num ber(1)

Expec t e i ther zero rows o r about 25000.
On each pul l from INRIX, th is m any rows
wil l be dum ped in .

TABLE: TRAVEL_ROUTE_DEST

TR_ID: char(32)
SORT_ORDER_NUM BER: num ber(1)
ALT_DEST_TEXT: v arc har2(30)

TABLE: TRAVEL_ROUTE_LINK

TR_ID: c har(32)
SORT_ORDER_NUM BER: num ber(4)
RL_ID: c har(32)
PERCENT: num ber(3)
M IN_ALLOWED_QUALITY: num ber(1)

TABLE: TRAVEL_ROUTE_CONSUM ER

TR_ID: char(32)
SORT_ORDER_NUM BER: num ber(2)
CONSUM ER_ID: char(32)

TABLE: TRAVEL_ROUTE

TRAVEL_ROUTE_ID c har(32)
NAM E: v arc har2(50)
M ILLI_M ILES: num ber(6) nul l
USER_LOCATION_INDICATOR: num ber(1)
PRIM ARY_DEST_TEXT: v archar2(30)
TRAVEL_TIM E_ENABLED_INDICATOR: num ber(1)
M IN_TRAVEL_TIM E_M INS: num ber(3)
M AX_TRAVEL_TIM E_M INS: num ber(3)
ALERT_TRAVEL_TIM E_M INS: num ber(3)
ALERTS_ENABLED_INDICATOR: num ber(1)
ALERT_OP_CENTER: c har(32) nul l
NOTIFS_ENABLED_INDICATOR: num ber(1)
NOTIF_GROUP: v archar(33) nu l l
TOLL_RATE_EXT_SYS_NAM E: v arc har(35) nul l
TOLL_RATE_EXT_START_ID: v arc har(10?) nul l
TOLL_RATE_EXT_END_ID: varc har(10?) nu l l
TOLL_RATE_EXT_DESC: v arc har(25?) nul l
TOLL_RATE_ENABLED_INDICATOR: num ber(1)

TABLE: TRAVEL_ROUTE_STATE

TR_ID: c har(32)
SORT_ORDER: num ber(2)
USPS_STATE_CODE: c har(2)
STATE_FIPS_CODE: c har(2)

TABLE: TRAVEL_ROUTE_COUNTY�

TR_ID: c har(32)
SORT_ORDER: num ber(2)
COUNTY_NAM E: v arc har2(50)
COUNTY_FIPS_CODE: c har(3)

TABLE: TRAVEL_ROUTE_ROUTE_SPEC

TR_ID: c har(32)
SORT_ORDER_NUM BER: num ber(2)
ROUTE_SPEC_TYPE: num ber(1)
ROUTE_FREE_FORM _TEXT: v archar2(50)
ROUTE_TYPE: num ber(1)
ROUTE_PREFIX: v arc har2(10)
ROUTE_NUM BER: varc har2(10)
ROUTE_SUFFIX: v arc har2(10) nul l

TABLE: ROADWAY_LINK

LINK_ID: by te(32)
EXT_SYS_NAM E: v archar2(10)
EXT_LINK_ID: c har(8)
L INK_NAM E: v archar2(50?)
USPS_STATE_CODE: char(2)
STATE_FIPS_CODE: char(2)
COUNTY_NAM E: varc har2(50)
COUNTY_FIPS_CODE: c har(3)
ROUTE_SPEC_TYPE: num ber(1)
ROUTE_FREE_FORM _TEXT: v arc har2(50)
ROUTE_TYPE: num ber(1)
ROUTE_PREFIX: varc har2(10)
ROUTE_NUM BER: v archar2(10)
ROUTE_SUFFIX: varc har2(10) nu l l
M ILL I_M ILES: num ber(5)
START_LAT_UDEG: num ber(9)
START_LONG_UDEG: num ber(10)
END_LAT_UDEG: num ber(9)
END_LONG_UDEG: num ber(10)

TABLE: ROUTE_TRAVEL_TIM E_TEXT

TR_ROUTE_ID: c har(32)
ROUTE_TRAVEL_TIM E_EFF_TIM E: da te
ROUTE_TRAVEL_TIM E_CALC: varc har(1000)
ROUTE_TRAVEL_TIM E_REASON_CODE: num ber(2)

Ex pec t 40x 12x 8 = 3840 rows m ax .
40 rou tes x 12 /hour x 8 hours .
Ev ery 4 hours , a rc h iv ing runs and c u ts table in ha l f.

TravelRouteConsumerElement

l i nkTravTim eHis to ry wi l l be em pty fo r l ink s
no t us ed by a t leas t one Trave lRoute .

l ink Trav eTim eSpeedM ph wi ll no t
be c om puted for l inks not used
by a t leas t one Trave lRoute .

1

ge tProperty ()
se tProperty ()

ge tM ax Tol lRa teUpdatesPerPus h(): int
ge tM ax Trav Tim eUpdates PerPush(): in t
ge tStalenes s Watc herInte rv al (): in t
ge tTrav e lTim eHis tory Siz e(): in t
ge tTol lRa teHis to ry Siz e(): in t

in itia l i ze (Serv iceApp l ic ation app):boolean
getVers ion() : Com ponentVers ion
traderGroupUpdated() : vo id
s hu tdown(Serv ic eApp l ica tion app):boo lean

Serv ic eAppl ic ation m _sv c App;
Defau l tServ ic eApp l ic a tionProperties m _props ;

l inkTravTim eEffTim eSec s : Tim eStam p2
l inkTravTim eSecs : s hort
l inkTravTim eQual : Trav Tim eQua l i ty
l inkTravTim eSpeedM ph: short

~ge tTrav elRoutes (): Trav e lRouteIm pl []
~ge tLink s (): Roadway Link Fu l l Info []
~ge tRouteSta ts (route Id: Iden ti fier): RouteL inkSta ts
~addTo l lRa teSta t(rou teId : Iden tifie r, to l lRa teSta ts : RouteTol lRateStats): v o id
~getUnproc ess edLink Data(): L ink RawData []
~s e tUnproc ess edLink Data(l ink Data : L ink RawData[]): vo id
~de leteUnproces sedTol lData (tol lDa ta : To l lRawData): vo id
~getUnproc ess edTo l lDa ta (): To llRawData[]

l inkTravTim eOldes tRec ord Index : short
l inkTravTim eHis to ry : RouteTrav Tim eHis tRec ord[]

rou teTo llRa teEffTim eSec s : Tim eStam p2
rou teTo llRa teCents : short
rou teTo llRa teSta teCode: Sta ts Sta te

ge tTrav elRoutes (): Trav e lRouteIn fo[]
ge tTo l lRateRoutes (): To l lRa teRouteIn fo []
ge tLink sConfigs (tok en : Acc ess Token): Roadway L ink Config Info []
ge tLink sFu l lIn fo (tok en : Acc ess Token): Roadway L ink Fu ll In fo[]
ge tLink Config (token : Ac c es s Tok en, l ink Id : Identi fier): Roadway L ink ConfigIn fo
ge tLink Sta ts (tok en : Ac c ess Tok en, l ink Id : Iden ti fie r): L ink Trav Tim eStats
ge tLink His tSta ts (tok en : Acc ess Token, l ink Id : Iden tifie r): L inkTravTim eHis tSta ts
addRoute(token : Ac c es s Tok en, c on fig : Trave lRouteConfig): Trav elRoute Info
updateL ink Data(tok en: Acc es sToken, link Data : L inkRawData[]): vo id

run()

link Trav Tim eEffTim eSec s : Tim eStam p2
link Trav Tim eSec s : s hort
link Trav Tim eQua l : TravTim eQua l i ty
link Trav Tim eSpeedM ph: short
link Trav Tim eTrend: Trav Tim eTrend

rou teTrav Tim eEffTim eSecs : Tim eStam p2
rou teTrav Tim eSec s : short
rou teTrav Tim eSpeedM ph: s hort
rou teTrav Tim eStateCode: Sta tsState

m _fac tory : Trav elRouteFac to ry Im pl

l ink Id: Iden ti fie r
l ink His tSta ts : L inkTravTim eHis tSta ts

~Trave lRouteFac tory Im p l (fac to ry Id : Identi fier, s vc App : Serv iceApp l ic ation,
 db : Trave lRouteDB, rou tePus hEv entSupp l ier : Pus hEv entSupp l ier,
 p rops : Trav elRouteM oduleProperties) : c tor
~proces s Link Data(l inkData: L ink RawData[]): vo id
~proces s To l lDa ta (to l lDa ta : To l lRawData []): v oid
~tim eoutRoutes IfNec ess ary (): vo id
-sendUpdates Com ple ted(): v o id

-m _trav e lRouteIm pls : Has htab le<Iden ti fie r Trav e lRoute Im p l>
-m _rou tesBy Tol lSpec : Has htab le<Tol lRateRouteSpecKey Trave lRoute Im p l []>
-m _tol lRa tes : Has htab le<Ex tTo llSpec Key To llRa teStats >
-m _usedLink s : Has h tab le<Ex tLink IdKey Us edL ink Elem ent>
-m _roadway L ink s : Hash table<Roadway Link Fu l l Info>
-m _proc ess ingQueue: Com m andQueue
-m _pus herQueue: Com m andQueue
-m _tim er: jav a.u ti l.Tim er
-m _s ta lenes s Watcher: Trave lRouteSta lenes sWatc herTask

rou teTo l lRateOldes tRecord Index : s hort
rou teTo l lRateHis to ry : RouteTo l lRa teHis tRec ord[]

rou teTrav Tim eOldes tRec ord Index : s hort
rou teTrav Tim eHis to ry : RouteTrav Tim eHis tRec ord []

l ink Id: Iden ti fie r
link Sta ts : L ink Trav Tim eStats

ex ecu te ()
in te rrup ted()

m _fac to ry : Trav elRouteFac to ry Im pl
m _ l ink Data : RawLink Data []

rou teTrav Tim eEffTim eSec s : Tim eStam p2
rou teTrav Tim eSec s : s hort
rou teTrav Tim eSpeedM ph: short
rou teTrav Tim eTrend: Trav Tim eTrend
rou teTrav Tim eSta teCode:Stats Sta te
rou teTrav Tim eSta teString : s tring

trav Tim eHis t: RouteTrav e lTim eHis tSta ts []
tol lRateHis t: RouteTo l lRa teHis tSta ts []

m _fac to ry : Trav e lRouteFac to ry Im p l
m _tol lData : RawTol lData []

l ink Id : Identi fier
l ink Config : Roadway L ink Config
l ink Stats : LinkTravTim eSta ts []
l ink His tStats : Link Trav Tim eHis tSta ts

~Trav elRoute Im p l (c fg : Trav elRouteConfig,
 l ink Ids : Identi fier[],
 fac tIm pl :Trav e lRouteFac to ry Im p l ,
 routeDb: Trav e lRouteDB) : c tor
-com puteTrav elTim e(): vo id
~getCons um ers (): Trav elRouteCons um erIn fo []
~ge tRef(): Trav elRoute
~proc es s Trav Tim eUpdate(): v o id
~proc es s To l lRateUpdate(to l lDa ta:To llRawData): v oid
~to l lRateUpdates Com pleted(docEffTim e: Tim eStam p2): v o id
~trav Tim eUpdates Com ple ted(): vo id
~tim eoutRoute IfNeces s ary (): v o id

m _id : Identi fie r
m _c onfig : RouteAndL inkConfig
m _s tats : RouteFu l lSta ts

routeTol lRa teEffTim eSecs : Tim eStam p2
routeTol lRa teEx pTim eSec s : Tim eStam p2
routeTol lRa teCents : short
routeTol lRa teStateCode: Sta tsSta te
routeTol lRa teStateString : s tring

has hCode(): int
equals (obj :Objec t): boolean

m _c ons um erIn fo : Trave lRouteConsum er

m _consum er: Trav e lRouteCons um er
m _rou teId : Iden ti fie r
m _to l lRateSta ts : RouteTol lRa teStats
m _trav Tim eSta ts : RouteTrav Tim eSta ts
m _dis pConfig : RouteDis play Config

l ink Config: Roadway L ink Fu ll In fo
rou tesUs ing : Trav elRoute Im p l []

trav Tim eSta ts : RouteTrav e lTim eSta ts []
tol lRateSta ts : RouteTo llRa teSta ts []

has hCode(): in t
equals (ob j :Objec t): boo lean

ex tLink Spec : Ex tLink Spec

getRouteConfig(tok en : Ac c ess Tok en): Trav e lRouteConfig
getRouteAndL ink Config (tok en : Ac c ess Tok en): RouteAndL ink Config
getL ink Configs (tok en : Ac c ess Tok en): Roadway L ink Config In fo []
getRouteSta ts (tok en: Acc es sToken): RouteStats
getRouteHis tStats (tok en: Ac ces sToken): RouteHis tSta ts
getL ink Stats (tok en : Ac ces s Tok en): RouteL inkSta ts []
getL ink His tSta ts (token : Ac c es s Tok en): RouteL inkHis tSta ts []
getFu llSta ts (token : Ac c es s Tok en): RouteFu l lSta ts
getTrav Tim eStats (tok en: Ac ces sToken): RouteTrav Tim eStats
getTo llRa teSta ts (token : Ac c es s Tok en): RouteTo l lRa teSta ts
s etConfig (tok en: Acc es sToken,
 c on fig : Trav elRouteConfig): v oid
s etTrav Tim eConfig (tok en : Acc ess Tok en,
 c on fig : Trav Tim eConfig): vo id
s etTo llRa teConfig (tok en: Ac ces sToken,
 c on fig : To l lRateConfig): v oid
rem ove(token : Ac c es s Tok en): vo id
addCons um er(tok en: Acc es sToken,
 c ons In fo: Trav e lRouteConsum erIn fo): RouteSta ts
rem oveCons um er(tok en: Ac ces sToken, cons Id : Iden tifie r): v o id

rteSta ts : RouteSta ts
rteHis tSta ts : RouteHis tSta ts
l ink Stats : RouteL inkSta ts []
l ink His tStats : RouteL inkHis tSta ts []

hashCode(): in t
equa ls (ob j :Ob jec t): boo lean

m _to l lRateSpec :Ex tTol lSpec

rou teConfig : Trave lRouteConfig
l inkConfigs : RoadwayL inkConfig Info []

nam e: s tring
dis p lay Config: Trav e lRouteDis play Config
rou teL is t: RoadwayLoca tion[]
county L is t: County In fo[]
s ta teL is t: Sta te In fo[]
loc a tionUs erSpec ified : boolean
consum erL is t: Trav e lRouteConsum erIn fo []
trav Tim eCfg : Trav Tim eConfig
tol lRateCfg : Tol lRateConfig

rou teTravTim eStats Updated(rou te Id: Iden ti fie r,
 tim eData : RouteTravTim eStats): vo id
rou teTo l lRouteStats Updated(rou te Id: Iden ti fie r,
 to llDa ta: RouteTo l lRateSta ts): v o id
rou teUpdatesCom ple ted(): v o id
rou teDis play ConfigUpdated(route Id: Iden ti fier,
 c on fig : Trave lRouteDis p lay Config): v oid
rou teDe leted(rou teId : Iden ti fie r): v oid

l ink Spec : Ex tLink Spec
l ink Nam e: s tring
s ta te: State In fo
county : County In fo
rou teData: Roadway Loca tion
m i l l iM i les : in t
s ta rtLa tUDeg: in t
s ta rtLongUDeg: in t
endLatUDeg: in t
endLongUDeg: in t

m i l l iM i les : long
des tTex t: s tring[]

l ink Id : Iden ti fie r
l ink Config : Roadway L ink Config

route l ink L is t: RouteLink []
trav e lTim eEnabled : boo lean
m ax BadL ink s : short
m inTrav Tim eM ins : short
m ax Trav Tim eM ins : s hort
a lertTrav Tim eM ins : s hort
a lerts Enab led : boo lean
a lertOpCtr: Iden ti fie r
noti fs Enab led : boo lean
noti fRec ip ien t: s tring

ex tSy s tem Nam e: s tring
ex tL ink Id : s tring

l ink Id : Iden tifie r
percen tTo Inc lude: s hort
m inAl lowedQua l : TravTim eQual i ty

to l lSpec : Ex tTo l lSpec
to l lRa teEnab led : boo lean

ex tSy s tem Nam e:s tring
ex tSta rtId: s tring
ex tEndId: s tring
ex tDes c rip tion : s tring

Figure 5-247. TravelRouteModule (Class Diagram)

5.20.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

CHART R3B3 Detailed Design 5-439 12/23/2008

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.20.1.1.2 Chart2DMS (Class)

The Chart2DMS class extends the DMS interface and defines a more detailed interface to

be used in manipulating the CHART-specific DMS objects within CHART. It provides an

interface for traffic events to provide input as to what each traffic event desires to be on the

sign via the ArbitrationQueue interface. Through the HARMessageNotifier interface, a

HAR can use a DMS to notify travelers to tune in to a radio station to hear a traffic

message. CHART business rules include concepts such as shared resources, arbitration

queues, and linking device usage to traffic events. These concepts go beyond industry-

standard DMS control. This includes an ability to enable and disable CHART traveler

information messages, which were added in R3B3.

5.20.1.1.3 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.20.1.1.4 ConsumerPushCmd (Class)

This class is used to queue pushing an update to a TravelRouteConsumer for asynchronous

execution on a Command Queue. The pusher CommandQueue runs with many threads

(e.g., the default of 10), so that delays in connecting to an unreachable consumer do not

much delay getting the pushes out to the consumers that are reachable.

5.20.1.1.5 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

CHART R3B3 Detailed Design 5-440 12/23/2008

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.20.1.1.6 ExtLinkIdKey (Class)

This structure is an ExtLinkSpec holder object used by the Travel Route Module as a

hashable ExtLinkSpec object which can be used as the key into a Hashtable of external

roadway link specs. It is used as the Hashtable key in a table of TravelRouteImpl objects

organized by ExtTollSpec.

5.20.1.1.7 ExtLinkSpec (Class)

This structure is used to hold all the identifying information about a link as known to an

external system (link data supplier).

5.20.1.1.8 ExtTollSpec (Class)

This structure is used to identify a toll rate route. It contains the supplying external system,

the start ID and end ID of the toll rate route (which is the "key" used to identify the toll rate

route, and the name by which the external system refers to the route.

5.20.1.1.9 ExtTollSpecKey (Class)

This structure is an ExtTollSpec holder object used by the Travel Route Module as a

hashable ExtTollSpec object which can be used as the key into a Hashtable of external toll

rate specs. It is used as the Hashtable key in a table of UsedLinkElement objects organized

by ExtLinkId.

5.20.1.1.10 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

property list is searched if the property key is not found in the original property list.

5.20.1.1.11 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or

recurring execution.

5.20.1.1.12 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

CHART R3B3 Detailed Design 5-441 12/23/2008

5.20.1.1.13 LinkTravTimeHistRecord (Class)

This structure is used to store the most recent X historical link travel time data points

acquired by the system. This is a circular array, with the head (oldest record) referenced in

the LinkTravelTimeHistStats. The tail (newest record) is head-1 (mod X), and is always

the same data point as is contained in the LinkTravelTimeStats structure.

5.20.1.1.14 LinkTravTimeHistStats (Class)

This structure (together with the LinkTravelTimeHistRecord) stores the most recent X

historical link travel time data points. It contains the head pointer and the

LinkTravelTimeHistRecord array which contains the actual data. This structure is not

pushed on the event channel, because it normally contains data which clients could have

already accumumlated themselves, but is available on demand.

5.20.1.1.15 LinkTravTimeStats (Class)

This structure contains the most recent travel time data point acquired for a roadway link.

It matches the most recent record in the LinkTravelTimeHistStats.

5.20.1.1.16 ProcessLinkDataCmd (Class)

This is a QueueableCommand placed on the processor CommandQueue to process

incoming roadway link statistical data sent in from a link data supplier. The

QueueableCommand is used to move the processing off of the incoming CORBA

processing loop so that return can be returned quickly to the LinkDataProvider caller.

5.20.1.1.17 ProcessTollDataCmd (Class)

This is a QueueableCommand placed on the processor CommandQueue to process

incoming toll rate statistical data sent in from a toll rate data supplier. The

QueueableCommand is used to move the processing off of the incoming CORBA

processing loop so that return can be returned quickly to the TollDataProvider caller.

5.20.1.1.18 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

CHART R3B3 Detailed Design 5-442 12/23/2008

5.20.1.1.19 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.20.1.1.20 RoadwayLinkConfig (Class)

This structure contains the configuration data for a roadway link. It includes the external

system name (e.g., "INRIX"), the ID by which the external system identifies the link, and

location data.

5.20.1.1.21 RoadwayLinkConfigInfo (Class)

This is a convenience structure which combines a roadway link ID with the

RoadwayLinkConfig. It is used for passing configuration data about all links in the system

or all links in one route from the Travel Route Module to clients.

5.20.1.1.22 RoadwayLinkFullInfo (Class)

This is a convenience structure which combines a roadway link ID with its configuration,

current, and historical stats. It is used for passing the full set of data for all links in the

system or all links in one route from the Travel Route Module to clients.

5.20.1.1.23 RouteAndLinkConfig (Class)

This convenience structure is used to pass configuration data for a travel route plus

configuration data for all the route's links from the Travel Route Module to clients.

5.20.1.1.24 RouteFullStats (Class)

This convenience structure holds all stats data for a single travel route -- current stats and

recent historical stats for the route and for the constituent links (if any).

5.20.1.1.25 RouteHistStats (Class)

This structure is used to store historical statistical data (travel times and toll rates) for a

Travel Route. It consists of an array of zero or one RouteTravelTimeHistStats, storing

Travel Time historical statistics (if configured with links), and an array of zero or one

RouteTollRateHistStats, storing Toll Rate historical statistics (if configured to track toll

rates).

CHART R3B3 Detailed Design 5-443 12/23/2008

5.20.1.1.26 RouteLink (Class)

This structure makes the association between a travel route and one roadway link which

helps comprise the route, together with parameters associated with the use of the link within

that particular route: the percent of the link to include in the route, and the minimum

acceptable quality for link travel time data as used in that particular route.

5.20.1.1.27 RouteLinkHistStats (Class)

This convenience structure contains historical travel time stats for a travel route and for all

the links which comprise the route. It is available on demand from TravelRoute.

5.20.1.1.28 RouteLinkStats (Class)

This convenience structure contains current travel time stats for a travel route and for all the

links which comprise the route. It is available on demand from TravelRoute.

5.20.1.1.29 RouteStats (Class)

This convenience structure combines the current travel time data and toll rate data for a

travel route. (It contains zero or one of each, depending on what types of data the route is

configured to track.) It is available on demand via the TravelRoute.

5.20.1.1.30 RouteTollRateHistRecord (Class)

This structure is used to store the most recent X historical route toll rate data points

accuumlated by the system. This is a circular array, with the head (oldest record)

referenced in the RouteTollRateHistStats. The tail (newest record) is head-1 (mod X), and

is always the same data point as is contained in the RouteTollRateStats structure.

5.20.1.1.31 RouteTollRateHistStats (Class)

This structure (together with the RouteTollRateHistRecord) stores the most recent X

historical route toll rate data points. It contains the head pointer and the

RouteTollRateHistRecord array which contains the actual data. This structure is not pushed

on the event channel, because it normally contains data which clients could have already

accumumlated themselves, but is available on demand.

5.20.1.1.32 RouteTollRateStats (Class)

This structure contains the current toll rate data for a travel route. This includes the time the

rate became effective and the toll rate itself. This data is also provided in the most recent

entry in the history structure. The toll rate field may contain a negative number defined by

StatsConstants, which indicates an error. There are two other fields NOT provided in the

history structure -- the time the toll rate expires, and a reason string. This will be the empty

string if the toll rate has been successfully provided recently, or details on the error

condition if an error constant is specified.

CHART R3B3 Detailed Design 5-444 12/23/2008

5.20.1.1.33 RouteTravTimeHistRecord (Class)

This structure is used to store the most recent X historical route travel time data points

accuumlated by the system. This is a circular array, with the head (oldest record)

referenced in the RouteTravelTimeHistStats. The tail (newest record) is head-1 (mod X),

and is always the same data point as is contained in the RouteTravelTimeStats structure.

5.20.1.1.34 RouteTravTimeHistStats (Class)

This structure (together with the RouteTravelTimeHistRecord) stores the most recent X

historical route travel time data points. It contains the head pointer and the

RouteTravelTimeHistRecord array which contains the actual data. This structure is not

pushed on the event channel, because it normally contains data which clients could have

already accumumlated themselves, but is available on demand.

5.20.1.1.35 RouteTravTimeStats (Class)

This structure contains the current travel time data for a travel route. This includes the time

the travel time was computed, and the computed speed. This data is also provided in the

most recent entry in the history structure. The travel time may contain a negative number

defined by StatsConstants, which indicates an error. There are two other fields NOT

provided in the history structure -- a computed trend (UP, DOWN, or FLAT) and a reason

string. This will be the travel time calculation if it has been computed successfully, or

details on the error condition if an error constant is specified.

5.20.1.1.36 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.20.1.1.37 TollRateConfig (Class)

This structure holds the part of the Travel Route configuration pertaining to toll rates, if the

travel route is configured to track toll rates. This structure holds the part of the Travel

Route configuration pertaining to toll rates. One of these is contained in the

TravelRouteConfig if the travel route is configured to track toll rates, otherwise there is

none.

5.20.1.1.38 TravelRoute (Class)

This is the primary CORBA interface for working with travel routes in CHART. This

interface provides methods for getting various collections of configuration and/or statistical

data for a travel route. It also provides methods for objects to register to be

TravelRouteConsumer for the travel route (for instances, DMSs that have the route enabled

in a traveler information message). Finally it provides methods for updating and removing

travel routes.

CHART R3B3 Detailed Design 5-445 12/23/2008

5.20.1.1.39 TravelRouteConfig (Class)

This structure holds the part of the Travel Route configuration pertaining to travel times, if

the travel route is configured to track travel times. It contains the IDs of the links

comprising the route, but not the link configurations themselves. (See

RouteAndLinkConfig.)

5.20.1.1.40 TravelRouteConsumer (Class)

This interface allows other CHART objects to register as a direct consumer of travel route

statistical data. It provides operations for the travel route to call when the travel time or toll

rate for the route is updated. A DMS registers as a TravelRouteConsumer when a

TravelerInfoMsg is enabled.

5.20.1.1.41 TravelRouteConsumerElement (Class)

This structure is used to hold a TravelRouteConsumer in a hashable object for use as a key

in a Hashtable. It holds a reference to a TravelRouteConsumer (e.g., a DMS interested in

receiving Travel Route updates for a given TravelRoute).

5.20.1.1.42 TravelRouteConsumerInfo (Class)

This convenience structure lists a TravelRouteConsumer ID, reference, and type.

5.20.1.1.43 TravelRouteDB (Class)

This class provides access to the database for the purpose of reading and writing

TravelRoute information, including the travel routes themselves (configuration), and the

statistical data (travel times and toll rates), as well as link configuration and statistical data.

5.20.1.1.44 TravelRouteDisplayConfig (Class)

This structure stores that part of a TravelRoute configuration which a

TravelRouteConsumer would be interested in, namely the travel route distance and the

primary any alternate destination names. (The distance and destination may be required for

display on a DMS travel route display, for instance.)

5.20.1.1.45 TravelRouteFactory (Class)

This interface is the entry point for the Travel Route Management. It serves up travel

routes (also an interface) and roadway links (structure data). It provides various operations

for acquiring travel routes and roadway links. Since roadway links are not maintained as a

separate interface, the factory provides the primary operations for acquiring link

configuration and statistical data (although a TravelRoute interface also provides methods

for acquiring such data about the links directly associated with it).

5.20.1.1.46 TravelRouteFactoryImpl (Class)

This is the implementation class for the TravelRouteFactory interface.

CHART R3B3 Detailed Design 5-446 12/23/2008

5.20.1.1.47 TravelRouteImpl (Class)

This is the implementation class for the TravelRoute interface.

5.20.1.1.48 TravelRouteModule (Class)

This class is the CHART installable module used to maintain information on travel routes

within CHART. It creates the TravelRouteFactoryImpl which stores the travel routes and

roadway links.

5.20.1.1.49 TravelRouteModuleProperties (Class)

This class provides access to properties stored in the properties files (.props file) for the

TravelRouteModule.

5.20.1.1.50 TravelRouteStalenessWatcherTask (Class)

This class implements the java.util.TimerTask interface and is places on a java.util.Timer

owned by the TravelRouteModule. It is used to ensure that travel time data does not

become too stale, in the event that updates stop coming in from the link data provider.

(Note that toll rates maintain come in supplying their own expiration time, so this task is

concerned with travel times only.)

5.20.1.1.51 TravTimeConfig (Class)

This structure holds the part of the Travel Route configuration pertaining to travel times.

One of these is contained in the TravelRouteConfig if the travel route is configured to track

travel times, otherwise there is none.

5.20.1.1.52 UsedLinkElement (Class)

This class is used to match a roadway link to the travel routes which are currently

configured to use it. These objects are stored in a Hashtable, keyed on ExtLinkIdKey

(external link Ids), and which is used to efficiently find the Travel Routes which are

configured to use a roadway link for which a travel time update is currently being

processed.

CHART R3B3 Detailed Design 5-447 12/23/2008

5.20.2 SequenceDiagrams

5.20.2.1 TravelRouteDB:getLinks (Sequence Diagram)

This sequence diagram shows how links (configuration and current and recent historical

statistics) are depersisted from the database during startup of the TravelRouteModule.

Trav elRouteFactoryImpl

TravelRouteDB

RoadwayLinkFullInfo

RoadwayLinkConfig

LinkTravelT imeHistStats

LinkTravelTimeHistRecord

LinkTravelTimeStats

These are structures
(no classes)

getLinks(histSize:int)

read link data
record from

ROADWAY_LINK

create

store linkId, config

create

read last
histSize rows
of link stats

for linkId from
LINK_TRAVEL_TIME

create

create

add LinkTravelT imeHistRecord

for each row
read in,

oldest to newest

create using most recent row read in

store stats and hist stats

for each link in
ROADWAY_LINK

RoadwayLinkFullInfo[]

Figure 5-248. TravelRouteDB:getLinks (Sequence Diagram)

CHART R3B3 Detailed Design 5-448 12/23/2008

5.20.2.2 TravelRouteDB:getRoutes (Sequence Diagram)

This sequence diagram shows how travel routes (configuration and current and recent

historical statistics) are depersisted from the database during startup of the

TravelRouteModule.

RouteLinkStats

RouteLinkHistStats

LinkTravelTimeStats

LinkTravelTimeHistStats

create

create

add to my RouteLinkStats

getLinkHistStats(systemToken, linkId)

add to my RouteLinkHistStats

TravelRouteImpl[]

for each route
in TRAVEL_ROUTE

table

RouteTollRateHistStats

RouteTollRateHistRecord

RouteTollRateStats

create

create

add routeTollRateHistRecord

for each row
read in,

oldest to newest

create using most recent row read in

read last
tollRateHistSize rows
of route stats from

ROUTE_TOLL_RATE

TravelRouteFactoryImpl

TravelRouteDB

Associated other route config tables are:
TRAVEL_ROUTE_STATE : state(s) (in USA) containing route
TRAVEL_ROUTE_COUNTY : county(ies) containing route
TRAVEL_ROUTE_ROUTE_SPEC : route designators route follows
TRAVEL_ROUTE_DEST : Primary, 1st alt, 2nd alt dest names for DMS
TRAVEL_ROUTE_CONSUMER : DMSs currently watching route
TRAVEL_ROUTE_LINK : link IDs comprising route

TravelRouteImpl

getRoutes()

read route data
record from

TRAVEL_ROUTE and
associated other

route config tables

create(TravelRouteConfig,
linkIds, factImpl, routeDb,

props)

RoadwayLinkConfig
getLinkConfig(systemToken, linkId)

add link to my
RouteAndLinkConfig

for each linkId
comprising this

route

getRouteStats(routeId)

read last
travelTimeHistSize rows

of route stats from
ROUTE_TRAVEL_TIME

RouteTravelTimeHistStats

RouteTravelTimeHistRecord

RouteTravelTimeStats

create

create

add routeTravelTimeHistRecord

for each row
read in,

oldest to newest

create using most recent row read in

getLinkStats(systemToken, linkId)

Figure 5-249. TravelRouteDB:getRoutes (Sequence Diagram)

5.20.2.3 TravelRouteFactoryImpl:addRoute (Sequence Diagram)

This sequence diagram shows the server side processing for adding a Travel Route to the

CHART R3B3 Detailed Design 5-449 12/23/2008

system. The GUI calls in with the new Route data. The server assigns an ID and inserts the

route into the database and pushes the update on the Travel Route CORBA event channel,

also returning the new route info directly to the caller.

autoCommit=false

ORB

validateConfig(config)

insertRoute(routeId, config)

checkAccess

[no rights]
throw AccessDenied

[invalid config]
CHART2Exception

travRteImpl:TravelRouteImpl

insert route into
TRAVEL_ROUTE
and assoc tables

[has links]
insert links into

TRAVEL_ROUTE_LINK
table

create(config, linkIds, etc)

addRoute(token,
config: TravelRouteConfig)

IdentifierGenerator

TravelRouteInfocreate(id, ref)

getRef()

computeTravelTime()

See TravelTimeImpl:setLinkStats
for details.

OperationsLog PushEventSupplier

TravelRouteImpl

[no rights]
log("access denied")

pushRouteAdded(config)

commit

TravelRouteFactoryImpl

routeId = createIdentifier()

return TravelRouteInfo

getId()

Not diagrammed. Validation requirements to be determined
through the implementation phase. Among other things, it will:
require a name; require at least one destination; require later
destinations to be shorter than previous ones; ensure that
location information is fully specified (at least one each of
route, county, state, etc.); if travel times enabled has at least
one link; if toll rates enabled has a toll rate spec; max travel
time specifed in travel times enabled; op center specified if
alerts enabled, group specified if groups enabled; ensure that
clients do not change the consumer list (newCfg.consumerList
matches m_config.consumerList).

setLinkStats(m_config.travTimeCfg, null)

TokenManipulator TravelRouteDB

Associated tables include:
TRAVEL_ROUTE
TRAVEL_ROUTE_STATE
TRAVEL_ROUTE_COUNTY
TRAVEL_ROUTE_ROUTE_SPEC
TRAVEL_ROUTE_DEST

Figure 5-250. TravelRouteFactoryImpl:addRoute (Sequence Diagram)

CHART R3B3 Detailed Design 5-450 12/23/2008

5.20.2.4 TravelRouteFactoryImpl:computeTravelTime (Sequence Diagram)

This helper method is called by a TravelRouteImpl on itself to compute its own travel time.

It is called whenever it is known that the underlying link data has changed, or when the link

configuration of the route has changed such that the route travel time calculation would be

different. Basically the specified percentage of each link's travel times are added together.

Errors are tracked and and the state code and string are updated after the main loop. The

trend is computed, and the stats record is added to the history before returning.

CHART R3B3 Detailed Design 5-451 12/23/2008

[*for eac h
l ink in

m _s ta ts .l ink Sta ts]

m _s tats .l ink Sta ts .l ink Sta ts :
L ink Trav Tim eStats

m _c onfig .rou teConfig .trav Tim eCfg.routeL ink L is t[i]:
RouteL ink

l ink Tim e=get l ink Trav Tim eSec s

l ink Pc t=get perc entToInc lude

l ink Qual=get l ink Trav Tim eQual

�

[l i nk Qual be low
m inAl lowedQual]

RouteTrav Tim eHis tRec ord

c opy ttSta ts to o ldes t RouteTrav Tim eHis tRecord

get ex p ired l ink IDs

prepend "Route is d is abled. " to
routeTrav Tim eStateStri ng

[num ex p ired l i nks > 0]

l ink EffTim e=get l ink Trav Tim eEffSec s

[l ink EffTim e<
now-m ax L ink Age]

prepend "<num > l i nk s are m is s ing data :
<m is s ingL ink Ids >. " to

routeTrav Tim eStateStri ng

add(ex tL ink Id)

[c an ' t find data]

append(<l ink Tim e> "x " <l ink Pc t> "+")

[fina lTim e > m ax]

prepend "Com puted tim e o f <fi nalTim e>
ex c eeds m ax o f <m ax >. " to

rou teTrav Tim eStateStri ng

Trav e lRoute Im pl

c om puteTrav e lTim e()

c reate

m is s ingL ink Id != nu l l

rou teTrav Tim eStateCode=DATA_OK

routeTrav Tim eStateCode=DATA_EXPIRED

badLink Ids :
Vec tor<Stri ng>

routeTrav Tim eStateCode=DATA_M ISSING

create

c a lc String :
StringBiffe r

c reate

Sam e ob jec t,
s eparated fo r c la ri ty .

c om puteTrend(
route h is t trav el t im es)

get m is s ing l i nk IDs

routeTravTim eSec s = -1

Al l thes e are separa te i f s ta tem ents , no t i f-e ls e s ta tem ents .
In th is way a l l the error m es s ages get i n to the s ta te s tri ng ,
in order o f dec reas ing pri ori ty , and the h ighes t p ri o ri ty
c ode gets in to the s tate c ode.

m is s ingLink Ids :
Vec tor<Stri ng>

add(ex tLink Id)

c reate

[e ls e]

Th i s is the on ly error c as e where we do NOT s upp ly a (s us pec t) trav e l tim e
for the route. In th is c as e the trav e l tim e c learl y wi l l be too l ow, perhaps by a
l i ttl e, perhaps by a l o t. Set to -1 s o GUI and DM S do not di s p lay a partic u larly
bogus num ber (probab ly m ore bogus than in the o ther error c as es).

Not d iagram m ed. Sim ply c om pares the N newes t
 tim es to the N o ldes t and s ets to UP, FLAT, DOWN
bas ed on c onfigurab le perc ent d i ffe renc e. Set to
FLAT i f no t enough data (c ons idering -1 ' s).

append "Ca lc u la ti on:" + c a lc Stri ng to
routeTrav Tim eStateStri ng

ex pL ink Ids :
Vec tor<Stri ng>

get bad qua l l i nk IDs

routeTravTim eStateCode=BAD_QUALITY

add(ex tL ink Id)

RouteTravTim eStats

[trav e lTim eEnabled ==fa l s e]

ttSta ts =c reate()

routeTol lRateSta teCode=ROUTE_DISABLED

[num bad qua l l ink s >
m ax BadLink s]

routeTrav Tim eSec s +=
l ink Pc t * l ink Tim e

AlertFac tory Wrapper

[trav e l tim e
ex c c eds m ax]

c reateTrav e lTim eAlert("Trav e l tim e for <route> is <tim e> ex c eeds m ax <m ax >")

Noti f ic a ti onM anagerWrapper

s endNoti fic a ti on("Trav e l tim e for <route> is <tim e> ex c eeds m ax <m ax >")

fi nalTim e=get rou teTrav Tim eSec s

routeTrav Tim eStateCode=M AX_EXCEEDED

TravelRouteIm pl

prepend "<num > l i nks hav e bad qua l:
<badL ink Ids >. " to

�routeTrav Tim eStateString

a l l owedQual=get m inAl lowedQual

prepend "<num > l ink s are older than
<m ax Link Age>: <ex pL ink Ids > " to

routeTrav Tim eStateStr

RouteTrav Tim eHis tSta ts

i nc rem ent rou teTo l lRateOldes tRec ord Index (m od hi s tSiz e)

Figure 5-251. TravelRouteFactoryImpl:computeTravelTime (Sequence Diagram)

CHART R3B3 Detailed Design 5-452 12/23/2008

5.20.2.5 TravelRouteFactoryImpl:pushConsumerUpdate (Sequence Diagram)

This diagram shows the four push methods that are called by a TravelRouteImpl (and one

called by the TravelRouteFactoryImpl itself) on the TravelRouteFactoryImpl to push an

update to a TravelRouteConsumer (e.g., a DMS which is using the route to feed an active

Traveler Information Message). The initial call simply queues a ConsumerPushCmd on the

factory's CommandQueue, and then the push call is made asynchronously. The pusher

CommandQueue runs with many threads (e.g., the default of 10), so that delays in

connecting to an unreachable consumer do not much delay getting the pushes out to the

consumers that are reachable.

CHART R3B3 Detailed Design 5-453 12/23/2008

[else]

ConsumerPushCmd

pushRouteUpdatesCompleted(
consumer: TravelRouteConsumer)

routeUpdatesCompleted()

cmd=create(consumer, routeId)

addCommand(cmd)

routeDisplayConfigUpdated(
m_routeId, m_dispConfig)

addCommand(cmd)

cmd=create(consumer, routeId)

[else m_routeId != null]

ConsumerPushCmd

addCommand(cmd)

ConsumerPushCmdcmd=create(consumer,
routeId, stats:RouteTollRateStats)

pushDispConfigUpdated(
consumer: TravelRouteConsumer,

routeId: Identifier,
dispCfg: TravelRouteDisplayConfig)

[m_dispConfig != null]

pushRouteDeleted(
consumer: TravelRouteConsumer,

routeId: Identifier)

routeDeleted(m_routeId)

TravelRouteImpl

TravelFactoryImpl

ConsumerPushCmd

m_consumer
TravelRouteConsumer

This Sequence Diagram
shows the four ways of
queuing a push to a
TravelRouteConsumer:
pushTravTimeStatsUpdated(),
pushTollRateStatsUpdated(),
pushDispConfigUpdated(), and
pushRouteDeleted().
Each of these simply queue
a ConsumerPushCmd on
the pusherQueue.

Then later (below), the
CommandQueue executes
the command asynchronously
to do the push.

m_pusherQueue:
CommandQueue

ConsumerPushCmd

pushTravTimeStatsUpdated(
consumer: TravelRouteConsumer,

routeId: Identifier,
stats:RouteTravelTimeStats)

cmd=create(consumer,
routeId, dispCfg:TravelRouteDisplayConfigl)

addCommand(cmd)

execute

routeTollRateUpdated(
m_routeId, m_tollRateStats)

[m_tollRateStats != null]

[m_travTimeStats != null]

routeTravelTimeUpdated(
m_routeId, m_travTimeStats)

pushTollRateStatsUpdated(
consumer: TravelRouteConsumer,

routeId: Identifier,
stats:RouteTollRateStats)

�

cmd=create(consumer,
routeId, stats:RouteTravelTimeStats))

addCommand(cmd)

destroy

Figure 5-252. TravelRouteFactoryImpl:pushConsumerUpdate (Sequence Diagram)

CHART R3B3 Detailed Design 5-454 12/23/2008

5.20.2.6 TravelRouteFactoryImpl:sendUpdatesCompleted (Sequence Diagram)

This method informs TravelRouteConsumers that a batch of updates are complete, so that

they can update their message, if they are holding their update actions in abeyance awaiting

completion of the entire update activity. It is wise for a DMS to do this because typically

many route updates are accomplished in close succession, as toll rates and link travel times

are collected in bulk from those suppliers. In this way, waiting an extra few moments for

all updates to come in, a DMS only has to communicate to a sign once per update cycle,

instead of once for each route in its Traveler Information Message.

TravelRouteFactoryImpl

Same object,
separated for clarity.

TravelRouteImpl

consumerSet:
HashSet<TravelRouteConsumerElement>

HashSet
de-dupes entries

sendUpdatesCompleted()

getConsumers()

create

add
[*for each
consumer
returned]

[*for each
TravelRouteImpl]

consumerList=toArray()

{*for each
consumer in

list]

Trav elRouteFactoryImpl

pushRouteUpdatesCompleted()

Figure 5-253. TravelRouteFactoryImpl:sendUpdatesCompleted (Sequence Diagram)

CHART R3B3 Detailed Design 5-455 12/23/2008

5.20.2.7 TravelRouteFactoryImpl:updateLinkData (Sequence Diagram)

This method is called by the INRIX Import Service to pass link travel times to the

TravelRouteModule. The link data is first written to a temporary DB table so that control

can quickly be returned to the caller, then the link data is processed asynchronously on the

processing queue (which has just one thread). Each link's stats are updated, then each

TravelRouteImpl is called to update the route travel time based on the new link travel times.

An update for each consumer for each updated route is queued immediately, then when all

routes have been updated, the updates completed message is queued to all consumers. See

pushConsumerUpdate for consumer update processing.

CHART R3B3 Detailed Design 5-456 12/23/2008

missing link data

Synchronize on
m_lockStats.

Structs.

See TravelRouteFactoryImp:sendUpdatesCompleted for details.

log("link updates for <time> completed")

set trend in stats

Not diagrammed. Simply compares the N newest
 times to the N oldest and sets to UP, FLAT, DOWN
based on configurable percent difference. Set to
FLAT if not enough data.

computeTrend(link hist travel times)

computeTrend(
route hist travel times)

Return link IDs that
are configured into
routes but not in this
update.

Push any updates
still queued up.

push(m_PendingUpdates converted to array in RouteTravTimeUpdateEvent)
clear()

[num pending
updates > 0]

sendUpdatesCompleted()

deleteUnprocessedLinkData(linkData)

delete from
UNPROCESSED_LINK_DATA

where TRAV_TIME_EFF_TIME_SECS
= time in linkData[0]

destroy

[* for each
TravelRouteImpl]

m_pendingTravTimeUpdates:
Vector<RouteTraveTimeUpdate>

PushEventSupplier

push method (for push to GUIs) queues updates until a configurable
number of updates are accumulated, then pushes a bunch in one
CORBA event. Max expected to be -1, means queue up ALL of them
and push ALL in one CORBA event.

See TravelRouteImpl:pushConsumerUpdate
for details.

TravelRouteImpl

Command is executed
asynchronously by the
CommandQueue. The
ProcessTollDataCmd can
also be enqueued during
initialization, if the process
is shut down before the
data can be completely
processed.

m_usedLinks:
Hashtable<ExtLinkIdKey UsedLinkElement

execute()
processLinkData(m_linkData)

linkElem:UsedLinkElement=get(linkData.extLinkId as ExtLinkIdKey)

cmd:
ProcessLinkDataCmdcmd:QueueableCommand=create(this, linkData)

add to Collection of pending updates

push(m_PendingUpdates converted to array in RouteTravTimeUpdateEvent)
clear()

[max > 0 &&
num pending

updates > max]

return from processTravTimeUpdate()

update:
RouteTravTimeUpdate

pushTravTimeStatsUpdated(
m_id, m_stats.rtsStats.travTimeStats)

[*for each
registered
consumer]

addTravTimeStat(m_id,
m_stats.rteStats.travTimeStats)

create(m_id, m_stats.rteStats.travTimeStats)

pushTravTimeUpdate(update)

linkElem != null &&
[link eff time in incoming data newer

than time in stored linkStatus]

RoadwayLinkFullInfo RoadwayLinkStats RoadwayLinkHistStats RoadwayLinkHistRecord

update current link stats from linkData

increment old hist record index (mod hist size)

[*for each
linkData
record in
incoming
linkData

array]

First test is so we process only link data
we care about. Seond ensures that we
don't process a link rate update we
processed in a prior execution but before
we could delete the row of unprocessed
toll data from the DB.

See TravelRouteImpl:computeTravelTime
Sequence Diagram for details.

processTravTimeUpdate()

computeTravelTime()

leave trend set to TT_TREND_FLAT(0) (for now...)
[link being used by >=1 route
per linkElem.routesUsing]

m_processingQueue:
CommandQueue

addCommand(cmd)

copy newly set current stats to oldest hist record

set trend for current link stats

Token Manipulator
OperationsLog

updateLinkData(token,
linkData:LinkRawData) checkAccess

TravelRouteDB

[no rights]
log("access denied")[no rights]

AccessDenied

setUnprocessedLinkData(linkData)

[Impl has links defined
and at least one link

has updated TT]

Data structures, not
classes.

INRIX Import
Service

TravelRouteFactoryImpl

Figure 5-254. TravelRouteFactoryImpl:updateLinkData (Sequence Diagram)

CHART R3B3 Detailed Design 5-457 12/23/2008

5.20.2.8 TravelRouteFactoryImpl:updateTollRateData (Sequence Diagram)

This method is called by the VECTOR Import Service to pass toll rates to the

TravelRouteModule. The toll rate data is first written to a temporary DB table so that

control can quickly be returned to the caller, then the data is processed asynchronously on

the processing queue (which has just one thread). For each rate passed in, each

TravelRouteImpl using the rate is called to update its toll rate. An update for each

consumer for each updated route is queued immediately, then when all routes have been

updated, the updates completed message is queued to all consumers. See

pushConsumerUpdate for consumer update processing.

CHART R3B3 Detailed Design 5-458 12/23/2008

Operations Log

proc es s Tol lUpdate(tol lDa ta)

Trav elRouteFac to ry Im pl
m _proc es s ingQueue

Com m andQueue

updateTol lDa ta (tok en,
to l lData:To l lRateData)

Sy nc hron iz e on
m _ loc k Stats ..

log("to ll ra te updates fo r <doc EffTim e> c om pleted")

[*fo r eac h
Tol lRou teIm pl]

See Trav elRouteFac tory Im p:s endUpda tes Com p le ted for de ta il s .

Da ta s truc tu res , no t c las s es .

See Trav elRoute Im p l :pus hCons um erUpdate
for deta il s .

return from proc es s Tol lRateUpdate()

See Trav elRoute Im p l :pus hCons um erUpdate
for deta il s .

pus h m e thod (for pus h to GUIs)
queues upda tes un ti l a c onfigu rable
num ber of upda tes are ac c um u la ted,
then pus hes a bunc h in one CORBA
ev ent. M ax ex pec ted to be -1, m eans
queue up ALL o f them and pus h ALL
in one CORBA ev ent.

Pus h any updates
s ti l l queued up.

tol lRa teUpdates Com ple ted(doc EffTim e)

[has a to ll
rou te c on fig]

s e t
m _s tats .rteStats .tol lRa teStats

to no da ta

No ti fi c ationM anagerWrapper

[tol l ra te a lert
c onfigured]

c rea teTo llRateAle rt(m _ id , "tol l rate for <s ta rtID-endID> m is s ing from m os t rec ent doc ")

tol l rate noti f
c onfigured]

s endNotifi c a tion("to ll ra te fo r <s tartID-end ID> m is s ing from m os t rec en t doc ")

pus hTo l lRateSta ts Upda ted(m _ id , m _s tats .rteSta ts .to llRateSta ts)

m _s tats .rteStats .tol lRa teStats
eff tim e < doc EffTim e

m _pendingTol lRa teUpda tes :
Vec tor<Rou teTo l lRateUpdate>

c reate(m _ id ,m _s ta ts .rteSta ts .to l lRateStats)

add to Col lec tion o f pending updates

pus h(m _PendingUpdates c onv erted to array in RouteTol lRa teUpda teEv en t)

c lear

num pending
updates > 0]

c lear()

s endUpdates Com pleted()

[*fo r eac h
Trav elRouteIm p l

us ing th is
To llRateSpec

(found in
m _routes By Tol lSpec)]

m _routes By To llSpec :
Has h table<To l lRateSpec Key Trav elRoute Im p l []>

ge t(tol lDa ta .routeSpec as Tol lRou teSpec Key)
Trav elRoute Im p l

de le te from
UNPROCESSED_TOLL_DATA

where TOLL_RATE_EFF_TIM E_SECS
= tim e in to llData[0]

Th is tes t ens ures that
we don ' t proc es s a
tol l rate update we
proc es s ed in a prior
ex ec ution but before
we c ou ld de le te the
row o f unproc es s ed
tol l data from the DB.

s et s tateCode & String
bas ed on rou te

enabled or dis abled

[tol l rate e ff tim e i s newer than tim e in
m _s ta ts .rteSta ts .to l lRateSta ts]

[*fo r eac h
regis tered
c ons um er]

des troy

addTol lRateStat(m _id,
m _s tats .rteStats .tol lRa teStats)

AlertFac tory Wrapper

[*fo r eac h
tol lDa ta in
pas s ed -in

RawTo l lData
a rray]

Vector Import
Serv ice

Tok enM anipu lator

c m d:
Proc es s Tol lDataCm d

Com m and is ex ec uted
as y nc h ronous ly by the
Com m andQueue . The
Proc es s Tol lDa taCm d c an
als o be enqueued during
ini tia li z ation, i f the p roc es s
is s hut down before the
da ta c an be c om p letely
proc es s ed.

c hec k Ac c es s

[no rights]
Ac c es s Denied

addCom m and(c m d)

proc es s To llData(m _ to llData)

[*for eac h
regis tered

c ons um er]

upda te :
RouteTol lRa teUpda te

Pus hEv entSupp lier

pus hTo l lRateUpdate(upda te)

[m ax > 0 &&
num pending

upda tes > m ax]

pus hTo l lRateSta ts Upda ted(m _ id , m _s tats .rteSta ts .to llRateSta ts)

[DBEx c eption]
c rea teTo l lRateAle rt("Fa iled to s tore inc om ing to ll ra te da ta ")

deleteUnp roc es s edTol lDa ta (to llData)

pus h(m _PendingUpdates c onv erted to array in RouteTol lRa teUpda teEv en t)

Trav elRouteDB

[no rights]
log("ac c es s denied ")

c m d:Queueab leCom m and=c rea te(th is , to llDa ta)

ex ec u te ()

s etUnproc es s edTol lData(tol lDa ta)

s e t
m _s tats .rteStats .tol lRa teStats

with data from to l lData

s et oldes t
m _s tats .rteHis tSta ts .to l lRateHis t.rou teTo l lRateHis tory

with tol lDa ta data

inc r
m _s ta ts .rteHis tStats .tol lRateHis t.oldes tIndex

m od m _ tol lRateHis tSiz e

Figure 5-255. TravelRouteFactoryImpl:updateTollRateData (Sequence Diagram)

CHART R3B3 Detailed Design 5-459 12/23/2008

5.20.2.9 TravelRouteImpl:addRemoveConsumer (Sequence Diagram)

This diagram shows two CORBA methods called on TravelRoute objects by

TravelRouteConsumer objects. (A TravelRouteConsumer is, for example, a DMS which is

using the route to feed an active Traveler Information Message.) A consumer (DMS) calls

addConsumer when a Traveler Information Message goes active, and calls

removeConsumer when the message is deactivated. In this way the only traffic flowing on

the network is that which is necessary for a particular Traveler Information Message. When

a consumer calls addConsumer(), the current stats are returned immediately so the

consumer does not have to wait for the next update upon activating a message.

TravelRouteImpl
m_stats:

TravelRouteStats

[if new consumer not in consumerList]
add new consInfo to consumerList

Trav elRouteConsumer

removeConsumer(token, consId)

m_config:
TravelRouteConfig

addConsumer(token, consInfo)

rteStats:RouteStats=get routeStats from m_stats

[if departing consumer not in consumerList]
remove matching consumerInfo fm consumerList

rteStats

Figure 5-256. TravelRouteImpl:addRemoveConsumer (Sequence Diagram)

CHART R3B3 Detailed Design 5-460 12/23/2008

5.20.2.10 TravelRouteImpl:computeTravelTime (Sequence Diagram)

This helper method is called by a TravelRouteImpl on itself to compute its own travel time.

It is called whenever it is known that the underlying link data has changed, or when the link

configuration of the route has changed such that the route travel time calculation would be

different. Basically the specified percentage of each link's travel times are added together.

Errors are tracked and and the state code and string are updated after the main loop. The

trend is computed, and the stats record is added to the history before returning.

CHART R3B3 Detailed Design 5-461 12/23/2008

TravelRoute Impl

Sam e objec t,
s eparated fo r c la ri ty .

Trav e lRouteIm pl

RouteTravTim eSta ts

m _s ta ts .l ink Stats .l i nk Sta ts :
L inkTrav Tim eSta ts

m _config .routeConfig .trav Tim eCfg .routeL ink L is t[i]:
RouteLink

badLink Ids :
Vec to r<String>

expL ink Ids :
Vec tor<String>

m iss i ngL ink Ids :
Vec to r<Stri ng>

Al l these are separa te i f s ta tem ents , no t i f-el se s tatem ents .
In th is way al l the erro r m es s ages get in to the s ta te s tri ng ,
i n order o f dec reas ing p ri ori ty , and the h i ghes t p ri ori ty
c ode ge ts i nto the s ta te c ode.

RouteTrav Tim eHis tRec ord

c a lc String :
StringBiffe r

RouteTravTim eHis tSta ts

AlertFac to ryWrapper

Th is i s the onl y e rro r cas e where we do NOT suppl y a (s us pec t) trav e l t im e
for the rou te. In th is c ase the trav e l t im e c learly wi l l be too low, perhaps by a
l i ttle , perhaps by a lo t. Se t to -1 s o GUI and DM S do no t d i sp lay a parti cu l arly
bogus num ber (p robabl y m ore bogus than in the o ther erro r cas es).

Noti f ic a tionM anagerWrapper

Not d iagram m ed. Sim p l y com pares the N newes t
 t im es to the N ol des t and s ets to UP, FLAT, DOWN
bas ed on con fi gurab le perc en t d i fferenc e . Se t to
FLAT i f no t enough data (c ons ideri ng -1 ' s).

[c an' t f ind data]

append(<l ink Tim e> "x " <l inkPc t> "+")

[fina lTim e > m ax]

prepend "Com puted tim e of <fi na lTim e>
ex c eeds m ax o f <m ax >. " to

rou teTrav Tim eSta teStri ng

rou teTrav Tim eSta teCode=DATA_OK

get ex p ired l ink IDs

rou teTrav Tim eStateCode=DATA_EXPIRED

c reate

[*fo r eac h
l ink in

m _s tats .l i nk Sta ts]

l ink Pc t=get perc entTo Inc lude

c rea teTrav elTim eAlert("Trave l tim e fo r <rou te> is <tim e> exc eeds m ax <m ax>")

c om puteTrav elTim e()

[trav el tim e lower than m in]

append "cons tra ined to <m in>" to c al c s tri ng

add(ex tLi nk Id)

c om puteTrend(
rou te h is t trav el t im es)

rou teTol lRateStateCode=ROUTE_DISABLED

routeTrav Tim eSec s +=
l i nk Pc t * l i nk Tim e

l inkTim e=get l inkTrav Tim eSec s
l ink Qua l=get l inkTrav Tim eQua l

�

[l inkQua l be low
m inAl lowedQua l]

rou teTrav Tim eStateCode=DATA_M ISSING

finalTim e=get rou teTrav Tim eSec s

get bad qual l ink IDs

add(ex tL ink Id)

s endNoti f ic ation("Trav e l t im e fo r <route> is <tim e> ex ceeds m ax <m ax >")

[trav e l t im e
exc c eds m ax]

prepend "<num > l i nks a re m is s i ng da ta :
<m iss ingL ink Ids >. " to

rou teTrav Tim eSta teStri ng

add(ex tLi nk Id)

append "Ca lc u la ti on :" + c a lc String to
rou teTrav Tim eSta teStri ng

c rea te

rou teTrav Tim eSta teCode=BAD_QUALITY

[num ex p ired l inks > 0]

inc rem ent rou teTol lRateOldes tRecord Index (m od h is tSiz e)

prepend "Route is d is ab led. " to
rou teTrav Tim eSta teStri ng

[l ink EffTim e<
now-m ax L ink Age]

rou teTravTim eSecs = -1

c reate

m iss ingLink Id != nu l l

l i nk EffTim e=get l inkTrav Tim eEffSecs

[el s e]

ge t m is s i ng l ink IDs

ttSta ts =c rea te ()

[num bad qua l l inks >
m axBadLink s]

a l l owedQua l=get m inAl l owedQua l

p repend "<num > l inks a re ol der than
<m axL ink Age>: <ex pL ink Ids > " to

rou teTrav Tim eSta teStr

c rea te

rou teTravTim eSta teCode=M AX_EXCEEDED

prepend "<num > l i nk s hav e bad qua l:
<badL ink Ids >. " to

�rou teTrav Tim eStateString

[trav e lTim eEnab led ==fal s e]

copy ttSta ts to o ldes t RouteTrav Tim eHis tRecord

se t trav e l tim e to m in

s e t trend

c om pute s peed =
length over speed (in M PH)

Figure 5-257. TravelRouteImpl:computeTravelTime (Sequence Diagram)

CHART R3B3 Detailed Design 5-462 12/23/2008

5.20.2.11 TravelRouteImpl:remove (Sequence Diagram)

This method is called by the GUI when a user wants to permanently remove a TravelRoute

from the system. It first sets toll rate and travel time functions to disabled, and informs any

connected consumers of that change, then it deletes itself from the database and the factory.

See TravelRouteImpl:setConfig for details.
This updates any attached consumers to let them know the
route is now disabled so they can update their sign if necessary.

deleteRoute()

TravelRouteDB

deleteRoute()[DB exception]
CHART2Exception

[CHART2Exception]
CHART2Exception

pushRouteRemoved(m_id)

push(ROUTE_DELETED)

See TravelRouteFactoryImpl:pushConsumerUpdate for details.

ORB

TravelRouteImpl

newCfg:
TravelRouteConfig

TravelRouteFactoryImpl PushEventSupplier

remove(token)

[tollRateEnabled]

newCfg=
getConfig()

set tollRateEnabled(false)

travTimeEnabled]
[newCfg == null]

newCfg=
getConfig()

set travTimeEnabled(false)

setConfig(token, newCfg)

[*for each
registered
consumer]

create from current m_config

Figure 5-258. TravelRouteImpl:remove (Sequence Diagram)

CHART R3B3 Detailed Design 5-463 12/23/2008

5.20.2.12 TravelRouteImpl:setConfig (Sequence Diagram)

This method is called by the GUI when a user updates the configuration of a TravelRoute.

This method checks to make sure certain things are not changed, like the route ID and the

consumer list. Updates are made, and changes made are detected. If the travel time or toll

rate processing is enabled or disabled, or if the travel time or toll rate confiugration is

changed, necessary updates are made to the current stats (e.g., recompute the travel time

based on a new link configuration, new percentage(s) of links to include or minimum

quality), and updates to the consumers and GUIs are pushed out.

CHART R3B3 Detailed Design 5-464 12/23/2008

pushRouteUpdatesCompleted()

Synchronize on
m_lockStats and
m_lockConfig.
(getConfig() (not
diagrammed) also
syncs on
m_lockConfig.)

[ExtTollSpec
changed]

End sync on
m_lockConfig

Not diagrammed. Validation requirements to be determined
through the implementation phase. Among other things, it will
ensure that clients do not change the consumer list
(newCfg.consumerList matches m_config.consumerList.

If disabling, set to SS_ROUTE_ DISABLED.
If enabling, set to SS_DATA_OK or
SS_DATA_EXPIRED as appropriate.

log(travel route config changed)

Data structures,
not classes.

[DB exception]
CHART2Exception

newTollSpec
= true

End sync on
m_lockStats.

set tollRateState vals

[tollChanged]

[tollRateStats null]

empty
m_stats.tollRateStats

m_tollRates:
Hashtable<ExtTollSpecKey TollRateStats>

tollStats:TollRateStats=getTollRate(ExtTollSpec)

m_stats.tollRateStats[0]
= tollStats

m_config =
newConfig

needsRecompute
= true

[travTimeEnabled
flag changed]

needsRecompute
= true

See TravelRouteFactoryImpl:pushConsumerUpdate
for details.

setLinkStats(
newCfg.travTimeCfg,
m_config.travTimeCfg)

pushTravTimeStatsUpdated(consumer, stats)

pushTollRateStatsUpdated(consumer, stats)

pushDispConfigUpdated(consumer, dispCfg)

RouteLinkStats

RouteLinkStats

RouteLinkHistStats

RouteLinkHistStats

tollChanged=true

ushRouteUpdatesCompleted()

TravelRouteFactoryImpl

[newTollSpec]

get(ExtTollSpec)

TokenManipulator OperationsLogTravelRouteDB PushEventSupplier

ORB

TravelRouteImpl

Repeat for
county (TRAVEL_ROUTE_COUNTY),
routes (TRAVEL_ROUTE_ROUTE_SPEC),
alternate destinations (TRAVEL_ROUTE_DEST),
links (TRAVEL_ROUTE_LINK).

setConfig(token,
newCfg: TravelRouteConfig) checkAccess

[no rights]
log("access denied")[no rights]

throw AccessDenied

validateConfig(newCfg)

[tollRateEnabled
flag changed]

tollRateStats != null]
TollRateStats or null

[invalid config]
CHART2Exception

setConfig(routeId, newCfg)

autoCommit=false

update basic
route data in

TRAVEL_ROUTE

delete from
TRAVELROUTE_STATE

for this routeId)

insert new
state data into

TRAVEL_ROUTE_STATE

commit

[links list changed]

See TravelRouteFactoryImpl:pushConsumerUpdate
for details.

[* for each
registered
consumer]

[TravelRoute-
DisplayConfig
being changed]

[* for each
registered
consumer]

push ROUTE_CONFIG_CHANGED

[needsRecompute]

computeTravelTime()

[* for each
registered
consumer]

Includes full stats.

tollChanged=true

Figure 5-259. TravelRouteImpl:setConfig (Sequence Diagram)

CHART R3B3 Detailed Design 5-465 12/23/2008

5.20.2.13 TravelRouteImpl:setLinkStats (Sequence Diagram)

This helper method is called during a set configuration request when the route's link

configuration has changed, to update the list of links which below to the route and to attach

the stats associated with those links, so that the new travel time then can be computed.

Data struc tures, not classes.

TravelRouteImpl

m_usedLinks:
Hashtable<ExtLinkIdKey UsedLinkElement>

setLinkUsedBy(extLinkSpec, this.m_id, true) �

ensure routeId is in
LinkUsedElement.routesUsing for this extLinkSpec

[*for each
linkId

in newCfg.routeLinkLis t,
in order]

setLinkUsedBy(extLinkSpec, this.m_id, false)
[LinkUsedElement.routesUsing.s ize()==0]

remove this link from m_usedLinks

[*for each
linkId

in oldCfg
not in newCfg]

RouteLinkStats RouteLinkHis tStats

LinkTravTimeStats

TravelRouteFactoryImpl

LinkTravTimeHis tStats

[m_routeFullStats .linkStats exists]
destroy array m_routeFullStats.linkStats

setLinkStats(newCfg:TravTimeCfg,
oldCfg:TravTimeCfg)

[m_routeFullStats.linkHis tStats exis ts
destroy array m_routeFullStats .linkHistStats

linkStats = getLinkStats(link Id)

linkHistStats=getLinkHis tStats(link Id)

RouteLinkStats

RouteLinkHis tStats

m_routeFullStats.linkStats [i]=
create(linkId, linkStats)

oldCfg may be null. In
this case, there should
be no exis ting RouteLinkStats
and RouteLis tHis tStats to
destroy .

�

m_routeFullSstats .linkHis tStats [i]=
create(linkId,linkHistStats)

TravelRouteImpl

Same objec t,
separated for clarity

Figure 5-260. TravelRouteImpl:setLinkStats (Sequence Diagram)

CHART R3B3 Detailed Design 5-466 12/23/2008

5.20.2.14 TravelRouteImpl:setPartialConfig (Sequence Diagram)

This sequence diagram shows the quick implementation of two methods,

setTravelTimeConfig() and setTollRateConfig(), which set just part of the entire

TravelRoute configuration. These are implemented by attaching the new changed part of

the configuration to the existing current configuration and then calling setConfig() on the

TravelRouteImpl itself.

This sequence diagram
shows two methods,
setTravelTimeConfig()
and setTollRateConfig(),
which set just part of
the entire TravelRoute
configuration

ORB

TravelRouteImpl

setTravelT imeConfig(token,
ttConfig: TravelTimeConfig)

newConfig:TravelRouteConfig=
this.m_routeConfig.routeConfig

newConfig.travelTimeCfg=
ttConfig

setConfig(token, newConfig)

setTollRateConfig(token,
trConfig:TollRateConfig)

newConfig:TravelRouteConfig=
this.m_routeConfig.routeConfig

newConfig.tollRateCfg=
trConfig

setConfig(token, newConfig)

See Sequence Diagram
TravelRouteImpl:setConfig
for details.

See Sequence Diagram
TravelRouteImpl:setConfig
for details.

Figure 5-261. TravelRouteImpl:setPartialConfig (Sequence Diagram)

CHART R3B3 Detailed Design 5-467 12/23/2008

5.20.2.15 TravelRouteModule:initialize (Sequence Diagram)

This method shows initialization of the TravelRouteModule. This depersists the link data

(stats) and travel routes and processes any queued up toll rate updates and/or link updates

(which are not too old) from the VECTOR or INRIX import modules or which may be

queued up but did not get a chance to be fully processed before the module was shut down.

This method also starts a StalenessWatcher task which checks to make sure the route travel

times do not get too stale (in the event that updates stop coming in from the INRIX import

module). (Note: Toll Rates control their own expiration times directly, so the staleness

watcher does not apply to toll rates).

ProcessTollDataCmd

ProcessLinkDataCmd

getTollRateDataRecvdTimeStamp()

[timestamp newer
than current data]

TollDataProvider

INRIXLinkDataProvider

find TollDataProvider objects in trader

tollDataPkt:TollRateData=getTollRateData()

addCommand(tollCmd)

find INRIXLinkProvider objects in trader

getLinkData()

linkCmd:QueueableCommand=
create(this,linkDataPkt.linkData)

Executes asynchronously.
See bottom part of
TravelRouteFactoryImpl:updateTolRatelData
Sequence Diagram
for details.

[data newer than .props
property minutes old]

tollCmd:QueueableCommand=
create(this,tollDataPkt.tollRates)

getLastDataChangeTimestamp()

[imestamp newer
than current data]

addCommand(linkCmd)

Executes asynchronously.
See bottom part of
TravelRouteFactoryImpl:updateINRIXLinkData
Sequence Diagram
for details.

[data newer than .props
property minutes old]

These get methods get all
unprocessed data and group them
by timestamp. Each block of records
which have the same time are in the
same array. Normally there should
be only one such array (one such
timestamp) but allowing for multiple
ones to be queued up. Queue up
 Toll Data first as it is more important.

[* for each
LinkRawData[]

in the
LinkRawData[][]]

[* for each
TollRawData[]

in the
TollRawData[][]

tollCmd:QueueableCommand=create(this, tollData)

create

ServiceApplication

TravelRouteModule DefaultServiceApplication

TravelRouteModuleProperties

PushEventSupplier

DiscoveryManager

TravelRouteDB

TravelRouteFactoryImpl

POA

java.util.Timer

TravelRouteStalenessWatcherTask

Cos.Trading.Register

initialize()
getProperties()

getDefaultProperties()
create

getEventChannelFactory()

create

getTradingRegister()

registerEventChannel()

maintainSystemProfileProperties()

getDBConnectionManager()

create(travelTimeHistSize, tollRateHistSize)

create(TravelRouteProperties)

getRoutes()

activate_object(TravelRoute)[* for each
route retrieved]

linkCmd:QueueableCommand=create(this, linkData)

addCommand(linkCmd)

tollData:TollRawData[][] =
getUnprocessedTollData()

addCommand(tollCmd)

create(true)

create

getStalenessWatcherInterval()

schedule(m_stalenessWatcher, 0 interval)

activate_object(m_factory)

export(m_factory)

For details see
TravelRouteDB:getRoutes
Sequence Diagram.

getTollRateHistorySize()
getTravelTimeHistorySize()

Executes asynchronously.
See bottom part of
TravelRouteFactoryImpl:updateTolRatelData
Sequence Diagram
for details.

Run as daemon.

ProcessLinkDataCmd

m_processingQueue:
CommandQueue

Executes asynchronously.
See bottom part of
TravelRouteFactoryImpl:updateINRIXLinkData
Sequence Diagram
for details.

ProcessTollDataCmd

For details see
TravelRouteDB.getLinks()
Sequence Diagram.

getLinks()

linkData:LinkRawData[][] =
getUnprocessedLinkData()

Figure 5-262. TravelRouteModule:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-468 12/23/2008

5.20.2.16 TravelRouteModule:shutdown (Sequence Diagram)

TravelRouteImpl

deactivate_object(TravelRoute)
[*for each

TravelRoute]

destroy

destroy

destroy

destroy

Serv iceApplication

TravelRouteModule java.util.T imer POATravelRouteFactoryImpl

shutdown
cancel()

deactivate_object(TravelRouteFactory)

shutdown

Figure 5-263. TravelRouteModule:shutdown (Sequence Diagram)

CHART R3B3 Detailed Design 5-469 12/23/2008

5.21 UserManagementmodulePkg

5.21.1 Classes

5.21.1.1 UserManagementClassDiagram (Class Diagram)

This class diagram depicts the CORBA IDL interface defined for user management in the

CHART system. User management includes adding and deleting users from the system,

modifying their roles, managing capabilities of roles, and management of system and user

profile properties. The UserManager interface is largely an interface to the User

Management database tables.

ProfileBinaryProperty
«datatype»

1

1

1

Last 6 methods added for R3B3

*

*

1

*

*

*

FunctionalRight
«datatype»

Role
«datatype»

User
«datatype»

UserManager
«interface»

ProfileProperty
«datatype»

*

*

*

Added for R3B3

Contact

CryptoKeyPair

ExternalApplicationConfig

ExternalApplicationData

CryptoKey
«datatype»

*

1

2

1
1

1

11

*

*

createUser() : void
deleteUser() : void
getusers() : User[]
createRole() : void
getRoles() : Role[]
grantRole() : void
revokeRole() : void
deleteRole() : void
getRoleFunctionalRights() : FunctionalRight[]
setRoleFunctionalRights() : void
getUserRoles() : Role[]
setUserRoles() : void
changePassword() : void
setUserPassword() : void
setUserProfileProperties() : void
deleteUserProfileProperties() : void
getUserProfileProperties() : ProfileProperty[]
setSystemProfileProperties() : void
deleteSystemProfileProperties() : void
getSystemProfileProperties() : void
setSystemProfileBinaryProperties(token, ProfileBinaryProperty[]) : void
deleteSystemProfileBinaryProperties(token, propertyKeys : string[]) : void
getSystemProfileBinaryProperties(token) : ProfileBinaryProperty[]
getSystemProfileBinaryPropsByKey(token, propertyKeys : string[]):
 ProfileBinaryProperty[]
createExternalApplication(token, config:ExternalApplicationConfig):
 void
getExternalApplications():ExternalApplicationData[]
getExternalApplicationData(appID:String):
 ExternalApplicationData
setExternalApplicationConfig(token, appConfig:ExternalApplicationConfig):
 ExternalApplicationData
generateKeyPair(token, appID:String):CryptoKeyPair
setExternalApplicationRoles(token, appID:String, roles:Role[]):
 ExternalApplicationData

m_key : string
m_value : byte[]

publicKey:CryptoKey
privateKey:CryptoKey

m_key : string
m_value : string

config:ExternalApplicationConfig
publicKey:CryptoKey
assignedRoles:Role[]

m_username
m_password

m_name
m_description

id:Identifier
name:String
description:String
contactPerson:Contact

m_id
m_orgFilter

firstName:String
lastName:String
email:String
primaryPhone:String

Figure 5-264. UserManagementClassDiagram (Class Diagram)

CHART R3B3 Detailed Design 5-470 12/23/2008

5.21.1.1.1 Contact (Class)

This class defines basic Contact data.

5.21.1.1.2 CryptoKey (Class)

This class represents a single key in a public/private key pair. It is an abstraction for an

array of bytes.

5.21.1.1.3 CryptoKeyPair (Class)

This class represents a public/private key pair used by external client applications when

communicating with CHART.

5.21.1.1.4 ExternalApplicationConfig (Class)

This class represents an exception thrown when an attempt is made to define a role which

already exists.

5.21.1.1.5 ExternalApplicationData (Class)

This class represents the application data.

5.21.1.1.6 FunctionalRight (Class)

The FunctionalRights class represents the right to perform an action or set of actions. The

functional right can be limited to apply to a single organization's shared resources. If the

filter is not used, the functional right applies to all organization's shared resources.

5.21.1.1.7 ProfileBinaryProperty (Class)

This class represents a key value pair that can be used to store system properties in the

system database. The key is a string and the value is binary data. One known use will be to

store audio cue data to be played by the browser as part of the Alert Management capability

introduced in R3B1.

5.21.1.1.8 ProfileProperty (Class)

This class represents a key value pair that can be used to store system properties in the

system database. The key and the value are both strings.

5.21.1.1.9 Role (Class)

A Role is a collection of functional rights. A Role can be granted to a user, thus granting

the user all functional rights contained within the role.

5.21.1.1.10 User (Class)

The User class represents a Chart II system user. In order to log into the Chart II system, a

CHART R3B3 Detailed Design 5-471 12/23/2008

user must be defined in the user database.

5.21.1.1.11 UserManager (Class)

The UserManager provides access to data dealing with user management. This includes

users, roles, and functional rights. The UserManager is largely an interface to the User

Management database tables.

5.22 UtilityPkg

5.22.1 Classes

5.22.1.1 UtilityClasses (Class Diagram)

This Class Diagram shows various utility classes that are used by various applications.

CHART R3B3 Detailed Design 5-472 12/23/2008

1
1

Disc ove ryHost

«i nterfac e»

New fo r R3B3

Duplicata ble

«interfac e»

TraderGroup

1

1

1

1

0..1

1

1

Discovery M anager

Sy stemContextProv ider

« inte rfac e »

Dis cove ryDriver

1

1

1

1

1

*

1

*

*

1

*

*

See Obje c tCa c he
c las s dia gram for
m ore detai ls .

Data M odel 1 1

Objec tCac he

NameFilter

1

1

1

1

1

1

1

1

1

Na meFiltera ble

« inte rfac e »

1

1

0 ..1

1

ExtendedCommandStatus

«i nterfac e»

1

11

Sy ncCommandStatusImpl

SyncExte nde dComma ndStatus Impl

CommandSta tus

« interfac e »

0 ..1

0 ..1

0..1

ChildComma ndStatus Data

« data ty pe »

0..1

1

1

*1
Identifia bleLookupTa ble

Eve ntConsumer

« inte rfac e »

DBConnectionM anager

Ide ntifier

PushEventSupplier

Unique lyIdentifiable

«i nterfac e»

POA

« interfac e »

Identifie rGenerator

Pus hEv entConsumer

Serv iceApplic ationM odule

« interfac e »

Queue able Command

« inte rfac e » Comma ndQueue

java .lang.Runnable

«interfac e»

ja va.util.Properties

Ev entCons ume rGroup

CosEventChannelAdmin.Eve ntChannel

« interfac e »

Se rvic eApplicationPrope rties

Serv iceApplic ation

« inte rfac e »

De faultServ iceApplic ation

11

11

1

1

1

*

1

1

*

+ge tCon nec tion() : jav a.s q l .Co nnec tion
+ge tCurrentOpenCurs o rs () : int
+rel eas e Con nec tion() : v o id
+s h utdo wn() : v oi d
+v e ri fy DBIni t ia l iz ed() : boo lean

g etPro perty ()
s etPro perty ()

c rea teId enti f ier()
areIdenti fiers Equ al()

a c tiv a te_o bjec t(Se rv ant obj)
d eac tiv ate _ob jec t(objec t_id)
d eac tiv ate ()
th e_POAM anag er() : POAM an ager
c reate _POA() : POA

Iden ti fie r(by te[] c hartID)
equ als (Objec t ob j)
has hCod e()
by te [] ge tID()

m _i d

Se rv ic e App l ic ati onProperties (
String p rope rties Fi len am e)
ge tProp ertie s ()
ge tDefa ul tProperties ()
ge tThre adM odel ():int
ge tThre adPoolSi z e(): int
ge tData bas eCon nec tStrin g():String
ge tData bas eUs e rNam e():String
ge tData bas ePas s word():String
ge tM od uleNam e s ():String []
ge tNetConn ec tio nSi te ():String

put(Iden ti fia ble)
find (ide nti fie r)
rem ov e (iden ti fie r)
ele m en ts ()
s iz e()

e x ec ute()
i nterrupte d()

s tart(arg s : s tring []) : b oole an
s hu tdown() : bool ean
getORB() : ORB
getPOA(s tring poa Nam e) : POA
getTradi ngRe gis ter() : Cos Tradi ng.Regis ter
getTradi ngLo ok u p() : Cos Tradin g.Lo ok u p
getEv en tCha nnel Fac tory () : Ev e ntCh ann elFa c tory
getDBCo nnec tion M an ager() : DBCon nec tionM ana ger
getOpera tion s Log () : Opera tions Log
getPrope rties () : j av a.uti l .Prope rties
getDefau l tPro pert ies () : jav a.uti l .Pro perti es
regi s terObjec t(ob j , id, nam e, ty pe, p ubl i s h) : v oid
regi s terEv en tCha nnel (Ev en tCha nne l , na m e) : v oi d
wi th drawObje c t(id) : v o id
getIDGen erator() : Iden ti fierGene rato r

getID()
getNam e ()

g etSy s tem Profi leProperties () : Sy s tem Profi leProperties
g etRo otDe ploy m en tPath () : s tring
g etDy nam ic Im agePath() : s tring
g etDa taM o del() : Da taM odel
g etPro c es s ing Queu e() : Com m an dQu eue

c hi ldDe v ic e ID:Id enti fi er
c hi ldDe v ic e Nam e:s tri ng
late s tStatus Tex t:s trin g
c om ple ted:b oole an
s uc c es s :bo olea n

+a ddCo m m and(Com m an dTra ns ac tion)
+d eque ue()
+e x ec u teCo m m and()
+re c eiv e(Id enti f ier)
+re c eiv eRe s pon s e(b y te[])
+ru n()
+s endCom m and ToCom Port(Cam eraCom m a nd)
+s topThrea d()

m _ c om m an ds : L is t
m _ c om port : Ca m era Con trolCom Po rt
m _ c om portNam e : String
m _ ena bleDev ic eLog ging : bo olea n
m _ loc k : Ob jec t
m _ res p ons eLoc k : Objec t
m _ res p ons es : Has h tabl e
m _ s im ulate d : b oole an
m _ s top Thre ad : boo lean

run()

ge tORB():ORB
ge tPOA(poa Nam e):POA
ge tTrad erGroup():Trad erGroup
ge tServ ic eNam e ():String
ge tHos tnam e():String
ge tIDGe nera tor(): Iden ti fierGene rato r
ge tNum Dis c ov ery Threads ():in t
ge tDis c ov e ry Inte rv al Sec s ():in t
ge tArbQueu ePol l Interv alSec s ():int
ge tEORSPol l Interv alM ins ():int
ge tObje c tCa c heL ogFlags ():String
ge tNetConn ec tio nSi te ():String
ge tFi rs tAv a i lable Serv ic eRem o teUs eM i ns (): int
ge tDis c ov e ry M a nage r():Dis c o v ery M an ager

upd ate(Strin g s ta tus):v oid
c om ple ted(b oole an c om m and Suc c es s ful ,
 String fina lStatus):v oid
c om ple tedSam e Statu s (bo olea n c o m m a ndSuc c e s s fu l):v o id

Pu s hEv entSupp l ier(Ev en tCha nnel Fac tory fac to ry , String c ha nnel Nam e , Pu s hSu ppl i er s u ppl i er)
ge tCha nne l():Ev entChan nel ;
ge tM a x Rec onn ec tIn terv al (v o id):in t;
s e tM a x Rec onn ec tIn terv al (int s ec onds):v o id;
pu s h(Any d ata):v oid ;
di s c on nec tPus hCon s um er(v o id):v oid;

in i tia l i z e(Serv ic eAp pl ic a tion app):boo lean
g etVers ion () : Com p onen tVers ion
traderGroup Upd ated () : v oid
s hutdo wn(Serv i c eAp pl ic ation app):bo olea n

Serv ic eApp l ic a tion m _s v c Ap p;
Defaul tServ ic eAppl i c atio nPro pert ies m _props ;

Defaul tServ i c eAp pl ic ation (Stri ng p roperties Fi len am e) : c tor
+s tart(a rgs : s trin g[]) : boo lean
+s h utdo wn() : bo olea n
+re s olv eTra ders (tok e n : Ac c e s s To k en) : v o id
+ge tDataM o del() : Da taM o del
+ge tDis c ov e rDriv er() : Dis c ov e rDriv er
+wi thdra wSta leOffers ()
-wri teOffers ToFi le (Stri ng m odu leNa m e, i nt[] o fferIDs):b oole an
-rem ov e Offe rs Fro m Fi le(String m od uleNa m e):boo lean

m _ prop s : Serv ic eAp pl ic a tion Prop erties
m _ opLo g : Opera tion s Log
m _ orb : ORB
m _ poa : POA
m _ tradi ngRe gis ter : Regis ter
m _ loc a lTrad ingL ook up : Look up
m _ tradi ngRe pos : Se rv ic e Ty p eRep os i to ry
m _ trade rGro up : Trad erGro up
m _ dbCo nne c tion M gr : DBConn ec ti onM a nag er
m _ opLo g : Opera tion s Log
m _ c m d Queu e : Com m and Que ue
m _ dis c ov ery M g r : Di s c ov ery M ana ger

s etBas i c Cm dSta tus (c m dStat:Com m and Statu s):v oid
s etEx te nded Cm d Statu s (
 x Cm d Stat:Ex te nded Com m an dSta tus):v oid
s etChi ld Dev ic eIn fo(id :Iden ti fer,nam e:s tring):v oid

m _ m as terCm dStat:Co m m a ndStatus
m _ m as terEx tCm dStat:Ex te nde dCom m a ndStatus
m _ c hi ld Dev ic eID:Iden ti fie r
m _ c hi ld Dev ic eNam e:s trin g
m _ c hi ld Cm d Status Da ta:Ch i ldCom m and Statu s Da ta
m _ c hi ld Cm d Status String:s tring

for_c ons um ers ()
for_s upp l iers ()
des troy ()

c o m ple tedAny (c om m and Suc c es s ful , f inalStatu s , de tai l :any):v oid
up date Any (s tatu s):v oid

+getDataM ode l() : Data M od el
+getObjec tCac he() : Ob jec tCac h e
+getDis c o v ery Driv er() : Dis c ov e ry Driv er

m _tra derGroup : TraderGrou p
m _di s c ov ery Driv e r : Di s c ov ery Driv er
m _da taM odel : Da taM o del
m _ec g : Ev en tCon s um erGro up
m _ob jec tCac h e : Objec tCac heClas s
m _proc es s ing Que ue : Com m an dQue ue

Pus h Ev e ntCon s um er(c hann el , p us h Cons um e r)

m _e v ent_c ha nnel : Ev entChann el
m _p us hCons u m er : Co s Ev e nt.Pus hCons um e r

v eri fy Co nne c tion ()
c on nec t()
is Equal (c on s um er)

s etBa s ic Cm dStatus (c m dSta t:Com m a ndStatus):v oi d
s etEx tend edCm dStatus (
 x Cm dStat:Ex tend edCo m m andStatu s):v o id
s etCh i ldDev ic eInfo (id:Id enti fer,n am e :s trin g):v oid

m _m as te rCm d Stat:Com m an dSta tus
m _m as te rEx tCm dStat:Ex ten dedCom m and Status
m _c h i ldDev ic eID:Id enti fier
m _c h i ldDev ic eNam e:String
m _c h i ldCm dStatus Data :Chi l dCom m a ndStatus Data
m _c h i ldCm dStatus Strin g:s tring

+Ob jec tCac h e(orb : ORB, p oa : POA, data M od el : Data M od el ,
 e c g : Ev en tCon s um erGroup, c on tex tProv id er : Sy s tem Conte x tPro v ide r,
 d is c o v ery Driv e r : Dis c o v ery Driv e rClas s , c m ds : Qu euea bleCom m and []) : c tor
+ge tDataM o del() : Da taM o del
+ge tObj ec t(k ey : Obje c t) : Obje c t
+ge tObj ec ts OfTy pe(c las s Chec k : Clas s) : Ob jec t[]
+ge tAl lObjec ts () : Obj ec t[]
+ge tNam eFi l tere dObj ec ts OfTy pe(ty pe : Clas s , fi l ter : Nam eFi l terCla s s) : Obj ec t[]
+is Dupl ic ate d(ty pe : Clas s , other : Dupl ic ata ble) : bo olea n
+ge tDup l ic a tes (ty pe : Cla s s , o ther : Dup l ic a table) : Dupl ic atab le[]
+s e arc h (c ri teria : s tri ng, c as e Sens i tiv e : bo olea n,
 from Clas s es : Clas s []) : Obje c t[]

m _ orb : ORB
m _ poa : POA
m _ data M od el : DataM ode l
m _ ec g : Ev e ntCo ns u m erGroup
m _ trade rGro up : Trad erGro up
m _ dis c ov ery Tok en : Ac c es s Tok e n
m _ s y s Profi l ePro ps : Sy s tem Profi le Prop ertie s
m _ s y s Conte x tProv id er : Sy s te m Co ntex tProv ider

Di s c ov ery Driv e r(Tra derGroup, num Thre ads ,
 d is c ov ery Inte rv al Sec s) : c tor
ad d(Qu eue able Com m an d c m d) : v oid
pe rform Dis c ov e ry () : v oi d

m _c om m a ndQu eue : Co m m a ndQu eue
m _tim er : j av a.uti l .Tim e r
m _c om m a nds : Que uea bleCo m m and[]
m _trad erGroup : Tra derGroup

nam eCo ntain s (fi l terStr : s tring) : bo olea n

a dd(c ons u m er)
s etInterv a l ()
re m ov e(c o ns u m er)
-h as Cons u m er(c on s um er)
-v eri fy Con nec tions ()

m _c o ns um ers : Ve c tor<Ev e ntCo ns um er>

+Nam e Fi l te r(fi l terOu tM atc hin gObj ec ts : bo olean , fi l terStr : s tring) : c to r
+fi l ter(inc o m ing : Na m eFi l terable []) : Nam e Fi l te rable []
+objec tPas s es Fi l te r(obj : Na m eFi l tera bleIF) : b oole an
+s etFi l terString (fi l te rStr : s trin g) : v oid
+getFi l terString () : s tring
+s etFi l ters OutM atc h ingObjec ts (fi l terOutM a tc he s : b oole an) : v oid
+getFi l ters OutM atc h ingObjec ts () : boo lean

m _fi te rOutM atc hing Obje c ts : boo lean
m _fi l te rStri ng : s trin g

is Dupl ic ate Of(ty pe : Clas s , o ther : Dup l ic a table) : bo olea n

Figure 5-265. UtilityClasses (Class Diagram)

5.22.1.1.1 ChildCommandStatusData (Class)

This structure can be sent as the Any in an ExtendedCommandStatus back to clients. It

contains information about a particular action which has taken place during processing of a

long-running command fired off to one of any number of subsidiary "sub"-objects for

completion of the primary task. This structure identifies the specific device for which the

action has occurred, together with text and flags indicating the latest state of the command

process on that device.

5.22.1.1.2 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CHART R3B3 Detailed Design 5-473 12/23/2008

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.22.1.1.3 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of

the progress of a long-running asynchronous operation. This is normally used when field

communications are involved to complete a method call. The most common use is to allow

a GUI to show the user the progress of an operation. It can also be used and watched by a

server process when it needs to call on another server process to complete an operation.

The long running operation typically calls back to the CommandStatus object periodically

as the command is being executed, to provide in-progress status information, and it always

makes a final call to the CommandStatus when the operation has completed. The final call

to the CommandStatus from the long running operation indicates the success or failure of

the command.

5.22.1.1.4 CosEventChannelAdmin.EventChannel (Class)

The event channel is a service that decouples the communication between suppliers and

consumers of information.

5.22.1.1.5 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

5.22.1.1.6 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

CHART R3B3 Detailed Design 5-474 12/23/2008

5.22.1.1.7 DefaultServiceApplication (Class)

This class is the default implementation of the ServiceApplication interface. This class is

passed a properties file during construction. This properties file contains configuration data

used by this class to set the ORB concurrency model, determine which ORB services need

to available, provide database connectivity, etc. The properties file also contains the class

names of service modules that should be served by the service application. During startup,

the DefaultServiceApplication instantiates the service application module classes listed in

the properties file and initializes each.

The DefaultServiceApplication maintains a file of offers that have been exported to the

Trading Service. Each module must provide an implementation of the getOfferIDs method

and be able to return the offer ids for each object they have exported to the trader during

their initialization. The DefaultServiceApplication stores all offer IDs in a file during its

startup. Each module is expected to remove its offers from the trader during a shutdown. If

the DefaultServiceApplication is not shutdown properly, it uses its offer ID file to clean-up

old offers prior to initializing modules during its next start. This keeps multiple offers for

the same object from being placed in the trader.

The DefaultServiceApplication also starts a DiscoveryManager. (If no modules add

discovery QueueableCommand objects to the DiscoveryManager's DiscoveryDriver,

discovery runs, but does nothing, so incurs virtually no cost.)

5.22.1.1.8 DiscoveryDriver (Class)

This class drives the periodic discovery of objects from other services within the CHART

system. Other objects in the system that need access to other service's objects add their

own QueuableCommand to the DiscoveryDriver. Each time discovery is performed, the

discovery driver uses a command queue to execute all queueable commands that have been

added in a separate thread of execution. The commands are added to the command queue

immediately upon execution, and then executed in serial fashion via the command queue

until all commands have executed. The frequency of discovery is controlled by a property.

Discovery occurs more frequently immediately after service startup, to more quickly

discover objects from other services which may also be starting up at more or less the same

time. The DiscoveryDriver can be configured to have multiple threads to allow concurrent

discovery of different objects.

5.22.1.1.9 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be

implemented by any class that will create a DiscoveryManager.

5.22.1.1.10 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

CHART R3B3 Detailed Design 5-475 12/23/2008

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

5.22.1.1.11 Duplicatable (Class)

This java interface is implemented by classes which have sense of being "duplicated"

within the CHART system. This allows the ObjectCache to search for duplicates of any

Duplicatable object. This is different from "equals()" or "compareTo()". To cite two

examples: Alerts within CHART are duplicates if they refer to the same objects within

CHART (but do not have the same Alert ID, which is more closely associated with

"equals()"). Traffic Events within CHART are duplicates if they have the same location

(but do not have the same Traffic Event ID).

5.22.1.1.12 EventConsumer (Class)

This interface provides the methods which any EventConsumer object that would like to be

managed in an EventConsumerGroup must implement.

5.22.1.1.13 EventConsumerGroup (Class)

This class represents a collection of event consumers which will be monitored to verify that

they do not lose their connection to the CORBA event service. The class will periodically

ask each consumer to verify its connection to the event channel on which it is dependant to

receive events.

5.22.1.1.14 ExtendedCommandStatus (Class)

The ExtendedCommandStatus CORBA interface is used to allow a calling process to be

notified of the progress of a long-running asynchronous operation. This interface extends

the basic CommandStatus interface by allowing additional information to be passed in in a

CORBA "Any" object. The "Any" can be configured to hold (as the name would suggest)

any type of information. The information defined in the any varies based on the particular

command being called. The most common use is to allow a GUI to show the user the

progress of an operation. It can also be used and watched by a server process when it needs

to call on another server process to complete an operation. The long running operation

typically calls back to the ExtendedCommandStatus object periodically as the command is

being executed, to provide in-progress status information, and it always makes a final call

to the CommandStatus when the operation has completed. The final call to the

ExtendedCommandStatus from the long running operation indicates the success or failure

of the command.

5.22.1.1.15 IdentifiableLookupTable (Class)

This class uses a hash table implementation to store Identifiable objects for fast lookups.

CHART R3B3 Detailed Design 5-476 12/23/2008

5.22.1.1.16 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add

identifiable objects to hash tables and perform subsequent lookup operations.

5.22.1.1.17 IdentifierGenerator (Class)

This class is used to create and manipulate identifiers which are to be used in Identifiable

objects.

5.22.1.1.18 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java's threading

mechanism.

5.22.1.1.19 java.util.Properties (Class)

The Properties class represents a persistent set of properties. The Properties can be saved to

a stream or loaded from a stream. Each key and its corresponding value in the property list

is a string. A property list can contain another property list as its "defaults"; this second

property list is searched if the property key is not found in the original property list.

5.22.1.1.20 NameFilter (Class)

This class defines a filter by which a NameFilterable object can be selected from the

ObjectCache. It provides a string to search for, and a flag to indicate whether the desired

result is those object which match the filter, or those which do not.

5.22.1.1.21 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the

ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable

objects in the cache.

5.22.1.1.22 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.22.1.1.23 POA (Class)

This interface represents the portable object adapter used to activate and deactivate servant

objects.

5.22.1.1.24 PushEventConsumer (Class)

This class is a utility class which will be responsible for connecting a consumer

implementation to an event channel, and maintaining that connection. When the

CHART R3B3 Detailed Design 5-477 12/23/2008

verifyConnection method is called, this object will determine if the channel has been lost

and will attempt to re-connect to the channel if it has.

5.22.1.1.25 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.

The user of this class can pass a reference to the event channel factory to this object. The

constructor will create a channel in the factory. The push method is used to push data on

the event channel. The push method is able to detect if the event channel or its associated

objects have crashed. When this occurs, a flag is set, causing the push method to attempt to

reconnect the next time push is called. To avoid a supplier with a heavy supply load from

causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.

This interval specifies the quickest reconnect interval that can be used. The push method

uses this interval and the current time to determine if a reconnect should be attempted, thus

reconnects can be throttled independently of a supplier's push rate.

5.22.1.1.26 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.22.1.1.27 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a

ChartII service application. These services include providing access to basic CORBA

objects that are needed by service applications, such as the ORB, POA, Trader, and Event

Service.

5.22.1.1.28 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing

classes are notified when their host service is initialized and when it is shutdown. The

implementing class can use these notifications along with the services provided by the

invoking ServiceApplication to perform actions such as object creation and publication.

5.22.1.1.29 ServiceApplicationProperties (Class)

This class provides methods which allow the DefaultServiceApplication to access the

necessary properties from the java properties configuration file. It also provides a default

properties file which can be retrieved by anyone holding a ServiceApplication interface

reference. This gives each installed service module the opportunity to load default values

CHART R3B3 Detailed Design 5-478 12/23/2008

before retrieving property values from the properties file.

5.22.1.1.30 SyncCommandStatusImpl (Class)

This is an implementation of CommandStatus which can be used by server-side processes

which need to kick off and check results of multiple long-running commands. The

SyncCommandStatusImpl can notify a MuxWaitSem object when the CommandStatus

completed() call is made (meaning the long-running command has completed). (The

MuxWaitSem can be waited on until all such SyncCommandStatusImpl objects have

completed.) Additionally, new in R2B3, the SyncCommandStatusImpl has the faciility to

take a "master" CommandStatus or ExtendedCommandStatus (expected to be held by client

code) which can receive results from the various "child" CommandStatus objects. If the

master is a simple CommandStatus, the results are sent "inline" as additional text messages

in update() calls, for unstructured, unsorted display to the user. If the master is an

ExtendedCommandStatus, the results are sent in a ChildCommandStatusData object, for

more organized display to the user.

5.22.1.1.31 SyncExtendedCommandStatusImpl (Class)

This is an implementation of ExtendedCommandStatus which can be used by server-side

processes which need to kick off and check results of multiple long-running commands.

The SyncExtendedCommandStatusImpl can notify a MuxWaitSem object when the

CommandStatus completed() call is made (meaning the long-running command has

completed). (The MuxWaitSem can be waited on until all such

SyncExtendedCommandStatusImpl objects have completed.) Additionally, new in R2B3,

the SyncExtendedCommandStatusObject has the faciility to take a "master"

CommandStatus or ExtendedCommandStatus (expected to be held by client code) which

can receive results from the various "child" CommandStatus objects. If the master is a

simple CommandStatus, the results are sent "inline" as additional text messages in update()

calls, for unstructured, unsorted display to the user. If the master is an

ExtendedCommandStatus, the results are sent in a ChildCommandStatusData object, for

more organized display to the user.

5.22.1.1.32 SystemContextProvider (Class)

Interface which provides operations for access to few key objects, and is implemented by

the DiscoveryManager

5.22.1.1.33 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be

unaware of the number of CORBA trading services that the application is using or the

details of the linkage between those services.

5.22.1.1.34 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the

system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

CHART R3B3 Detailed Design 5-479 12/23/2008

CHART R3B3 Detailed Design 5-480 12/23/2008

5.22.1.2 UtilityClasses2 (Class Diagram)

This Class Diagram shows various utility classes related to log entries that are used by GUI

and servers.

NEW FOR R3B3.

TravelTimeScheduleUtil

TravelTimeRangeDef

*

1

TravelTimeRange

New for R3B3.

* 1

ObjectLocator

TraderGroup

ObjectCac he

ProxyObject

1

1

1

1

GeoAreaUtil

Cons truc tor s ets m _ refCount to 1.
Addi tional re ferenc e s rec orded by LogEntry Cac he
wi th inc dRefCount() a nd dec rRefCount()

1

*

1 *

1

OpLogQueue

1

1

LogFilter

«s tru c t» LogEntry

« s truc t»

LogIteratorImpl
CachedLogEntry

m _k ey s is an ordered a rray of
s lo ts in the c ac he for th e LogEntries
whic h m atc h the fi l ter. Eac h k ey
is us ed to ex trac t the a ppropria te
LogEntry from the LogEntry Cac he.
m _nex tEntry index es in to array
of m _entry Slots , po intin g to the
nex t entry to ex trac t.

M ultiPars eListener

«interfac e»

FunctionalRightType

1

OpLogM essage

*

1

1

M ultiConverter

*

1

1

DBUtility

M ultiForma tter
BucketSet

*

TokenM anipulator

1

1

LogFile

logs m es s age
us ing

1

*

DatabaseLogger

LogIterator

«interfac e»

LogEntryCache

DM SHardwarePage

*

Log

OperationsLog
1

Log Entry Cac he deletes a Cac h edLogEntry from
has htable when i ts re fCount h i ts 0.

CorbaUtilities

*

Sourc e s ourc e
boolean s ourc eIs Us ed
s tring author
Tim eStam p s tartDate
Tim eStam p endDate
Identi fier ev entID
Identi fier logEntry ID
s tring opCenterNam e
s tring c onta ins Tex t
boolean is Cas eSens i tiv e
LogFi l terM es s ag eTy pe m es s ageTy pe

getM o reEntries (long m ax Count) : LogEntry L is t
des tro y ():v o id

long m _tim eOfLas tUs e

Data bas eLogger(tab leNam e)
addEntry (logEntry) : v o id
c hec lEx pi redEntries () : v o id
getEntries (fi l ter, m ax Count) : Log Iterator
s hutdown() : v o id

es c apeSingleQuotes (s tring):s tring
ex ec uteSQLStatem e nt(c onn, query , s tring, in t):v o id

Operations L og(DBConnec tionM anager d b)
log()
flus hLog
()s hutdown()

addEntry (LogEntry entry)

Obje c t[] m _k ey s
int m _nex tEntry

OpLogQueue()
put()
flus h()
getFi rs tM es s age()
rem ov eFi rs tM es s ag e()

m _logQueueTim e

m ul tiToPla inTex t(m u l ti)
p la inTex tToM ul ti (tex t, form atter)
pars eM ul ti (m ul ti , l i s tener)
hardwareM s gToM ul t i (DM SHardwarePage[] m s g):String

Identi fier ID
Tim eStam p ti m eStam p
Identi fier ev e ntID
s tring tex t
s tring author
s tring opCenterNam e
s tring hos tNa m e
Sourc e s ourc e
LogEntry M es s ageTy pe m es s ageTy pe

Stri ng m _ac tionDes c
Stri ng m _ac tionTy pe
Stri ng m _opCenter
Date m _tim eStam p
Stri ng m _us er

addEntry (LogEntry entry) : Objec t
getEntry (Objec t k ey) : L ogEntry

jav a.uti l .Has htable has hTable

findAl l Objec ts OfTy pe(ORB, look up , ty pe):Objec t[]

p la inTex tToM ul ti (tex t)

m es s ageTx t(tex t)
l ineJ us ti fic ation (jus ti fy)
newLine(p ix e lSk ip)
newPage()
pageDis play Tim e(tim eOn, tim eOff)
unk nownTag(tag)
pars eCom plete()

c har[][] m _pageTex t
in t m _pageOnTim e
int m _pageOffTim e

dec rRefCount() : v o id
equ als () : boolean
getEntry () : LogEntry
getRefCount() : in t
has hCode() : in t
inc rRefCount() : v o id

m _ logEntry
m _ refCount

lo g(Objec t ob j , String m es s a ge, in t lev el)
lo gStac k (Objec t ob j , String m es s age, in t lev el , Throwabl e th)
s etKeepDay s (in t day s)
s etLogFi leNam e(String fi leNa m e)
g etKeepDay s ()
g etLogFi leNam e()
OpenLogFi le()
s etLogLev el (in t lev el)
g etLogLev el ()
d e leteLogFi les (Date pres entTim e)

m _logFi leNam e
m _k eepDay s
m _logFi le
m _c reationDate
m _defFi leNam e
m _logLev el

add(c om pa rable)
rem ov e(c om parable)
rem ov eAl l ()
getElem ents (in t)
s iz e()
is Em pty ()

m _c om para bles

get():Log;
log()
logStac k ()

m _ins tanc e

Tok enM anipulator()
c re ateTok en(us erNam e, opCen terID, opCenterNam e)
opt im iz e(operation, orgFi l ter)
add (us erTok en, operation, org Fi l ter)
add (us erTok en, operation)
rem ov e(us erTok en, operation, orgFi l ter)
rem ov e(us erTok en, operation)
getOpCenterNam e(us erTok en)
getOpCenterID(us erTok en)
getHos tNam e(us erTok en)
getUs erNam e(us erTok en)
c he c k Ac c es s (us erTok en, ope ration, orgFi l ter)
c he c k Ac c es s (us erTok en, ope ration)
has Right(us erTok en, operation , orgFi l ter)
v a l idateTok en(us erTok en)
c al c Chec k Sum (us erTok en)
prin tTok en(us erTok en)
prin tNy bble(ny bble)

$c reatePoly gons From GeoAreas (area : GeoArea[]) : jav a.awt.Poly gon[]
$ is PointinGeoAre a(PointLoc ationProfi le , area s : GeoArea[]) : boolean
$is LatLonInGeoArea(la t : in t, lon : in t, areas : GeoArea[])boolean()
$ is PointInPoly go n(PointLoc ationProfi le , area s : Poly gon[]) : boolean
$is LatLonInPoly gon(la t : in t, lon : in t, areas : Poly gon[]) : boolean

tim eRanges From J SON(js on:String):HHM M Ran ge[]
tim eRanges ToJ SON(ranges :HHM M Range[]):String

des c rip tion()
enum erate()
from Int()
nam e()
v alu e()

Conf igureDM S
ConfigureSel f
Conf igureUs ers
Forc eDM SPol l
M an ageDev ic eCom m s
M an ageDic tionary
M an ageUs erLogins
M od i fy M es s ageLibrary
M od i fy Plans
Res e tDM SGroup
SetDM SM es s age
Tran s ferAny SharedRes ourc e
Us ePlans
ViewDic tionary
ViewUs erConfig
ViewUs erLogins

in i t(id :Identi fi er, nam e:String, ob jRef:org.om g.CORBA.Objec t):v o id
getID():Identi f ier
getNam e():String
getObjec tRefe renc e():org.om g.CORBA.Obj ec t
is Loc al ():boo lean
abs trac t upda te():v o id

m _id:Identi fe r
m _nam e:Strin g
m _objRef:org .om g.CORBA.Objec t

Trav elTim eRan ge(js on:String)
c onv ertToRang e(trav elTim e:in t):in t[2]
getRangeDefs ():Trav elTim eRangeDef[]
s etRangeDefs (d efs :Trav elTim eRangeDef[])
getJ SONString():String

-m _trav elTim e:in t
-m _s ubtrac tAm t:in t
-m _addAm t:in t

getObjec t(id :Identi fie r, traderSearc hTy pe:String, prox y Clas s :Clas s):Prox y Ob jec t
getObjec ts OfTy pe():Prox y Objec t[]

+Objec tCa c he(orb : ORB, poa : POA, da taM odel : DataM odel ,
 ec g : Ev entCons um erGroup, c ontex tProv ider : Sy s tem Contex tProv ider,
 d is c ov e ry Driv er : Dis c ov ery Driv erCl as s , c m ds : QueueableCom m and[]) : c tor
+getDataM odel () : DataM odel
+getObjec t(k ey : Objec t) : Objec t
+getObjec ts OfTy pe(c las s Chec k : Clas s) : Objec t[]
+getAl lOb jec ts () : Objec t[]
+getNam e Fi l teredObjec ts OfTy pe(ty pe : Clas s , fi l ter : Nam eFi l terClas s) : Objec t[]
+is Dupl ic ated(ty pe : Clas s , o ther : Du pl ic atable) : boolean
+getDupl i c ates (ty pe : Clas s , o ther : Dupl ic atable) : Dupl ic atable[]
+s earc h(c ri teria : s tring, c as eSens i tiv e : boolean,
 from Cla s s es : Clas s []) : Objec t[]

m _orb : ORB
m _poa : POA
m _dataM odel : DataM odel
m _ec g : Ev entCons um erGroup
m _traderGroup : TraderGroup
m _dis c ov ery Tok en : Ac c es s Tok en
m _s y s Pro fi leProps : Sy s tem Profi lePro perties
m _s y s Co ntex tProv ider : Sy s tem Conte x tProv ider

Figure 5-266. UtilityClasses2 (Class Diagram)

5.22.1.2.1 BucketSet (Class)

This class is designed to contain a collection of comparable objects. All of the objects

added to this collection must be of the same concrete type. Each element in the collection

has an associated counter which tracks how many times this element has been added. It is

then possible to get only the elements which have been added to the collection n times

CHART R3B3 Detailed Design 5-481 12/23/2008

where n is a positive integer value. This class is very useful for creating GUI menu's for

multiple objects as it allows all objects to insert their menu items and then allows the user

to get only those items which all objects inserted.

5.22.1.2.2 CachedLogEntry (Class)

This class represents a reference-counting object stored in a memory-efficient

LogEntryCache. The object of this class encapsulates the stored log entry and adds a

reference count.

5.22.1.2.3 CorbaUtilities (Class)

This class is a collection of static CORBA utility methods that can be used by both server

and GUI for CORBA Trader service transactions.

5.22.1.2.4 DatabaseLogger (Class)

This class represents a generic database logger which can be used to log and retrieve

information from the database. This class also provides a mechanism for the user to filter

and retrieve logs that meet a specific criteria.

5.22.1.2.5 DBUtility (Class)

This class contains methods that allow interaction with the database.

5.22.1.2.6 DMSHardwarePage (Class)

This class holds data that specifies the layout of one page of a DMS message on the actual

DMS hardware. A two dimensional array that is the same size as the sign's display (rows

and columns) specifies the character displayed in each cell, including blank if the cell has

no character. This format maps well to the way DMS protocols return the current message

being displayed in a status query. This class can then be passed to a MultiConverter object

to convert the message into MULTI format.

5.22.1.2.7 FunctionalRightType (Class)

This class acts as an enumuration that lists the types of functional rights possible in the

CHART2 system. It contains a static member for each possible functional right.

5.22.1.2.8 GeoAreaUtil (Class)

This class contains static methods used for searching GeoAreas for specific Lat/Lons. The

actual search of a GeoArea is done by converting a chart GeoArea to a java.awt.Polygon

then using that object's contains(lat,lon) method to make the determination. Serveral

helper methods front the Polygon based methods for flexibility.

5.22.1.2.9 Log (Class)

Singleton log object to allow applications to easily create and utilize a LogFile object for

CHART R3B3 Detailed Design 5-482 12/23/2008

system trace messages.

5.22.1.2.10 LogEntry (Class)

This class represents a typical log entry that is stored in the database. This can be a general

Communications Log entry or it can be a historical entry for a Traffic Event. Some Traffic

Event actions (opening, closing, etc.) are logged in the Communications Log as well as in

the history of the specific Traffic Event.

5.22.1.2.11 LogEntryCache (Class)

The LogEntryCache caches log entries returned from a database query which are in excess

of the requestor-specified maximum number of entries to return at one time. The

LogIterator stores references to the LogEntry objects thus cached, and requests additional

objects as needed. The LogEntryCache uses reference counting to prevent storing duplicate

copies of LogEntry objects, and it deletes LogEntry objects when they are no longer

needed.

5.22.1.2.12 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user

specified interval. The log files created by this class are used for system debugging and

maintenance only and are not to be confused with the system operations log which is

modeled by the OperationsLog class.

5.22.1.2.13 LogFilter (Class)

This class is used to specify the criteria to be used when getting entries from the

Communications Log. The caller would create an object of this type specifying the criteria

that each log entry must match in order to be returned.

5.22.1.2.14 LogIterator (Class)

This class represents an iterator to iterate through a collection of log entries. If a retrieval

request results in more data than is reasonable to transmit all at once, one clump of entries

is returned at first, together with a LogIterator from which additional data can be requested,

repeatedly, until all entries are returned or the user cancels the operation.

5.22.1.2.15 LogIteratorImpl (Class)

The LogIteratorImpl implements the LogIterator interface; that is, it does the actual work

which clients can request via the LogIterator interface. The LogIteratorImpl stores data

relating to cached LogEvents for a single retrieval request, and implements the client

request to get additional clumps of data pertaining to that request.

5.22.1.2.16 MultiConverter (Class)

This class provides methods which perform conversions between the DMS MULTI mark-

up language and plain text. It also provides a method which will parse a MULTI message

CHART R3B3 Detailed Design 5-483 12/23/2008

and inform a MultiParseListener of elements found in the message.

5.22.1.2.17 MultiFormatter (Class)

This interface must be implemented by classes which convert plain text DMS messages to

MULTI formatted messages.

5.22.1.2.18 MultiParseListener (Class)

A MultiParseListener works in conjunction with the MultiConverter to allow an

implementing class to be notified as parsing of a MULTI message occurs. An exemplary

use of a MultiParseListener would be the MessageView window which will need to have

the MULTI message parsed in order to display it as a pixmap.

5.22.1.2.19 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.22.1.2.20 ObjectLocator (Class)

This class is used to provide access to proxy objects stored in the CHART object cache

(which have been discovered by the DiscoveryDriver tasks)

5.22.1.2.21 OperationsLog (Class)

This class provides the functionality to add a log entry to the Chart II operations log. At the

time of instantiation of this class, it creates a queue for log entries. When a user of this class

provides a message to be logged, it creates a time-stamped OpLogMessage object and adds

this object to the OpLogQueue. Once queued, the messages are written to the database by

the queue driver thread in the order they were queued.

5.22.1.2.22 OpLogMessage (Class)

This class holds data for a message to be stored in the system's Operations Log.

5.22.1.2.23 OpLogQueue (Class)

This class is a queue for messages that are to be put into the system's Operations Log.

Messages added to the queue can be removed in FIFO order.

5.22.1.2.24 ProxyObject (Class)

This class is a base class for many types of proxy objects store in the CHART object cache

(which have been discovered by the DiscoveryDriver tasks), used to provide a standard set

of access methods for the proxy objects.

CHART R3B3 Detailed Design 5-484 12/23/2008

5.22.1.2.25 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only

code in the system which knows how to create, modify and check a user's functional rights.

It encapsulates the contents of an octet sequence which will be passed to every secure

method. Secure methods should call the checkAccess method to validate the user. Client

processes should use the check access method to verify access and optimize to reduce

reduce the size of the sequence to only those rights which are necessary to invoke the

secure method. The token contains the following information. Token version, Token ID,

Token Time Stamp, Username, Op Center ID, Op Center IOR, functional rights

5.22.1.2.26 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be

unaware of the number of CORBA trading services that the application is using or the

details of the linkage between those services.

5.22.1.2.27 TravelTimeRange (Class)

This class is a utility that can convert a travel time into a travel time range. It is constructed

using the travel time range definitions as specified by a JSON string stored in the system

profile. The convertToRange method can then be called get the low and high range values

for a specific travel time.

5.22.1.2.28 TravelTimeRangeDef (Class)

This class holds data for a travel time range definition. It has methods that can convert this

object to a JSON object for persistence in the system profile, and to allow its data to be

loaded from a JSON object when depersisting from the system profile.

5.22.1.2.29 TravelTimeScheduleUtil (Class)

This class provides utility methods related to travel time schedules.

CHART R3B3 Detailed Design 5-485 12/23/2008

5.22.2 SequenceDiagrams

5.22.2.1 TravelTimeRange:constructor (Sequence Diagram)

This diagram shows the processing that is performed when aTravelTimeRange object is

constructed from a JSON string. The JSONValue.parse() method is used to parse the JSON

string into a JSONArray. The array is then traversed and a TravelTimeRangeDef object is

created for each object in the JSONArray.

System

TravelTimeRange JSONValue JSONArray JSONObject

TravelTimeRangeDef

Number

repeat these calls for
"subtractAmt" and
"addAmt" fields.

TravelTimeRangeDef[]

create(json:String)

parse(String)
JSONArray

toArray()
JSONObject[]

create(travelTime, subtractAmt, addAmt)

get("travelTime")
Number

intValue()
int

create

store TravelTimeRangeDef

[*for each
JSONObject]

TravelTimeRange

Figure 5-267. TravelTimeRange:constructor (Sequence Diagram)

CHART R3B3 Detailed Design 5-486 12/23/2008

5.23 UtilityPkg.wrappers

5.23.1 Classes

5.23.1.1 WrappersCD (Class Diagram)

This class diagram shows how wrappers work within CHART. Several types of high level

object within the CHART system (typically "Factory" or "Manager" objects) exist on many

servers. These objects are often referenced by numerous other modules within the system.

Some effort is involved in gaining and maintaining references to these objects. All of that

logic is hidden behind a "wrapper" class, so that a client can use the wrapper without

worrying about gaining and maintaining references to the desired objects. Two types of

wrappers are provided: A "primary-first" wrapper, which keeps and returns a reference to a

"preferred" instance of the object whenever possible, and a "first-available" wrapper, which

returns any instance of the object (but still prefers a local instance of the object whenever

available).

CHART R3B3 Detailed Design 5-487 12/23/2008

WrappedOffer

1

1

OfferWrapper

*

Dictionary

«i nterfac e»

*

d is c ov e rs and
p rov ides s eam l es s
ac c es s to

1

Ale rtFactoryWrapper

1

PrimaryFirs tOfferWrapper

AlertFac tory

«in terfac e»

1

1

UserM anagerWrapper DictionaryWrapper

1

*

1

1

dis c ov e rs and
prov ides s eam les s
ac c es s to

FirstAva ilableOfferWrapper

New for R3B3Notifica tionM anager

«in terfac e»

Notifica tionM anagerWrapper

1 1

*

1

Offe rWrapper(ORB, TraderGroup , c l as s Nam e : s tring,
 s erv i c eTy pe : s tring , property Strings : s tring[],
 c ons train t : s tring, m inDis c ov ery Interv a lSec onds : int,
 m ax NonLoc a lUs eTim eM ins : in t) : c tor
pre fers Loc alOffers () : bool ean
has Loc alOffer() : boolean
offe rOb jec tNotEx is t(ob j : Objec t) : v oid
getOffe rs () : Vec tor
getOffe rs (c urrentOffers : Vec to r) : Vec tor<WrappedOffe r>
getNewOffe rs (us edOffe rs : Vec tor<WrappedOffer>) : Vec to r<WrappedOffer>
getNewOffe rs (us edOffe rs : Vec tor<WrappedOffer>,
 o ffers : Vec to r<WrappedOffe r>) : Vec tor<WrappedOffer>
s etCurrentOffer(offe r : WrappedOffe r) : v oid
c anQue ry Trade r(trader : Sm artTrader) : boolean
dis c ov er() : v o id
getTraderGroup () : TraderGroup

m _offe rs : Vec tor
m _c urrentOffer : WrappedOffer
m _c ac hedOffe rs Look upTable : Has htable<WrappedOffer>
m _c las s Nam e : s tring
m _s erv ic eTy pe : s tring
m _property Stri ngs : s tring []
m _c ons tra int : s tri ng
m _ traderGroup : Trade rGroup
m _orb : ORB
m _traderLook upTi m es : Has h tabl e
m _nonLoc alUs eStartTim eM i l l is : long
m _m ax NonLoc alUs eTim e : long

+Firs tAv ai labl eOfferWrapper(ORB, TraderGroup, c las s Nam e : s tring,
 s erv ic eTy pe : s tring , c ons train t : s tring,
 m inDis c ov e ry In terv alSec onds : in t,
 m ax Rem oteServ ic eUs eM ins : int) : c to r
+c reateIte rato r() : Itera tor

ge tSy s tem Profi leBinary Property (tok en:by te [],nam e :Stri ng):by te []
s e tSy s tem Profi leBinary Property (tok en:by te [],nam e :Stri ng,v alue:by te[]):v o id

+WrappedOffer(offe r : objec t, k ey : OfferKey ,
 prope rties : Property [], trade r : Sm artTrader) : c tor
+is ForObjec t(o fferObj : Obj ec t) : boolean
+ge tLas tFa i lureTim eM i l l is () : long
+ge tTraderIndex () : int
+is Loc a l() : boolean
+c om pareTo(obj : Objec t) : int

m _o ffer : Objec t
m _k ey : OfferKey
m _trade r : Sm artTrade r
m _l as tFai l ureTim eM i l l is : long

+Prim a ry Firs tOfferWrappe r(ORB, Trade rGroup, c las s Nam e : s tring ,
 s erv ic eTy pe : s tring , c ons train t : s tring ,
 m inDis c ov e ry In terv alSec onds : int, pri m ary Key : s tring) : c tor
+s etM inPrim a ry Re try Interv alSec onds (s ec onds : int) : v o id
+getM inPrim a ry Re try Interv alSec onds () : int
+c reateIte rato r(c om pa rato r : Prim ary Com para tor) : Ite rato r
-c anRe try Prim ary () : boolean
#s etCu rren tOffer(c urrentOffer : WrappedOffer, c om parator : Prim a ry Com parator) : v oi d
#getOffers (c om pa rato r : Prim ary Com para tor) : Vec to r<WrappedOffer>
#getNewOffers (us edOffers : Vec to r<WrappedOffer>,
 c om para tor : Pri m ary Com parato r) : Vec tor<WrappedOffer>
-ge tSo rtedOffe rs (c om para tor : Pri m ary Com parato r) : Vec tor

ge t():Dic tionary Wrapper
s e tWrappe rSe ttings (ORB, Cos Trad ing .Look up):v o id
s e tM in im um Redis c ov ery Peri od(l ong s ec onds):v oid
ge tBannedWords (Ac c es s Tok en):WordLis t
rem ov eBannedWordL is t(Ac c es s Tok en,WordLis t):v o id
addBannedWordL is t(Ac c es s Tok en,WordLis t):v o id
c hec k ForBannedWords (s tring m es s ageToChec k ,
 s tring de l im i ters ,
 Dic ti ona ry WordTy pe wo rdTy pe):WordLi s t
ge tApp rov edWords (Ac c es s Tok en):WordL is t
addApprov edWordLis t(Ac c es s Tok en , WordL is t):v oid
rem ov eApprov edWordLis t(Ac c es s Tok en , WordL is t):v oid
pe rform Approv edWords Chec k (s tring m es s ageToChec k ,
 s tring de l im i ters ,
 Dic tionary WordTy pe wordTy pe):Sugges tionLis t
-Di c tionary Wrappe r():Dic ti ona ry Wrapper
-ge tDic tionary ():Di c tionary

-Cos Trading.Look up m _trade r
-ORB m _orb
-jav a.u ti l .Vec tor m _d ic tionaries
-jav a.l ang .Obj ec t m _loc k
long m _las tTrade rLook upTim es tam p

get():No ti fic ationM anagerWrapper
getNoti f ic at ions (tok en : Ac c es s Tok en):No ti fic ationIDInfo[]
getGroups (tok en : Ac c es s Tok en) : Noti fic a tionRec ipientData[]
getIndiv iduals (tok en : Ac c es s Tok en) : No ti fic ationRec ipi entData []
getM em bers (tok en : Ac c es s Tok en , No ti fic ationGroup Info []) : Noti fic a tionM em berInfo[]
s endNo ti fic ation(tok en : Ac c es s Tok en ,
 n i : Noti f ic at ionCrea tion Info [],
 n rl : Noti fic a tionRec ipientDa ta[],
 m es s age : String) : Noti fic a tion Info
getNoti f ic at ionRec o rds (tok en: Ac c es s Tok en,
 f i l ter : No ti fic ationRec ordFi l ter,
 m ax Count : long) : Noti f ic at ionRec o rdQuery Res ul ts

Al ertFac to ry Wrapper()
ge t() : Ale rtFac to ry Re ferenc eData
c reateAle rtFac to ry Re ferenc eData(Al ertFac to ry Referenc eDa ta[]):Set
c reateDev ic eFai lureAlert(tok en : Ac c es s Tok en , dev ic e Id : Identi fi er, des c s tring ,
 in i ti a lVi s ib i l i ty : Al ertM anagem en tGroup[]) :Al ertCreationRes u l t
c reateDup l ic ateEv en tAle rt(tok en : Ac c es s Tok en, o lderEv entId : Identi fier, newerEv en tId : Identi fi er,
 des c s tring, i n i tia lVis ibi l i ty : Ale rtM anagem entGroup[]) :Ale rtCreationRes ul t
c reateEv entSti l lOpenAle rt(tok en : Ac c es s Tok en , ev entId : Iden ti fie r, des c s tring,
 in i ti a lVi s ib i l i ty : Al ertM anagem en tGroup[]) :Al ertCreationRes u l t
c reateGeneri c Ale rt(tok en : Ac c es s Tok en, des c s tring,
 in i ti a lVi s ib i l i ty : Al ertM anagem en tGroup[]) :Al ertCreationRes u l t
c reateUnhandledRes ourc eAlert(tok en : Ac c es s Tok en, dev ic eId : Iden ti fie r, des c s tri ng,
 in i ti a lVi s ib i l i ty : Al ertM anagem en tGroup[]) :Al ertCreationRes u l t
c reateEx ec u teSc heduledAc tions Ale rt(tok en : Ac c es s Tok en, s c hedule Id : Identi fi er,
 ex ec Ac tionDataLis t:Ac tionData[] , des c s tring,
 in i ti a lVi s ib i l i ty : Al ertM anagem en tGroup[]) :Al ertCreationRes u l t

Al ertFac to ry Refe renc eDa ta m _a lertFac tory RefData[]

Figure 5-268. WrappersCD (Class Diagram)

5.23.1.1.1 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory

is responsible for creating alerts and storing alert information on the alerts that it created.

5.23.1.1.2 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

CHART R3B3 Detailed Design 5-488 12/23/2008

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.23.1.1.3 Dictionary (Class)

The Dictionary IDL interface provides functionality to add, delete and check for words that

are approved or banned from being used in CHART2 messaging devices such as HARs and

DMSs. It also provides functionality to manage pronunciations.

5.23.1.1.4 DictionaryWrapper (Class)

This singleton class provides a wrapper for the system dictionary that provides automatic

location of the dictionary and automatic re-discovery should the dictionary reference return

an error. This class also allows for built-in fault tolerance by automatically failing over to a

"working" dictionary without the user of this class being aware that this being done. In

addition, this class defers the discovery of the Dictionary until its first use, thus eliminating

a start-up dependency for modules that use the dictionary.

This class delegates all of its method calls to the system dictionary using its currently

known good reference to the system dictionary. If the current reference returns a CORBA

failure in the delegated call, this class automatically switches to another reference. When

there are no good references (as is true the first time the object is used), this class issues a

trader query to (re)discover the published Dictionary objects in the system. During a

method call, the trader will be queried at most one time and under normal circumstances

(other than the first use) the trader will not be queried at all.

5.23.1.1.5 FirstAvailableOfferWrapper (Class)

This class is a generic wrapper that provides the ability to find the first available reference

to a service that may have multiple instances within the system.

5.23.1.1.6 NotificationManager (Class)

Interface whose implementation is used to manage notification massages, retrieve

notification recipients (groups and individuals) and query notification status records.

5.23.1.1.7 NotificationManagerWrapper (Class)

This singleton class presents the same interface as the NotificationManager, but uses a

FirstAvailableOfferWrapper to provide fault tolerant access to the methods.

5.23.1.1.8 OfferWrapper (Class)

An OfferWrapper provides the ability find one instance of a remote service and establish a

connection to it. It does this by searching Traders looking for all Offers of a particular

CHART R3B3 Detailed Design 5-489 12/23/2008

service type. Once a connection is established, the connection is reused for subsequent

calls. If the connection fails this class begins its search again until it finds a working

connection.

5.23.1.1.9 PrimaryFirstOfferWrapper (Class)

This class inherits from OfferWrapper and gives the caller the ability to suggest a preferred

service instance whenever service offers are being searched. If that instance is unavailable,

the rest of the offers are searched per normal.

5.23.1.1.10 UserManagerWrapper (Class)

The UserManagerWrapper is a singleton class that provides access to a single instance of a

remote service type (in this case UserManager) where many instances may exist in the

Traders. If the connection to the current instance is lost, it re-establishes the connection,

possible with a different instance of the desired service type. This class supports storing

properties with values that are string data or binary data.

5.23.1.1.11 WrappedOffer (Class)

A WrappedOffer represents a possible instance of a remote object. The OfferWrapper class

holds an array of WrappedOffers and walks the array looking for a valid proxy to use. If

the valid proxy subsequently become unavailable, OfferWrapper searches its list of

WrappedOffers until it finds another valid WrappedOffer. Failing that, OfferWrapper again

searches it Trader list so it can re-populate its WrappedOffer list.

CHART R3B3 Detailed Design 5-490 12/23/2008

5.24 Webservices.WSTrafficEventExportModule

5.24.1 Classes

5.24.1.1 WSTrafficEventExportModuleClasses (Class Diagram)

This class diagram defines a WebServiceModule used for providing a web service interface

for Exporting TrafficEvent data. It utilized the Chart WebService framework. The

TrafficEventExportHandler is the main class responsible for maintaining a cache of

TrafficEvent related objects and providing methods to retrieve information in an exportable

form. Note: the TrafficEventExportHandler is not WebService specific and could be used

in the context of the Chart ServiceApplication framework if needed.

1

ExternalSystemConnectionImpl

*

1

java.lang.Runnable

WSRequestHandlerSupporter

«interface»

WebService

DiscoveryHost

«interface»

WebServiceModule

«interface»

WebServiceProperties

WebServiceModuleProperties

DiscoveryManager

ObjectCache

DataModel

ProxyObject

BasicRequestHandler

Java
Objects
referenced
by velocity
templates.

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

*

*

discovers
and maintains

cache of
TrafficEvent Proxy objects

*

1

1

1

1

1

1

1

TrafficEventExportModuleProperties

WSTrafficEventExportModule

TrafficEventExportHandler

TrafficEventExpView

DiscoverTrafficEventClassesCmd

QueueableCommand

TrafficEventRequestHandler

ProxyTrafficEvvent

1

initalize(service:WebService):void
shutdown():void

WebServiceModuleProperties(props:WebServiceProperties)
getWebServiceProperties():WebServiceProperties
getIntProperty(prop:String, default:int):int
getBooleanProperty(prop:String, default:boolean):boolean
getFloatProperty(prop:String, default:float):float

initalize(service:WebService):void
shutdown():void
updateExtSysConnStatus(clientId : String)

-m_discoveryMgr : DiscoveryManager
-m_trafficEventListReqHdlr : DMSInvRequestHandler
-m_props : TrafficEventExportModulePropts
-m_teExportHander : TrafficEventExportHandler
-m_initialized : boolean
-m_extSysConnList : Hashtable

+getDataModel() : DataModel
+getObjectCache() : ObjectCache
+getDiscoveryDriver() : DiscoveryDriver

m_traderGroup : TraderGroup
m_discoveryDriver : DiscoveryDriver
m_dataModel : DataModel
m_ecg : EventConsumerGroup
m_objectCache : ObjectCacheClass
m_processingQueue : CommandQueue

+requireDigitalSignaturesOnRequests() : boolean
+getTrafficVelocityTemplatePath() : String
+getTrafficEventErrorVelocityTemplatePath() : String
+getRequestXSDPath String()
+getResponseXSDPath String()
+getExtSysConnNameClientIdPairs() : ExtSysConnClientIdProp

+ctor(discHost :DiscoveryManager)
+initialize() : void
+getTrafficEventList(token : byte[], updateWIndowMins:int)
 : TrafficEventExpView[]
+run()
+shutdown() : void

-m_discoveryManager : DiscoveryManager
-m_startupThread : Thread
-m_initialized = boolean

ctor(trafficEventExpHander:TrafficEventExportHandler, props:TrafficEventExportModuleProperties, module: WSTrafficEventExportModule)
processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String
handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String
handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String
handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

-m_trafficEventExportHander : TrafficEventExportHandlerr
-m_trafficEventVelocityTmpFilename : String
-m_trafficEventErrorVelocityTmpFilename : String
-m_module : WSTrafficEventExportModule

isExternalEvent() : boolean
getOwningOrg(): byte[]

-m_teId : byte[]
-m_event : TrafficEvent
-m_bed : BasicEventData
....

+ctor(proxy : ProxyTrafficEvent,
 provideSensitiveData : boolean,
 provideEventLogData : boolean)
+getName() : String
+getId() : String
+getLat() : int
+getLon() : in
+canProvideSensitiveData() : boolean
+canProvideEventLodData() : boolean
.....()

-m_proxyEvent : ProxyTrafficEvent
-m_provideSensitiveData : boolean
-m_provideEventLogData : boolean

DiscoverTrafficEventClassesCommand(orb : ORB,
 poa : POA, traderGroup : TraderGroup,
 dataModel : DataModel, ecg : EventConsumerGroup,
 discoveryToken : AccessToken,
 contextProvider : SystemContextProvider) : ctor
-discoverTrafficEventChannels() : void
-discoverTrafficEventClasses() : void

m_poa : POA
m_traderGroup : TraderGroup
m_dataModel : DataModel
m_discoveryToken : AccessToken
m_tepc : TrafficEventPushConsumer
m_sysContextProvider : SystemContextProvider

Figure 5-269. WSTrafficEventExportModuleClasses (Class Diagram)

CHART R3B3 Detailed Design 5-491 12/23/2008

5.24.1.1.1 BasicRequestHandler (Class)

This abstract base class provides an implementation of the

WSRequestHandler.processRequest() method that provides optional XML validation

against specified XSD files and optional digital signature verification as well. It is intended

to be used by request handlers that plan to take XML in and return XML to the calling

client.

5.24.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

5.24.1.1.3 DiscoverTrafficEventClassesCmd (Class)

The DiscoverTrafficEventClassesCmd class is responsible for discovering TrafficEvent and

TrafficEventFactory corba objects, wrapping those objects in proxy classes and adding

those classes to the DiscoveryManager's Object Cache. This class also listens to

appropriate corba event channels and updates the Object cache accordingly.

5.24.1.1.4 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be

implemented by any class that will create a DiscoveryManager.

5.24.1.1.5 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

5.24.1.1.6 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to

the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as

configured by the admin.

CHART R3B3 Detailed Design 5-492 12/23/2008

5.24.1.1.7 java.lang.Runnable (Interface)

This interface allows the run method to be called from another thread using Java's threading

mechanism.

5.24.1.1.8 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.24.1.1.9 ProxyObject (Class)

This class is a base class for many types of proxy objects store in the CHART object cache

(which have been discovered by the DiscoveryDriver tasks), used to provide a standard set

of access methods for the proxy objects.

5.24.1.1.10 ProxyTrafficEvvent (Class)

The ProxyTrafficEvent object is a proxy for a TrafficEvent corba object which is used to by

the DiscoveryManager / ObjectCache. The objects are used to maintain an up to date cache

of TrafficEvent data in the object cache for application use.

5.24.1.1.11 QueueableCommand (Interface)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.24.1.1.12 TrafficEventExportHandler (Class)

The TrafficEventExportHandler class is responsible for maintaining up to date Chart

TrafficEvent information in the ObjectCache. This data is used to support the class

methods which provide data in response to web service requests for exporting Traffic Event

data.

5.24.1.1.13 TrafficEventExportModuleProperties (Class)

The TrafficEventExportModuleProperties class provides access methods for properties used

by the WSTrafficEventExportModule. It Extends the WebServiceModuleProperties class

which allows access to other properties available from the WebService Framework.

CHART R3B3 Detailed Design 5-493 12/23/2008

5.24.1.1.14 TrafficEventExpView (Class)

The TrafficEventExpView class wraps a ProxyTraffic object and provides a view of the

proxy object specific to Traffic Event requests. These objects are used by the Velocity

Engine which is made available by the WebServcie Framework. Velocity will apply a

defined Traffic Event velocity template to a collection of these objects to generate the XML

response to TrafficEvent export requests.

5.24.1.1.15 TrafficEventRequestHandler (Class)

The TrafficEventRequestHandler extends the BasicRequestHandler and defines process

required to handle TrafficEvent export requests made available by the Chart Export Web

Service.

5.24.1.1.16 WebService (Class)

This class is the core of each Web Service. It extends the VelocityServlet base class and

implements the Service CORBA interface so that Web Service servlets can be administered

in the same manner as other CHART service applications.

5.24.1.1.17 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within

the web service framework.

5.24.1.1.18 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to

extend in order to get access to their configuration properties.

5.24.1.1.19 WebServiceProperties (Class)

This class provides convenient access to the java Properties object that contains

configuration data for the web service and its modules.

5.24.1.1.20 WSRequestHandlerSupporter (Class)

This interface defines the methods that will be available to every WSRequestHandler when

it is invoked by the framework. It defines the services that the framework will make

available to the handlers.

5.24.1.1.21 WSTrafficEventExportModule (Class)

The WSTrafficEventExportModule implements the WebServiceModule interface and

provides TrafficEvent export functionality via the WebService framework.

CHART R3B3 Detailed Design 5-494 12/23/2008

5.24.2 SequenceDiagrams

5.24.2.1 TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)

This diagram depicts the processing needed to retrieve TrafficEvent data in response to a

specific TrafficEvent export request. If the handler's m_initialized flag is not set throw

GeneralException. This in turn will trigger the WebService framework to call the handler's

handleProcessingException() method. ProxyTrafficEvent objects are retrieved from the

ObjectCache. Based on the optional update window parameter, the functional rights of the

client specific token passed in and the owning organization of each proxy object, a

collection of appropriate export data is created and returned to the caller. Note: he

TrafficEventExpView objects returned are to be used in conjunction with a defined

TrafficEventVelocity Template.

[! m_initialized]
throw GeneralException

[proxyEvent.isExternal ==
 false]

prov ideSensitiveInc identData:boolean =
checkAccess(token, FunctionalRightType.ViewTrafficEventSensitiveInc identDetails)

create(proxyEvent,
prov ideSensitiveInc identData,

prov ideEventLogData)

add(eventToExport)

toArray()
TrafficEventyExpView[]

TrafficEventExpView[]

eventLis t:ProxyTrafficEvent[]] =
getObjectsOfType(ProxyTrafficEvent.c lass)

getDataModel()

Only export Internal
TrafficEvents.

prov ideEventLogData:boolean =
checkAccess(token, FunctionalRightType.ViewTrafficEventLog, proxyEvent.getOwningOrg())

TrafficEventRequestHandler

Loop thru ProxyTrafficEvents
 in the lis t returned from the
DataModel.

TrafficEventExportHandler
m_discoveryMgr:

DiscoveryManager DataModule

Apply update
window check
if needed.

TokenManipulator

eventToExport:
TrafficEventExpView

List of objects to
return to
caller.

Determine if AccessToken has
ViewTrafficEventSensitiveIncidentDetails
 right.

Create object that knows whether it
can prov ide sensitive inc ident details and
traffic event log entries t and add it to list
of events to export.

retEventLis t:
ArrayLis t

getTrafficEventList(token:byte[],
updateWIndowMins:int)

[*eventList]

create()

[updateWindowMins > 0]

[proxyEvent .lastUpdate
timestamp outs ide updateWindow

skip this TrafficEvent]

Determine if AccessToken has
ViewTrafficEventLog right for the
proxy events owning organization.

Figure 5-270. TrafficEventExportHandler:getTrafficEventList (Sequence Diagram)

CHART R3B3 Detailed Design 5-495 12/23/2008

5.24.2.2 TrafficEventHandler:initialize (Sequence Diagram)

 This diagram depicts the initialization of the TrafficEventExportHandler class. A

DiscoveryTrafficEventClassesCmd is created and added to the DiscoveryManager to

populate and maintain TrafficEvent data in the ObjectCache. As a best attempt to make

sure the ObjectCache is populated before responding to traffic event web service export

requests a thread is started to make sure TrafficEventFactories exist in the ObjectCache

before setting intitialization flag to true.

TrafficEventExportHandler

Thread
Interrupted
exception
breaks out
of this loop.

m_discoveryManager:
DiscoveryManager

m_startupThread:
Thread

DataModel
Create Discovery command
to populate and maintans
Chart2DMSProxy objects in
ObjectCache.

DiscoverTrafficEventClassesCmd

add()

start()

create()

initialize()
[! m_initialized]

create(this)

run()

getDataModel()

while ! m_initialized

factoryList:ProxyDMSFactory[] =
getObjectsOfType(ProxyTrafficEventFactory.c lass)

[factoryList.length < 1]

s leep 5 seconds

else

m_initialized = true

Figure 5-271. TrafficEventHandler:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-496 12/23/2008

5.24.2.3 TrafficEventRequestHandler:processRequest (Sequence Diagram)

This diagram depicts the processing of a Traffic Event Export Request. The

processRequest() method of the TrafficEventRequestHandler is called by the

RequestManger when a traffic event export request is received by the WebServcie. The

request is handled by getting the appropriate data to export from the

TrafficEventExportHandler, adding that data to the Velocity Context passed in and finally

returning the path to the correct Velocity Template for the request.

m_module
WSTrafficEventExportModule

updateExtSysConnStatus(reqeust.getClientId())

Implements
abstract base class
method.

RequestManager

The xml body may contain an optional
update window in minutes. This will return
that value if present or a -1 if not. The
update window represents a number of
mintues to look back for TrafficEvents that
have have been updated Only
TrafficEvents updated in this timeframe will
be returned in the response.

TrafficEventReques tHandler TrafficEventExportHandler
supporter:

WSRequestHandlerSupporter

Put TrafficEventExpView
objects in the veloc ity
Context to return
to the web service
framework. This method
returns the velocity template
file path to apply to the
Context.

ctx:
Context

request:
BasicRequest

xmlBody:String = getBody()

put("trafficEventList", trafficEventList)

m_trafficEventVelocityTmpFilename

processRequest(reques t,
supporter, ctx)

token:byte[] = getAccessToken(request.getClientId())

eventList:TrafficEventExpView[] =
getTrafficEventList(token,

updateWindowMins)

updateWindowMins:int =
getUpdateWIndowFromBody

(xmlBody)

Return Veloc ity Template file
used to generate XML.

Update the ExtSysConn
for this c lient ID.

Figure 5-272. TrafficEventRequestHandler:processRequest (Sequence Diagram)

CHART R3B3 Detailed Design 5-497 12/23/2008

5.24.2.4 WSTrafficEventExportModule:initialize (Sequence Diagram)

This diagram depicts the initialization of the WSTrafficEventExportModule class. A

module properties class is created followed by the creation / initialization of the

TrafficEventExportHander class. This class is responsible for maintaining TrafficEvent

data in the ObjectCache and providing methods to retrieve traffic event export data in

response to export web service requests. Next the TrafficEventReqeustHandler is created

and registered with the WebService framework to allow the web service URL to start

responding to requests.

[! m_initialized]

m_initialized = TRUE

The creation / initialization of the TrafficEventExportHandler will also create a
DiscoveTrafficEventClassesCmd and add it to the DiscoveryManager as well as
make a best attempt at making sure the object cache is populated before
responding to web serv ice requests .

initialize()

registerRequestHandler(trafficEventIRequestierBRI)

WebService

WSTrafficEventExportModule
m_discoveryMgr:

DiscoveryManager
RequestManager

TrafficEventExportHandler

Create/Regis ter the
 TrafficRequestHandler.
The handler handles
1 requests :
TrafficEvent List Requests .

m_props:
TrafficEventExportModuleProperties

m_trafficEventReqHandler:
TrafficEventRequestHandler

trafficEventRequesterBRI:
Bas icRequestInfo

create(serv ice.getProps())

create("trafficEventDataReq", m_trafficEventExportHandler,.....)

initialize(serv ice:WebServ ice))

m_discoveryMgr:Discoveryanager =
getDicsoveryManager()

m_trafficEventExportHandler = create()

create(m_trafficEventExportHandler)

getRequestManager()

Create ExtSysConnImpl objects
base on the Ext Sys Name /
Client ID pairs returned from the
props file. Register in CORBA
trader. Event channel required
for ExtSysConnImpl creation. This
is left for implementation detail.

Figure 5-273. WSTrafficEventExportModule:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-498 12/23/2008

5.24.2.5 WSTrafficEventExportModule:shutdown (Sequence Diagram)

The diagram depicts shutdown processing for the WSTrafficEventExportModule.

Currently shutdown of the module initiates the TrafficEventExportHandler.shutdown()

which cleans up the startupThread if still running. Other cleanup may be determined

during implementaion.

Clean up
ExtSysConnImpl
created during
initialization.

cleanup()

m_evevntExportHandler:
TrafficEventExportHandler

shutdown()

sleep 50 mls

m_startupThread:
Thread

shutdown()

[m_startupThread != NULL]

[m_startupThread.isAlive()
interrupt()

WebServ ice

WSTrafficEventExportModule

Figure 5-274. WSTrafficEventExportModule:shutdown (Sequence Diagram)

CHART R3B3 Detailed Design 5-499 12/23/2008

5.25 WSDMSExportModulePkg

5.25.1 Classes

CHART R3B3 Detailed Design 5-500 12/23/2008

5.25.1.1 WSDMSExportModuleClasses (Class Diagram)

This class diagram defines a WebServiceModule used for providing a web service interface

for Exporting DMS data. It utilized the Chart WebService framework. The

DMSExportHandler is the main class responsible for maintaining a cache of DMS related

objects and providing methods to retrieve information in an exportable form. Note: the

DMSExportHandler is not WebService specific and could be used in the context of the

Chart ServiceApplication framework if needed.

*

1

ExternalSystemConnectionImpl

java.lang.Runnable

1

1

QueueableCommand

WSRequestHandlerSupporter

«interface»

Java
Objects
referenced
by velocity
templates.

DiscoveryManager

ObjectCache

DataModel

ProxyChar t2DMS

ProxyObject

DiscoverChar t2DMSClassesCmd

1

1

1
1

1

1

1

1

1

1

*

discovers
and maintains

cache of
DMS Proxy objects

DMSInventoryExpView DMSStatusExpView

BasicRequestHandler

DMSRequestHandler

1

1

1

1

1

1

1

1

DiscoveryHost

«interface»

WebServiceProperties

1

1

1

1

WSDMSExportModule

WebServiceModule

«interface»

WebService

WebServiceModuleProperties

*

1

DMSExpor tModuleProperties

DMSExportHandler

*

initalize(service:WebService):void
shutdown():void

WebServiceModuleProperties(props:WebServiceProperties)
getWebServiceProperties():WebServiceProperties
getIntProperty(prop:String, default:int):int
getBooleanProperty(prop:String, default:boolean):boolean
getFloatProperty(prop:String, default:float):float

initalize(service:WebService):void
shutdown():void
updateExtSysStatus(clientId : String)

-m_discoveryMgr : DiscoveryManager
-m_dmsListReqHdlr : DMSRequestHandler
-m_props : DMSExportModulePropts
-m_dmsExportHandler : DMSExportHandler
-m_requestManager : RequestManager
-m_initialized : boolean
-m_extSysConnList : Hashtable

+getDataModel() : DataModel
+getObjectCache() : ObjectCache
+getDiscoveryDriver() : DiscoveryDriver

m_traderGroup : TraderGroup
m_discoveryDriver : DiscoveryDriver
m_dataModel : DataModel
m_ecg : EventConsumerGroup
m_objectCache : ObjectCacheClass
m_processingQueue : CommandQueue

+requireDigitalSignaturesOnRequests() : boolean
+getDMSInvVelocityTemplatePath() : String
+getDMSStatusVelocityTemplatePath() : String
+getDMSErrorVelocityTemplatePath() : String
+getRequestXSDPath() : String
+getResponseXSDPath() : String
+getExtSysNameClientIdPairs() : ExtSysClientIdProperty

+ctor(discMgr : DiscoveryManager)
+initialize()
+getDMSInventoryList(token : byte[], updateWindowMins : int)
 : DMSInventoryExpView[]
+getDMSStatusList(token : byte[], updateWindowMins : int)
 : DMSStatusExpView[]
+run()
+shutdown()

-m_discoveryManager : DiscoveryManager
-m_startupThread : Thread
-m_initialized = boolean

ctor(dmsExpHander:DMSExportHandler, props : DMSExportModuleProperties, module: WSDMSExportModule)
processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String
handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String
handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String
handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

-m_dmsExportHander : DMSExportHandlerr
-m_dmsInvVelocityTmpFilename : String
-m_dmsStatusVelocityTmpFilename : String
-m_dmsErrorVelocityTmpFilename : String
-m_module : WSDMSExportModule

+ctor(proxy : ProxyChart2DMS,
 provideSensitivedata : boolean)
+getName() : String
+getId() : String
+getLat() : int
+getLon() : int
+getPhoneNumber() : String
+canProvideSensitiveData() : boolean
.....()

-m_proxyDMS : ProxyChart2DMS
-m_provideSensitiveData : boolean

...()

-m_dmsId : byte[]
-m_dms :Chart2DMS
-m_config : Chart2DMSConfig
-m_status : DMSStatus

DiscoverChart2DMSClassesCommand(orb : ORB,
 poa : POA, traderGroup : TraderGroup,
 dataModel : DataModel, ecg : EventConsumerGroup,
 discoveryToken : AccessToken,
 contextProvider : SystemContextProvider) : ctor
-discoverDMSChannels() : void
-discoverChart2DMSClasses() : void

m_poa : POA
m_traderGroup : TraderGroup
m_dataModel : DataModel
m_discoveryToken : AccessToken
m_dpc : Chart2DMSPushConsumer
m_sysContextProvider : SystemContextProvider

+getId() : String
+getCurrentMessage() : String
+getOrganizationInfo() : String
....()

-m_proxyDMS : ProxyChart2DMS

Figure 5-275. WSDMSExportModuleClasses (Class Diagram)

CHART R3B3 Detailed Design 5-501 12/23/2008

5.25.1.1.1 BasicRequestHandler (Class)

This abstract base class provides an implementation of the

WSRequestHandler.processRequest() method that provides optional XML validation

against specified XSD files and optional digital signature verification as well. It is intended

to be used by request handlers that plan to take XML in and return XML to the calling

client.

5.25.1.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

5.25.1.1.3 DiscoverChart2DMSClassesCmd (Class)

The DiscoverChart2DMSClassesCmd class is responsible for discovering Chart2DMS and

Chart2DMSFactory corba objects, wrapping those objects in proxy classes and adding those

objects to the DiscoveryManager's Object Cache. This class also listens to appropriate

corba events and updates the Object cache accordingly.

5.25.1.1.4 discovers and maintains cache of DMS Proxy objects (Association)

5.25.1.1.5 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be

implemented by any class that will create a DiscoveryManager.

5.25.1.1.6 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

5.25.1.1.7 DMSExportHandler (Class)

The DMSExportHandler class is responsible for maintaining up to date Chart DMS

information in the ObjectCache. This data is used to support the class methods which

provide data in response to web service requests for exporting DMS data.

CHART R3B3 Detailed Design 5-502 12/23/2008

5.25.1.1.8 DMSExportModuleProperties (Class)

The DMSExportModuleProperties class provides access methods for properties used by the

WSDMSExportModule. It Extends the WebServiceModuleProperties class which allows

access to other properties available from the WebService Framework.

5.25.1.1.9 DMSInventoryExpView (Class)

The DMSInventoryExpView class wraps a ProxyChart2DMS object and provides a view of

the proxy object specific to DMS Inventory requests. These objects are used by the

Velocity Engine which is made available by the WebServcie Framework. Velocity will

apply a defined DMS Inventory velocity template to a collection of these objects to

generate the XML response to DMS Inventory export requests.

5.25.1.1.10 DMSRequestHandler (Class)

The DMSRequestHandler extends the BasicRequestHandler abstract class and implements

abstract methods used to handle web service requests for exporting DMS information.

5.25.1.1.11 DMSStatusExpView (Class)

The DMSStatusExpView class wraps a ProxyChart2DMS object and provides a view of the

proxy object specific to DMS Status requests. These objects are used by the Velocity

Engine which is made available by the WebServcie Framework. Velocity will apply a

defined DMS Status velocity template to a collection of these objects to generate the XML

response to DMS Status export requests.

5.25.1.1.12 ExternalSystemConnectionImpl (Class)

This class knows how to maintain the status of external connections and push them up to

the GUI. Also, ExternalSystemConnectionAlerts and Notifications can be sent as

configured by the admin.

5.25.1.1.13 java.lang.Runnable (Interface)

This interface allows the run method to be called from another thread using Java's threading

mechanism.

5.25.1.1.14 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.25.1.1.15 ProxyChart2DMS (Class)

The ProxyChart2DMS object is a proxy for a Chart2DMS corba object which is used to by

the DiscoveryManager / ObjectCache. The objects are used to maintain an up to date cache

CHART R3B3 Detailed Design 5-503 12/23/2008

of Chart2DMS data in the object cache for application use.

5.25.1.1.16 ProxyObject (Class)

5.25.1.1.17 QueueableCommand (Interface)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.25.1.1.18 WebService (Class)

This class is the core of each Web Service. It extends the VelocityServlet base class and

implements the Service CORBA interface so that Web Service servlets can be administered

in the same manner as other CHART service applications.

5.25.1.1.19 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within

the web service framework.

5.25.1.1.20 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to

extend in order to get access to their configuration properties.

5.25.1.1.21 WebServiceProperties (Class)

This class provides convenient access to the java Properties object that contains

configuration data for the web service and its modules.

5.25.1.1.22 WSDMSExportModule (Class)

The WSDMSExportModule implements the WebServiceModule interface and provides

DMS export functionality via the WebService framework.

5.25.1.1.23 WSRequestHandlerSupporter (Class)

This interface defines the methods that will be available to every WSRequestHandler when

it is invoked by the framework. It defines the services that the framework will make

available to the handlers.

CHART R3B3 Detailed Design 5-504 12/23/2008

5.25.2 Sequence Diagrams

5.25.2.1 DMSExportHandler:getDMSInventoryList (Sequence Diagram)

This diagram depicts the processing needed to retrieve DMS Inventory data in response to a

specific DMS Inventory export request. If the handler's m_initialized flag is not set throw

GeneralException. This in turn will trigger the WebService framework to call the handler's

handleProcessingException() method. ProxyChart2DMS objects are retrieved from the

ObjectCache. Based on the optional update window parameter, the functional rights of the

client specific token passed in and the owning organization of each proxy object, a

collection of appropriate export data is created and returned to the caller. Note: he

DMSInventoryExpView objects returned are to be used in conjunction with a defined

DMSInventory Velocity Template to generate the XML response to the request. Note: if

the handler's m_initialized flag is not set throw GeneralException. This in turn will trigger

the WebService framework to call the handler's handleProcessingException() method.

retDMSList:
ArrayList

[*dmsList]

create()

Loop thru ProxyChart2DMS
objects in the lis t returned
from the DataModel.

Apply update
window check
if needed.

TokenManipulator

List of objects to
return to
caller.

dmsToExport:
DMSInventoryExpView

Determine if AccessToken has
DMSViewSensitiveConfigData right
for proxyDMS' owning Org id.

Create object that knows whether it
can return sensitive config data or not
and add it to lis t of dms to export.

[updateWindowMins > 0]

[proxyDMS.lastDmsConfigUpdate
timestamp outs ide updateWindow

skip this DMS]

prov ideSensitiveConfigData:boolean =
checkAccess(token, FunctionalRightType.ViewDMSSensitiveConfig, proxyDMS.getOwningOrgID()

create(proxyDMS,
provideSensitiveConfigData)

add(dmsToExport)

toArray()

DMSInventoryExpView[]

DMSRequestHandler
m_discoveryMgr:

DiscoveryManager DataModuleDMSExportHandler

getDMSInventoryList(token:byte[],
updateWIndowMins:int)

DMSInventoryExpView[]

dmsList:ProxyChart2DMS[] =
getObjectsOfType(ProxyChart2DMS.class)

getDataModel()

[! m_initialized]
GeneralException

Figure 5-276. DMSExportHandler:getDMSInventoryList (Sequence Diagram)

CHART R3B3 Detailed Design 5-505 12/23/2008

5.25.2.2 DMSExportHandler:getDMSStatusList (Sequence Diagram)

This diagram depicts the processing needed to retrieve DMS Status data in response to a

specific DMS Status export request. If the handler's m_initialized flag is not set throw

GeneralException. This in turn will trigger the WebService framework to call the handler's

handleProcessingException() method. ProxyChart2DMS objects are retrieved from the

ObjectCache. Based on the optional update window parameter a collection of appropriate

export data is created and returned to the caller. Note: he DMSStatusExpView objects

returned are to be used in conjunction with a defined DMSStatus Velocity Template to

generate the XML response to the request.

DMSStatusRequestHandler

Loop thru ProxyChart2DMS
objects in the lis t returned
from the DataModel.

DMSExportHandler
m_discoveryMgr:

DiscoveryManager DataModule

Apply update
window check
if needed.

dmsStatusToExport:
DMSStatusExpView

List of objects to
return to
caller.

retDMSStatusList:
ArrayList

getDMSIStatusList(token:byte[],
updateWIndowMins:int)

[*dmsList]

create()

[updateWindowMins > 0]

[proxyDMS.lastDmsStatusUpdate
timestamp outs ide updateWindow

skip this DMS]

create(proxyDMS)

add(dmsStatusToExport)

toArray()

DMSStatusExpView[]

DMSStatusExpView[]

dmsList:ProxyChart2DMS[] =
getObjectsOfType(ProxyChart2DMS.class)

getDataModel()

[! m_initialized]
throw GeneralException

Figure 5-277. DMSExportHandler:getDMSStatusList (Sequence Diagram)

CHART R3B3 Detailed Design 5-506 12/23/2008

5.25.2.3 DMSExportHandler:initialize (Sequence Diagram)

This diagram depicts the initialization of the DMSExportHandler class. A

DiscoveryChart2DMSClassesCmd is created and added to the DiscoveryManager to

populate and maintain DMS data in the ObjectCache. As a best attempt to make sure the

ObjectCache is populated before responding to dms web service export requests a thread is

started to make sure Chart2DMSFactories exist in the ObjectCache before setting

intitialization flag to true.

Create Discovery command
to populate and maintain
Chart2DMSProxy objects in
ObjectCache.

create()

add()

DiscoverChart2DMSClassesCmd

start()

getDataModel()

Thread
Interrupted
exception
breaks out
of this loop.

while !m_initialized
fac toryList:ProxyDMSFactory[] =

getObjectsOfType(ProxyDMSFactory.class)

[factoryLis t.length < 1]

s leep 5 seconds

else

m_initialized = true

DMSExportHandler

m_startupThread:
Thread

DataModel
m_discoveryManager:

DiscoveryManager

initialize()
[! m_initialized]

create(this)

run()

WSDMSExportModule

Figure 5-278. DMSExportHandler:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-507 12/23/2008

5.25.2.4 DMSRequestHandler:handleExceptions (Sequence Diagram)

This sequence diagram depicts Exception handling done as part of the WebService

framework. The DMSRequestHandler derives from the BasicRequestHandler class and

implements 3 abstract methods (handleValidationException(),

handleAuthenticationException() and handleProcessingException()). These methods are

called from the WebService frame work when exceptions are encountered. Each method

retrieves information as need from the arguments passed in and creates a response using a

Velocity Context object and a predefine Velocity template. Note: for

handleValidationException() if inbound xml validation fails, pass the invalid XML string

back in the XML response defined as CDATA so it will not be parsed.

Other types of export request handlers will do similar exception handling.

errorType:ValidationErrorType = getErrorType()

[errorType ==
INBOUND_XML_INVALID]

[errorType ==
OUTBOUND_XML_INVALID]

supporter:
WSRequestHandlerSupporter

clientID:String = getClientID()

e:
AuthenticationException

put("errorStr ing", errorStr)

Note: it the veloc ity template
for error messages encounters
an "invalidXML" object in the
context it will defined as CDATA
in the generated XML for the
error response.

invalidXml:String = getRequestBody()

msg:String = getMessage()
errorStr: String =

"XML Validation Error : ClientID:" + c lientID
"Details: " + msg

put("errorStr ing", errorStr)

put("invalidXML", invalidXML)

errorStr:String =
"Authentication Error: ClientID: " + c lientID +

" Details: " + msg;

clientID:String = getClientID()

msg:String = getMessage()

clientID:String = getClientID()

errorStr:String =
"Error during request processin : ClientID: " +

 c lientID +
" Details : " + msg

e:
ProcessingException

m_dmsErrorVelocityTmpFIleName

m_dmsErrorVelocityTmpFIleName

m_dmsErrorVelocityTmpFIleName

BasicRequestHandler
e:

ValidationException

DMSRequestHandler
ctx:

Context
request:

BasicRequest

handleValidationException(
supporter,request, ctx , e)

put("errorStr ing", errorStr)

msg:String = getMessage()

handleAuthenticationException(
supporter,request, ctx , e)

errorStr:String =
"Request Processing Error.

handleProcessingException(
supporter,request, ctx , e)

Figure 5-279. DMSRequestHandler:handleExceptions (Sequence Diagram)

CHART R3B3 Detailed Design 5-508 12/23/2008

5.25.2.5 DMSRequestHandler:processRequest (Sequence Diagram)

This diagram depicts the processing of a DMS Export Request. The processRequest()

method of the DMSRequestHandler is called by the RequestManger when a dms export

request is received by the WebServcie. The request type is retrieved from the xml body of

the request. Two types of request are handled. DMSInventory and DMSStatus request.

The requests are handled by getting the appropriate data to export from the

DMSExportHandler, adding that data to the Velocity Context passed in and finally

returning the path to the correct Velocity Template for the request.

Unkown request type.
Theoretically imposs ible
if doing xml validation. else

throw GeneralException

m_module:
WSDMSExportModule

Update the ExtSysConn
for this client if needed.

updateExtSysConnStatus(request.getClientId())

Put DMSStatusExpView
objects in the veloc ity
Context to return
to the web service
framework. This method
returns the veloc ity templay
file path to apply to the
Context.

put("dmsStautsLis t", dmsStatusLis t)

dmsStatusLis t:DMSStatusExpView[] =
getDMSStatusList(token,

updateWIndowMins)

The xmlBody will indicate either a
DMSInventoryLis t request or a
DMSStatusList request.

velocityTemplateName:String =
m_dmsInvVelocityTmpName

xmlBody:String = getBody()

Put DMSInventoryExpView
objects in the veloc ity
Context to return
to the web service
framework. This method
returns the veloc ity templay
file path to apply to the
Context.

veloc ityTemplateName:String =
m_dmsStatusVelocityTmpName

RequestManager

Implements
abstract base c lass
method. c tx:

Context

The xml body may contain an optional
update window in minutes. This will return
that value if present or a -1 if not. The
update window represents a number of
mintues to look back for DMS objects that
have been updated. Only DMS objects
updated in this timeframe will be returned
in the response.

put("dmsInvLis t", dmsInvList)

updateWindowMins:int =
getUpdateWIndowFromBody

(xmlBody)

DMSRequestHandler
supporter:

WSRequestHandlerSupporter

processRequest(request,
supporter, ctx)

dmsInvList:DMSInventoryExpView[] =
getDMSInventoryLis t(token,

updateWindowMins)

getRequestTypeFromBody
(xmlBody)

[request ==
DMSInventoryLis tRequest]

DMSExportHandler

token:byte[] = getAccessToken(request.getClientId)

request:
BasicRequest

[request ==
DMSStatusLis tRequest]

veloc ityTemplateName:String

Figure 5-280. DMSRequestHandler:processRequest (Sequence Diagram)

CHART R3B3 Detailed Design 5-509 12/23/2008

5.25.2.6 WSDMSExportModule:initialize (Sequence Diagram)

This diagram depicts the initialization of the WSDMSExportModule class. A module

properties class is created followed by the creation / initialization of the DMSExportHander

class. This class is responsible for maintaining DMS data in the ObjectCache and

providing methods to retrieve dms export data in response to dms export web service

requests. Next the DMSReqeustHandler is created and registered with the WebService

framework to allow the web service URL to start responding to requests.

Create ExtSysConnImpl objects
base on the Ext Sys Name /
Client ID pairs returned from the
props file. Regis ter in CORBA
trader. Event channel required
for ExtSysConnImpl creation. This
is left for implementation detail.

getExtSysNameClientIdPairs()

The creation / initialization of the DMSExportHandler will also create a
DiscoverChart2DMSClassesCmd and add it to the DiscoveryManager as well as
make a best attempt at making sure the object cache is populated before
responding to web serv ice requests.

m_props:
DMSExportModuleProperties

Data used to
register the
DMSRequestHandler
with the framework.

create(service.getProps())

WebService

WSDMSExportModule
m_discoveryMgr:

DiscoveryManager

DMSExportHandler

m_dmsReqHandler:
DMSRequestHandler

RequestManager

Create/Regis ter the
 DMSRequestHandler.
The handler handles
2 requests:
DMS Inventory Requests,
DMS Status Requests.

initialize(serv ice:WebServ ice))

m_discoveryMgr:Discoveryanager =
getDicsoveryManager()

m_dmsExportHandler = create()

create(m_dmsExportHandler)

getRequestManager()

regis terRequestHandler(dmsRequesterBRI)

dmsRequesterBRI:
BasicRequestInfo

create("dmsIDataReq", m_dmsReqHandler,.....)

m_initialized = TRUE

init()

[! initialized]

Figure 5-281. WSDMSExportModule:initialize (Sequence Diagram)

CHART R3B3 Detailed Design 5-510 12/23/2008

5.25.2.7 WSDMSExportModule:shutdown (Sequence Diagram)

The diagram depicts shutdown processing for the WSDMSExportModule. Currently

shutdown of the module initiates the DMSExportHandler.shutdown() which cleans up the

startupThread if still running. Other cleanup may be determined during implementaion.

Clean up
ExtSysConnImpl
created during
initialization.

cleanup()

WebServ ice

WSDMSExportModule
m_dmsExportHandler:

DMSExportHandler

shutdown()

shutdown()

m_startupThread:
Thread

[m_startupThread ! = NULL]

interrupt()

sleep 50 mls

[m_startupThread.isAlive()

Figure 5-282. WSDMSExportModule:shutdown (Sequence Diagram)

CHART R3B3 Detailed Design 5-511 12/23/2008

5.26 WebServices.TollrateImportModule

5.26.1 Classes

5.26.1.1 TollRateImportModuleClasses (Class Diagram)

This diagram shows the classes used by the tollrateimportmodule.

UserManagerWrapper

ClientUpdateAgr eement

1

CheckLastPostedTask

1

1

1

creates
and

schedules

TollDataPushTask

java.util.TimerTask

TollRateDataConverter

1

creates

RateProcessingResult

*

1

*1

11

11

TollRateProcessingError

TollRawData

«struct»

ConnectionManager

1

1

1

1

1

NotificationManagerWrapper

AlertFactoryWrapper

1

1

1

1

DiscoverTollDataConsumersCmd

QueueableCommand

«interface»

ObjectCache

11 *

Discover yManager

1

TollRateData

«struct»

TollRateErrorType

«enumeration»

BasicRequestHandler

TollRateUpdateRequestHandler

1

1

TollDataManager

TollDataProvider

«interface»

1

1

1

1

1

1

1

TollSystemConnectionImpl

11

1

ExternalSystemConnection

«interface»

ExternalSystemConnectionConfig

«struct»

ExternalSystemConnectionStatus

«struct»

1

1

1

CommandQueue

WSTollRateImportModule

WebServiceModule

«interface»

WebServiceModuleProper ties

WSTollRateImportModuleProperties

1 1

1

1

1

ProxyObject

1

1

ProxyTollDataConsumer

TollDataConsumer

«interface»

TollDataConsumer

«interface»

*

executes

TollUpdatePushCmd

1
*

1

1

1

uses

1

AcceptedTollRate

1

creates
and

schedules

getTollRateData():TollRateData
getTollRateDataRecvdTimeStamp():timestamp2

tollRateDataUpdated(xml:String):RateProcessingResult
scheduleTollDataPushTask():void
pushTollDataImpl():void
checkLastPostedTime():void
-persistTollData(xml:String, timestamp:long):void
-getPersistedTollData():TollRateData
-storeTollRateData(data:TollRateData):void
-validateStartTime(data:TollRateData):void
-validateExpirationTime(data:TollRateData):void

m_currentRates:TollRateData
m_lastPostedTimeStamp:long

m_expectedCallFreqSeconds:int
m_clientID:String
m_props:WSTollRateImportModuleProperties

getDiscoveryManager():DiscoveryManager
getTollDataManager():TollDataManager
isPrimary():boolean
getConnectionManager(clientID:String):ConnectionManager

setConnectionStatus(status:SimpleStatus):void

fromXML(xml:String):TollRateData
toXML(data:TollRateData):String

m_tollRateData:TollRateData
m_consumer:ProxyTollDataConsumer

isPrimary():boolean
getRedundantImporter():String
getPrimaryUpdateAlertThresholdSecs():int
getClientUpdateAgreements():ClientUpdateAgreement[]
getNumPushThreads():int
getNoPostedRatesConnectionFailureMins():int

addError(error:TollRateProcessingError):void
hasErrors():boolean
getErrors():TollRateProcessingError[]
getAcceptedRates():AcceptedTollRate[]
addTollRate(rate:AcceptedTollRate):void

TollRateUpdateRequestHandler(isPrimary:boolean,
 module:WSTollRateImportModule)

getErrorType():TollRateErrorType
getErrorMessage():String

m_clientID:String
m_expectedCallFreqSeconds:int
m_connectionDescription:String

getRouteStartID():String
getRouteEndID():String
getRateAppliedDesc():String

updateTollRateData(token:byte[], data:TollRateData):void
getLastPushedData():TollRateData
getLastPushTimeMillis():long

m_lastPushedTimeMillis:long
m_lastPushedRateData:TollRateData

routeSpec: ExtTollSpec
routeTollRateEffTimeSecs: Timestamp2
routeTollRateExpTimeSecs: Timestamp2
routeTollRateCents: short

Figure 5-283. TollRateImportModuleClasses (Class Diagram)

CHART R3B3 Detailed Design 5-512 12/23/2008

5.26.1.1.1 AcceptedTollRate (Class)

This class stores data about a posted toll rate that was accepted by the CHART system. It is

used to format the response XML to return to the posting client.

5.26.1.1.2 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.26.1.1.3 BasicRequestHandler (Class)

This abstract base class provides an implementation of the

WSRequestHandler.processRequest() method that provides optional XML validation

against specified XSD files and optional digital signature verification as well. It is intended

to be used by request handlers that plan to take XML in and return XML to the calling

client.

5.26.1.1.4 CheckLastPostedTask (Class)

This class implements the java.util.TimerTask interface, and is scheduled on a

java.util.Timer object to check the last time a toll rate update was received from the toll rate

supplier. If there is too long of a delay, a FAILURE condition is posted to the external

connection, and an alert and/or notification is/are posted according to the configuration of

the toll rate external connection.

5.26.1.1.5 ClientUpdateAgreement (Class)

This class stores information about a client connection agreement for this service. The

service will setup an external system connection for each ClientUpdateAgreement

configured in the properties file.

5.26.1.1.6 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

CHART R3B3 Detailed Design 5-513 12/23/2008

performs its intended task.

5.26.1.1.7 ConnectionManager (Class)

This interface must be implemented by any class that manages external system connections.

5.26.1.1.8 DiscoverTollDataConsumersCmd (Class)

This class is responsible for discovering TollDataConsumer objects and storing proxies for

them in the cache.

5.26.1.1.9 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

5.26.1.1.10 ExternalSystemConnection (Class)

This interface defines external connections and provides status reporting.

5.26.1.1.11 ExternalSystemConnectionConfig (Class)

This struct defines a connection to an external system.

5.26.1.1.12 ExternalSystemConnectionStatus (Class)

This struct is used to report status for an ExternalSystemConnection.

5.26.1.1.13 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.26.1.1.14 NotificationManagerWrapper (Class)

This singleton class presents the same interface as the NotificationManager, but uses a

FirstAvailableOfferWrapper to provide fault tolerant access to the methods.

5.26.1.1.15 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

CHART R3B3 Detailed Design 5-514 12/23/2008

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.26.1.1.16 ProxyObject (Class)

This class is a base class for many types of proxy objects store in the CHART object cache

(which have been discovered by the DiscoveryDriver tasks), used to provide a standard set

of access methods for the proxy objects.

5.26.1.1.17 ProxyTollDataConsumer (Class)

This class serves as a proxy for a TollDataConsumer. It keeps track of the last time we

pushed data to a consumer and what data was pushed.

5.26.1.1.18 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.26.1.1.19 RateProcessingResult (Class)

This class stores the results of processing a posted toll rate update.

5.26.1.1.20 TollDataConsumer (Class)

CORBA interface that must be implemented by any CHART component that wants to be

notified when toll rates changes.

5.26.1.1.21 TollDataManager (Class)

This class manages the current toll rate data for this service. It keeps track of the last

known toll rates and the time they were received.

5.26.1.1.22 TollDataProvider (Class)

System interface that is implemented by services that provide toll rate data to the system.

5.26.1.1.23 TollDataPushTask (Class)

This class implements the java.util.TimerTask interface, and is scheduled on a

java.util.Timer object to move pushing of toll rate data to TollDataConsumer objects onto a

background thread to minimized the effect of CORBA communication delays on this

import module.

CHART R3B3 Detailed Design 5-515 12/23/2008

5.26.1.1.24 TollRateData (Class)

This struct provides a collection of TollRawData objects along with a timestamp of when

they were posted by the toll rate source.

5.26.1.1.25 TollRateDataConverter (Class)

This class is responsible for converting posted XML toll rate documents to CORBA

structures used internally by CHART components and converting the internal structures

back to XML.

5.26.1.1.26 TollRateErrorType (Class)

Enumeration of toll rate error types.

5.26.1.1.27 TollRateProcessingError (Class)

This class stores information about an error encountered while processing a toll rate update.

5.26.1.1.28 TollRateUpdateRequestHandler (Class)

This class is the request handler that is responsible for handling posted XML toll rate

documents.

5.26.1.1.29 TollRawData (Class)

This structure is used by the CHART importer of toll rates to pass toll rate data into the

travel route factory. The intent is that the importer will receive all toll rates in one

transaction and will pass all toll rates on to the TravelRouteFactory in one transaction. In

R3B3, Vector was added as a toll rate provider for the CHART system.

5.26.1.1.30 TollSystemConnectionImpl (Class)

This class represents an external system connection that the toll rate import module expects

toll rates to be posted from. It stores the id of the client application that is expected to post

data and how frequently they are expected to post.

5.26.1.1.31 TollUpdatePushCmd (Class)

This class performs the asynchronous push of toll rate data to a consumer.

5.26.1.1.32 UserManagerWrapper (Class)

The UserManagerWrapper is a singleton class that provides access to a single instance of a

remote service type (in this case UserManager) where many instances may exist in the

Traders. If the connection to the current instance is lost, it re-establishes the connection,

possible with a different instance of the desired service type. This class supports storing

properties with values that are string data or binary data.

CHART R3B3 Detailed Design 5-516 12/23/2008

5.26.1.1.33 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within

the web service framework.

5.26.1.1.34 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to

extend in order to get access to their configuration properties.

5.26.1.1.35 WSTollRateImportModule (Class)

This class is the pluggable web service module that provides toll rate import functionality.

5.26.1.1.36 WSTollRateImportModuleProperties (Class)

This class provides convenience methods for accessing configuration file properties specific

to the toll rate import module.

CHART R3B3 Detailed Design 5-517 12/23/2008

5.26.2 Sequence Diagrams

5.26.2.1 CHART2.webservices.tollrateimportmodule:TollDataManager.tollRateDataUpdate

d (Sequence Diagram)

This diagram shows the processing that is performed when the

TollDataManager.tollRateDataUpdated method is invoked to pass new toll rate XML that

has been received. First a RateProcessingResult is created to store the results of the

operation for return. Next the XML is converted using the TollRateDataConverter. If there

is an error converting the XML it is returned in the RateProcessingResult. Otherwise the

start time in the XML is validated. If the start time is invalid (more than a configurable

number of minutes in the future) an error is returned. Otherwise the expiration time in the

XML is validated. If the expiration time is invalid (not later than the start date/time) an

error is returned. If everything is valid the toll rate data is stored in memory as our latest

and the received XML is persisted to a flat file. If everything worked correctly a

TollDataPushTask is scheduled for immediate execution to push the new toll rate date to all

consumers.

validateExpirationTime(TollRateData)

[invalid expiration time]
addError(TollRateProcessingError)

[invalid expiration time]
RateProcessingResult

validateStartTime(TollRateData)

[invalid s tart time]
addError(TollRateProcessingError)

[invalid s tart time]
RateProcessingResult

RateProcessingResult
create

java.util.Timer

Store the toll rate data as our latest,
and pers is t the XML document so we
can restore the latest after a restart.

Schedule the task that pushes our current
toll rates to all consumers for immediate execution.

schedule(TollDataPushTask, 0)

[Error converting]
RateProcessingResult

storeTollData(tollRateData)

fromXML(xml)

tollRateDataUpdated(xml)

pers is tTollData(xml)

TollRateUpdateRequestHandler

TollDataManager TollRateDataConverter

An invalid s tart time is a s tart time
that is more than a configurable number
of minutes in the future.

The expiration time must be > the start time.

Although the XML is known to conform to
XSD we could still encounter exceptions from
the java utliity c lasses that parse the XML.

TollRateData

Figure 5-284.

CHART2.webservices.tollrateimportmodule:TollDataManager.tollRateDataUpdated

(Sequence Diagram)

CHART R3B3 Detailed Design 5-518 12/23/2008

5.26.2.2 CHART2.webservices.tollrateimportmodule:TollDataManager.updateTollRateData

(Sequence Diagram)

This diagram shows the processing performed by the TollDataManager when the

updateTollRateData method (of the TollDataConsumer CORBA interface) is invoked by a

remote process. If the current data stored by this TollDataManager was received later than

the passed TollRateData then the data we have been sent is not the latest and will be

ignored (it is coming from an asynchronous push with retries). If the passed TollRateData

does have a more recent timestamp that the currently stored data the passed it is stored as

our current, then converted to XML via the TollRateDataConverter and finally the

converted XML is persisted to a flat file for process recovery purposes. Note that the data

is not pushed to TollDataConsumers because it was not received directly from the source.

[current data is newer than
received data]

xml

ORB

TollRateDataConverterTollDataManager

Store the toll rate data as our latest,
and persist the XML document so we
can restore the latest after a restart.

updateTollRateData(TollRateData)

persistTollData(xml)

toXML(tollRateData)

No push task is scheduled
here because it is the responsibility
of the web service that received the
XML update from the source to
push the current data.

storeTollData(tollRateData)

Figure 5-285.

CHART2.webservices.tollrateimportmodule:TollDataManager.updateTollRateData

(Sequence Diagram)

CHART R3B3 Detailed Design 5-519 12/23/2008

5.26.2.3 CHART2.webservices.tollrateimportmodule:TollDataPushTask.run (Sequence

Diagram)

This diagram shows the processing performed by the TollDataPushTask in order to push

current TollRateData to all TollDataConsumers. When the timer fires, the

TollDataPushTask calls the TOllDataManager.pushTollDataImpl method which retrieves

all ProxyTollDataConsumer objects from the DataModel. The TollDataManager then

clears all currently queued TollUpdatePushCmd updates from the CommandQueue to

ensure that all previously scheduled asynchronous toll rate pushes are abandonded. It then

loops over all ProxyTollDataCOnsumer objects and checks if the last TollRateData that we

pushed to them was received earlier than the data we are currently pushing. If it was, then a

push is needed and a TolLUpdatePushCmd is created and added to the CommandQueue.

At some point in the future (when the CommandQueue has a thread available), the

TollUpdatePushCmd.execute() method is invoked by the CommandQueue. The

TollUpdatePushCmd performs a second check to ensure that the data we are pushing is

more recent than the data we last pushed to this same consumer. If it is, the

TollDataConsumer.updateTollRateData method is invoked to pass them the updated data.

The consumer returns an array of routes that were expected to have toll rate data in the

update but did not. If this array is not empty the ConnectionManager is called to set the

external connection status to WARNING level.

ConnectionManager

[result has missing route names]
updateConnectionStatus(WARNING)

pushTollDataImpl

TollDataPushTask

run()

TollDataConsumer

When a command queue
thread is available to process
the TollUpdatePushCmd.

getLastPushedData()
TollRateData

[data to push is newer
than last data pushed]

updateTollRateData(token, tollRateData)

updateTollRateData(token, tollRateData)

WSTollRateImportModule DataModel ProxyTollDataConsumer

getDataModel()
DataModel

getObjectsOfType(ProxyTollDataConsumer)

[* for each
ProxyTollDataConsumer]

TollUpdatePushCmd

CommandQueue

Cancel any previously
scheduled pushes, we have
newer data.

create

clear()

add(TollUpdatePushCmd)

execute()

Timer

TollDataManager

Figure 5-286. CHART2.webservices.tollrateimportmodule:TollDataPushTask.run

(Sequence Diagram)

CHART R3B3 Detailed Design 5-520 12/23/2008

5.26.2.4 CHART2.webservices.tollrateimportmodule:TollRateUpdateRequestHandler.proc

essRequest (Sequence Diagram)

This diagram shows the processing performed when the toll rate import modules receives a

web service request to update the current toll rates. The BasicRequestHandler abstract base

class is invoked by the WebService core. Before calling the

TollRateUpdateRequestHandler the base class will verify the digital signature used to sign

the request and will validate the XML against the XSD. If all is valid the base class

invokes the processRequest method of the TollRateUpdateRequestHandler. The handler

immediately checks if it is the primary or the backup service. If it is not primary the

ConnectionManager is obtained and a connection alert is raised. Next the request body

XML is obtained and passed to the TolLDataManager who returns a RateProcessingResult

which is placed in the context and used for the creation of the response XML. If the

returned RateProcessingResult contains errors the error response template will be used,

otherwise if this service is the primary service the connection status will be set to OK and

the toll rates updated template will be returned.

5.26.2.5 CHART2.webservices.tollrateimportmodule:WSTollRateImportModule.initialize

(Sequence Diagram)

This diagram shows the processing that is performed by the WSTollRateImportModule

during initialization. First a WSVectorImportModuleProperties object is created. Then the

TollRateUpdateRequestHandler is created and registered with the RequestManager. Then

the DiscoverTollDataConsumersCmd discovery command is created and added to the

DiscoveryManager. Next the TollDataManager is created. The TollDataManager

schedules it periodic timer task to push current toll data to TOllDataConsumers and then

depersists its current toll rate data (if any) from a flat file. The TollDataManager is

activated in the persistent POA and is registered in the CORBA trading service as both a

TOllDataConsumer and TollDataProvider. Finally the properties file is read to determine

what toll data providers are expected to post data to this service and how frequently they

should post their data. For each ClientUpdateAgreement found an

ExternalSystemConnection objects is created, activated in the POA and registered in the

trading service.

CHART R3B3 Detailed Design 5-521 12/23/2008

ExternalSystemConnection

ClientUpdateAgreenent[]

create

registerObject(connection)

WebService

WSVectorImportModule WebService RequestManager DiscoveryManager

DiscoverTollDataConsumersCmd

POA

TollDataManager

for each
ClientUpdateAgreement activate_object_with_id()

WSVectorImportModuleProperties

TollRateUpdateRequestHandler

RequestManager

scheduleTollDataPushTask()

create

add

create

activate_object_with_id()

getConsumerUpdateFrequencyMillis()

initialize

create

getClientUpdateAgreements()

The call to register a request handler
passes information about the request
such as the XSD that should be used to
validate the incoming XML.

getRequestManager()

registerObject(tollDataManager)

create

registerRequestHandler()

getPOA(persistentPOA)

getPersistedTollData()

getDiscoveryManager

Figure 5-287.

CHART2.webservices.tollrateimportmodule:WSTollRateImportModule.initialize

(Sequence Diagram)

CHART R3B3 Detailed Design 5-522 12/23/2008

5.27 Webservices.base

5.27.1 Classes

5.27.1.1 WebServicesBaseClasses (Class Diagram)

This diagram shows the classes and interfaces that comprise the Web Service framework.

Each WebService reads a properties file to determine which implementations of the

WebServiceModule interface should be created and initialized at startup. Each

implementation of the WebServiceModule interface can create implementations of the

WSRequestHandler interface and install them into the RequestManager.

This diagram is new for R3B3

NotificationManagerWrapper

1

AlertFactoryWrapper

1

1

1

ProcessingException

AuthenticationException

ValidationException

BasicRequest

1

*

BasicRequestInfo

0..1*

0..1

DiscoveryHost

«interface»
DiscoveryManager

Service

«interface»

BasicRequestHandler

1

1

**

1

RequestManager RequestInfo

1

1

*1

1 1

WSRequestHandler

«interface»

DBConnectionManager

0..1 1

WebServiceProperties

WebServiceModuleProperties

1

1

*1

WSRequestHandlerSupporter

«interface»

TraderGroup

1

WebServiceModule

«interface»

1

WebService

org.apache.velocity.VelocityServlet

registerRequestHandler(info:RequestInfo):void
getRequestInfo(key:String):RequestInfo

getDBConnectionManager():DBConnectionManager
getProps():WebServiceProperties
getORB():ORB
getPOA(poaName:String):POA
getTraderGroup():TraderGroup
getRequestManager():RequestManager
getObjectLocator():ObjectLocator
getIDGenerator():IdentifierGenerator
getDiscoveryManager():DiscoveryManager
getDiscoveryDriver():DiscoveryDriver
handleRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context):Template
getNotificationWrapper():NotificationManagerWrapper
getAlertWrapper():AlertFactoryWrapper
registerObject(obj:org.omg.CORBA.Object obj, id:Identifier, name:String,objectServiceType:String,
 boolean alwaysPublish)

WebServiceProperties(props:Properties)
getIntProperty(prop:String, default:int):int
getBooleanProperty(prop:String, default:boolean):boolean
getFloatProperty(prop:String, default:float):float
getNetConnectionSite():String
getServiceName():String
requiresObjectCache():boolean
requiresDatabase():boolean
getNumDiscoveryThreads():int
getDiscoveryIntervalMins():int
getArbQueuePollIntervalSecs():int
getEORSPollIntervalMins():int
getObjectCacheLogFlags():String
getNetConnectionSite():String
getFirstAvailableServiceRemoteUseMins():int
getModuleClasses():Class[]

getTraderGroup():TraderGroup
getORB():ORB
verifySignedData(clientID:String, signature:String, data:byte[]):void
getAccessToken(clientID:String):byte[]
getObjectCache():ObjectCache
getObjectLocator():ObjectLocator
getServletContext():ServletContext
getVelocityTemplate(path:String):Template
validateXML(schema:File, xml:String):void
getNotificationWrapper():NotificationFactoryWrapper
getAlertWrapper():AlertFactoryWrapper

getErrorType():AuthenticationErrorType
getMessage():String
getRootCause():Exception

getKey():String
getRequestHandler():WSRequestHandler

+getDataModel() : DataModel
+getObjectCache() : ObjectCache
+getDiscoveryDriver() : DiscoveryDriver

m_traderGroup : TraderGroup
m_discoveryDriver : DiscoveryDriver
m_dataModel : DataModel
m_ecg : EventConsumerGroup
m_objectCache : ObjectCacheClass
m_processingQueue : CommandQueue

getErrorType():ValidationErrorType
getMessage():String
getRootCause():Exception

WebServiceModuleProperties(props:WebServiceProperties)
getWebServiceProperties():WebServiceProperties
getIntProperty(prop:String, default:int):int
getBooleanProperty(prop:String, default:boolean):boolean
getFloatProperty(prop:String, default:float):float

init(supporter:WSRequestHandlerSupporter):void
processRequest(supporter:WSRequestHandlerSupporter, info:RequestInfo, req:HttpServletRequest, resp:HttpServletResponse, ctx:Context):String
shutdown(supporter:WSRequestHandlerSupporter):void

processRequest(request:BasicRequest, supporter:WSRequestHandlerSupporter, ctx:Context):String
handleValidationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ValidationException):String
handleAuthenticationException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:AuthenticationException):String
handleProcessingException(supporter:WSRequestHandlerSupporter, request:BasicRequest, ctx:Context, e:ProcessingException):String

getInboundXSD():File
getOutboundXSD():File
getClientIDParamName():String
getSignatureParamName():String

initalize(service:WebService):void
shutdown():void

getMessage():String
getRootCause():Exception

getRequest():HttpServletRequest
getclientID():String
getRequestInfo():BasicRequestInfo
getResponse():HttpServletResponse
getRequestBody():String
getKey():String

5-288. WebServicesBaseClasses (Class Diagram)

CHART R3B3 Detailed Design 5-523 12/23/2008

5.27.1.1.1 AlertFactoryWrapper (Class)

This singleton class provides a wrapper for the Alert Factory that provides automatic

location of an Alert Factory and automatic re-discovery should the Alert Factory reference

return an error. This class also allows for built-in fault tolerance by automatically failing

over to a "working" Alert Factory without the user of this class being aware that this being

done. In addition, this class defers the discovery of the Alert Factory until its first use, thus

eliminating a start-up dependency for modules that use the Alert Factory.

This class delegates all of its method calls to the system AlertFactory using its currently

known good reference to an AlertFactory. If the current reference returns a CORBA failure

in the delegated call, this class automatically switches to another reference. When there are

no good references (as is true the first time the object is used), this class issues a trader

query to (re)discover the published Alert Factory objects in the system. During a method

call, the trader will be queried at most one time and under normal circumstances, not at all.

5.27.1.1.2 AuthenticationException (Class)

An instance of this class will be provided to a BasicRequestHandler if the handler has

requested digital signature verification but an incoming request does not contain a valid

signature.

5.27.1.1.3 BasicRequest (Class)

5.27.1.1.4 This class contains data used during requst processing.

5.27.1.1.5 BasicRequestHandler (Class)

This abstract base class provides an implementation of the

WSRequestHandler.processRequest() method that provides optional XML validation

against specified XSD files and optional digital signature verification as well. It is intended

to be used by request handlers that plan to take XML in and return XML to the calling

client.

5.27.1.1.6 BasicRequestInfo (Class)

This class provides the request specific data that is required by the BasicRequestHandler

implementation of the WSRequestHandler interface.

5.27.1.1.7 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database

connections. Any CHART II system thread requiring database access gets a database

connection from the pool of connections maintained by this manager class. The connections

are maintained in two separate lists namely, inUseList and freeList. The inUseList contains

connections that have already been assigned to a thread. The freeList contains unassigned

connections. This class assumes that an appropriate JDBC driver has been loaded either by

CHART R3B3 Detailed Design 5-524 12/23/2008

using the "jdbc.drivers" system property or by loading it explicitly. The class has a monitor

thread that is started by the constructor. This connection monitor thread periodically checks

the inuseList to see if there are connections that are owned by dead threads and move such

connections to the freeList. The connection monitor thread is started only if a non-zero

value is specified for the monitoring time interval in the constructor.

5.27.1.1.8 DiscoveryHost (Class)

This interface defines the methods that the DiscoveryManager relies on. It must be

implemented by any class that will create a DiscoveryManager.

5.27.1.1.9 DiscoveryManager (Class)

This SystemContextProvider interface defines some of the functionality required by a class

which provides discovery services for CHART services. It is used by both the CHART

GUI and the CHART backend services. A class which implements this interface must

provide "get" accessor methods for the system profile properties, the data model, and the

main processing queue for a service, for instance. It also provides access to the root

deployment path and dynamic image path, which is used only by the CHART GUI. For the

CHART GUI, this interface is known to be implemented by the MainServlet; for the back

end CHART services, this interface is known to be implemented by the Discovery

Manager.

5.27.1.1.10 NotificationManagerWrapper (Class)

This singleton class presents the same interface as the NotificationManager, but uses a

FirstAvailableOfferWrapper to provide fault tolerant access to the methods.

5.27.1.1.11 org.apache.velocity.VelocityServlet (Class)

The base class for the Velocity template engine. This template engine is used to provide

dynamic content from the CHART GUI Servlet. The web pages are code in templates

using velocity specific macros. The code in the servlet loads data that will be shown on the

page into a velocity Context, and this VelocityServlet class is used to merge the content

with the template to create HTML for the browser to display.

5.27.1.1.12 ProcessingException (Class)

An instance of this class will be provided to a BasicRequestHandler if an unexpected

exception is encountered during processing.

5.27.1.1.13 RequestInfo (Class)

THis class stores information about a request that the framework will handle.

WSRequestHandler instances will register RequestInfo objects to provide the framework

information about each request they handle. The framework will pass the registered request

information back to the registered WSRequestHandler when the request is being processed.

CHART R3B3 Detailed Design 5-525 12/23/2008

5.27.1.1.14 RequestManager (Class)

This class provides a mapping from a request key to all information that a particular request

handler has registered for the request.

5.27.1.1.15 Service (Class)

This interface is implemented by all services in the system that allow themselves to be

shutdown externally. All implementing classes provide a means to be cleanly shutdown

and can be pinged to detect if they are alive.

5.27.1.1.16 TraderGroup (Class)

This class provides a facade for trader lookups that allows application level code to be

unaware of the number of CORBA trading services that the application is using or the

details of the linkage between those services.

5.27.1.1.17 ValidationException (Class)

An instance of this class will be provided to a BasicRequestHandler if the handler has

requested XSD validation of their incoming or outgoing XML and the XML is found to be

not valid. It will contain a ValidationErrorType member that will allow the request handler

to determine if the invalid XML was inbound or outbound.

5.27.1.1.18 WebService (Class)

This class is the core of each Web Service. It extends the VelocityServlet base class and

implements the Service CORBA interface so that Web Service servlets can be administered

in the same manner as other CHART service applications.

5.27.1.1.19 WebServiceModule (Class)

This interface defines the methods that each module must implement in order to run within

the web service framework.

5.27.1.1.20 WebServiceModuleProperties (Class)

This abstract base class provides a base for WebServiceModule implementation classes to

extend in order to get access to their configuration properties.

5.27.1.1.21 WebServiceProperties (Class)

This class provides convenient access to the java Properties object that contains

configuration data for the web service and its modules.

5.27.1.1.22 WSRequestHandler (Class)

This interface defines the methods that every class that wants to handle web service

requests must implement.

CHART R3B3 Detailed Design 5-526 12/23/2008

5.27.1.1.23 WSRequestHandlerSupporter (Class)

This interface defines the methods that will be available to every WSRequestHandler when

it is invoked by the framework. It defines the services that the framework will make

available to the handlers.

CHART R3B3 Detailed Design 5-527 12/23/2008

5.27.2 Sequence Diagrams

5.27.2.1 CHART2.webservices.base:BasicRequestHandler.processRequest (Sequence

Diagram)

This diagram shows the processing that is performed when a BasicRequest is received by

the WebService base. The base calls processRequest on the registered

BasicRequestHandler. The BasicRequestHandler base class then gets the client id

parameter name and signature parameter names from the registered BasicRequestInfo. It

then reads the request body from the request input stream and creates the BasicRequest

object which will contain all of the request related data. If the request is registered with a

client ID and signature parameter name the base class then calls the

WSRequestHandlerSupporter to verify that the digital dignature provided is correct for the

data contained in the request body and the calling client ID. It it is not, the abstract

handleAuthorizationException() method is called to allow the derived request handler class

to handle the exception. The velocity template returned by the handler is then returned to

the web service so that the error may be returned to the calling client. If no verification was

required, or the digital signature was correct, the base class processing then obtains the

inbound XSD file from the request info and, performs the optional XML validation. If the

inbounds XML is not valid the abstract handleValidationException method is invoked to

allow the derived request handler to format an error response for the caller. The error

response is then returned to the WebService and sent to the calling client. If the inbound

XML is valid, or XSD validation was not required the base processing the calls the

processRequest() method of the derived request handler to allow it to perform request

specific processing. If the processRequest() method throws an unexpected exception the

base processing will call the abstract handleProcessingException() method to allow the

derived handler an opportunity to format the error response and returns it to the WebService

base for return to the calling client. Once the abstract processRequest() method returns, the

base processing will check if a response Velocity template has been provided for the

creation of the outbound XML. If no template has been returned the derived handler is

indicating that they have already responded to the client appropriately and no further

processing is required by the base, so a null template path is returned to the WebService

and no response is sent to the calling client. If a template path has been returned, the base

processing will get the template and merge it with the objects in the Velocity context in

order to create the outbound response XML. The registered BasicRequestInfo is then

checked to see if outbound XML validation is required. If it is, the XML created by the

merge operation is validated. If the outbound XML is not valid the abstract

handleValidationException() method is invoked to allow the derived handler to create an

appropriate response and that response is returned to the WebSevice for return to the calling

client. If the response XML is valid, or if no validation was required, the response XML is

then written to the output stream of the HttpServletResponse and null is returned to the

WebService to let it know that the response has already been sent to the calling client.

CHART R3B3 Detailed Design 5-528 12/23/2008

HttpServletResponse

merge()

Template

[uncaught exception from processRequest]
handleProcessingException()

[uncaught exception from
processRequest]

[Error validating XML]
handleValidationException

getOutboundXSD()

BasicRequest

[Error verify ing s ignature]

[Error verify ing s ignature]
handleAuthorizationException

return null

OutputStream

getOutputStream()

write()

flush()

c lose()

[process request returned
null template path]

[outbound XSD file not null]
validateXML()

[Error validating XML]
handleValidationException

[Error validating XML]

getTemplate()

getSignatureParamName()

[s ignature param name not null]
getParameter()

[c lientID and s ignature not null]
verifySignedData()

getInputStream()

readRequestBody()

[inbound xsd file not null]
validateXML()

processRequest(req, supporter, context)

WebService

BasicRequestHandler BasicRequestInfo WSRequestHandlerSupporterHttpServletRequest

processRequest

getInboundXSD()

getClientIDParamName()

[client id param not null]
getParameter()

[Error validating XML]

create

Figure 5-289. CHART2.webservices.base:BasicRequestHandler.processRequest (Sequence

Diagram)

CHART R3B3 Detailed Design 5-529 12/23/2008

5.27.2.2 CHART2.webservices.base:WebService.handleRequest (Sequence Diagram)

This diagram shows the processing performed for each request received by a web service.

The request key is determined by parsing the requset URL that was received. The key is

then used to find the registered RequestInfo which includes the specific implementation of

the WSRequestHandler interface that will handle the request. If no RequestInfo can be

found about the request key that was received a default XML error response will be

returned. If RequestInfo was found, the content type of the response is set to XML and the

no-cache header is added to the response. The WSRequestHandler.processRequest()

method is then invoked to allow the request handler to perform request specific processing.

If the request handler thows an exception the default error XML will be returned to the

calling client. Next a check is made to determine if the request handler has already

responded to the client. If so, they return null from the process request invocation and the

WebService returns null indicating that no response should be sent to the calling client. If

the request handler returned a path to a Velocity template that template will be loaded and

returned to Velocity where it will be merged with any Java objects placed in the context in

order to create the XML response that is returned to the calling client.

WSRequestHandler

String (path to template or null)

content type is set to application/xml
here, but can be overridden by instance
of WSRequestHandler if desired.

RequestInfo

HttpServletResponse

setContentType()

addHeader()

A handler may return a path to a velocity template
that should be loaded, or it may return null indicating
that the response has already been sent. If a template
path is returned the appropriate template will be loaded
and returned as the response to this request. In this case the
response type will be set to application/xml and the response
headers will be set to prevent cacheing.

[Handler returned null]
null

Velocity

WSRequestHandler

processRequest()

Every request will have the no-cache
header set to direct c lients not to
cache our response documents.

RequestInfoWebService HttpServletRequest

handleRequest()

getRequestInfo(requestKey)

[no handler registered]
Default Error XML

[Unhandled exception]
getDefaultErrorTemplate()

getTemplate()

RequestManager

The request key is taken
from the request URL. And used
to lookup the registered information
for the request.

getServletPath()

[no handler registered]
getDefaultErrorTemplate()

Template

[Unhandled exception]
Default Error XML

getRequestHandler()

Figure 5-290. CHART2.webservices.base:WebService.handleRequest (Sequence Diagram)

CHART R3B3 Detailed Design 5-530 12/23/2008

5.27.2.3 CHART2.webservices.base:WebService.init (Sequence Diagram)

The WSRequestHandler instances
that a module installs will be specific
to the types of requests that the
handler needs to handle. When the
request handler is registered it is registered
for a specific action. When the servlet
receives a request with the specified action
the registered handler will be invoked. The
method used to invoke the request handler
depends on the type of handler registered.

[error initializing module]
ServletException

WSRequestHandler
create

registerRequestHandler

RequestManager
create

for each request
a handler handles

QueueableCommand

for each module

initialize

getDiscoveryManager

create

add

getRequestManager

WebServiceModule

getModuleClasses

create

ServletContainer

WebService

WebServiceProperties

DatabaseConnectionManager

TraderGroup

DiscoveryManager

requiresObjectCache

[requires object cache]
create

initCORBA()

create

create

init

requiresDatabase

[requires db]
create

[requires DB
&& failure creating

connection manager]
ServletException

The module constructed will implement the
WebServiceModule interface. But will add module
specific functionality. During initialization they will be
provided the opportunity to register their request handlers
and/or add discovery commands to the DiscoveryManager.

for each module
class in properties file

If the module wants to do discovery and
place objects in the ObjectCache it will create
instances of QueueableCommand that do the work and
add them to the DiscoveryManager.

[requires cache &&
error creating

DiscoveryManager]
ServletException

[error construcing module]
ServletException

Figure 5-291. CHART2.webservices.base:WebService.init (Sequence Diagram)

CHART R3B3 Detailed Design 5-531 12/23/2008

5.28 Chartlite.data

5.28.1 Classes

5.28.1.1 MiscDataClasses (Class Diagram)

This diagram shows miscellaneous classes used by the CHART GUI servlet related to the

data cache.

New for R3B3:

getDefaultEventNearbyDev icesRadiusTenths()

FolderEnabled
«interface»

WebDevice
«interface»

WebHARMessageNotifier
«interface»

WebOpCenter

WebAdministered

«interface»

SystemProfileProperties

TempObjectStore

SystemProfileNotificationProperties

NotificationShortcutListItem

BasePushConsumer

Searchable
«interface»

WebUniquelyIdentifiable
«interface»

WebSharedResource
«interface»

get():SystemProfileProperties
getAlertArchiveTimeMinutes() : int
getAlertAudibleReminderInterval() : int
getAlertDefaultAcceptTimeMinutes(type:WebAlertType) : int
getAlertDefaultDelayTimeMinutes(type:WebAlertType) : int
getAlertDeviceFailureAudio() : byte[]
getAlertDuplicateEventAudio() : byte[]
getAlertEscalationTimeMinutes(type:WebAlertType) : int
getAlertEventStillOpenAudio() : byte[]
getAlertGenericAudio() : byte[]
getAlertMaxAcceptTimeMinutes(type:WebAlertType) : int
getAlertMaxDelayTimeMinutes(type:WebAlertType) : int
getAlertReminderAudio() : byte[]
getAlertUnhandledRsrcAudio() : byte[]
getNotificationProperties () : SystemProfileNotificationProperties
getScheduleRemovalTimeMinutes() : int
getScheduleActivationSuppressionTimeMinutes() : int
getMissedActivationGracePeriodMinutes()
getDefaultEventNearbyDev icesRadiusTenths() : int

getAlertBackupCenters() : WebOpCenter[]
getSupportedAlertTypes()

getMsgTextWarningLength() : int
getMsgTextErrorLength() : int
getCacheRetainTimeMinutes() : int
getMaxMRUIndiv iduals() : int
getMaxMRUGroups() : int
getDefaultNotificationHistoryEntriesPerPage() : int
getDisplayGroupMembersOutsideEvent() : boolean
getDisplayGroupMembersWithinEvent() : boolean
get10Codes(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]
getMiscShortcuts (withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutLis tItem[]
getSingleClickShortcuts(withinTrafficEvent:boolean, outsideTrafficEvent:boolean) : NotificationShortcutListItem[]
getInc identTypeAbbreviation(incType:WebIncidentType) : String
getCountyAbbreviation(s tateCode:String, countyInfo:CountyInfo) : String
getRegionAbbreviation(s tateCode:String, regionInfo:RegionInfo) : String
getVehicleTypeAbbrev iation(webVehicleType:WebVehicleType) : String
getPartic ipationAbbreviation(partic ipation:WebResponsePartic ipation) : String
getOpCenterAbbreviation(centerID:Identifier) : String
setMsgTextWarningLength(props:Properties, length: int) : void
setMsgTextErrorLength(props :Properties, length: int): void
setCacheRetainTimeMinutes(props:Properties, minutes :int) : void
setMaxMRUIndiv iduals(props:Properties, maxNum: int) : void
setMaxMRUGroups(props:Properties, maxNum: int) : void
setDefaultNotificationEntriesPerPage(props:Properties, numPerPage: int) : void
setDisplayGroupMembersOutsideEvent(props:Properties, flag: boolean) : void
setDisplayGroupMembersWithinEvent(props:Properties, flag: boolean) : void
set10Codes(props :Properties, items:NotificationShortcutLis tItem[]) : void
setMiscShortcuts (props:Properties, items : NotificationShortcutLis tItem[]) : void
setSingleClickShortcuts(props :Properties, items : NotificationShortcutListItem[]) : void
setInc identTypeAbbreviation(props:Properties, incType:WebIncidentType, abbrev:String) : void
setCountyAbbreviation(props:Properties, stateCode:String, countyCode:String, abbrev :String) : void
setRegionAbbreviation(props:Properties, stateCode:String, regionName:String, abbrev :String) : void
setVehicleTypeAbbrev iation(props:Properties, webVehicleType:WebVehic leType, abbrev:String) : void
setPartic ipationAbbreviation(props:Properties, partic ipantType:int, partic ipantName:String,

getID() : Identifier
getName() : String

getControllingOpCenterID() : Identifier
getControllingOpCenterName() : String
setControllingOpCenter(byte[] token, WebOpCenter target) : void
getTypeDesc() : String
isTransferrable() : boolean

getAssoc iatedHAR() : WebHAR
getAssoc iatedHARID() : Identifier
getDirection() : int
getDirectionDesc() : String
getID() : Identifier
getLocationString() : String
getName() : String
getNotifier() : HARMessageNotifier
getOpModeString() : String
getPlainTextMessageString() : String
getTypeDesc() : String
isDMS() : boolean
isHARNoticeActive() : boolean
is InMaintMode() : boolean
isOnline() : boolean
isSHAZAM() : boolean

matchesSearch(String criteria, boolean caseSensitive) : boolean

isOffline() : boolean
isOnline() : boolean
is InMaintMode() : boolean
isHardwareFailed() : boolean
isCommFailed() : boolean
isCommMarginal() : boolean

doPing() : boolean
getDetailsAction() : String
getDetailsPageName() : String

getDataModel() : DataModel
getPushConsumer() : PushConsumer
push(data:Any) : void
setPushConsumer(consumer:PushConsumer):void
handleEventData(data:Any) : void

add(key:Objec t, value:Objec t) : void
add(key:Objec t, value:Objec t, maxAgeSec : int) : void
createTempObjectID() : String
getObject(key : Object) : Object
removeObject(key : Objec t) : Object
touchObject(key : Object) : Object
getObjectsOfType(class : Class) : Object[]

isApplicableWithinTrafficEvent() : boolean
isApplicableOutsideTrafficEvent() : boolean
getShortcutText() : String
getMsgTextToInsert() : String

getID() : Identifier
getName() : String
getTypeDesc() : String

Figure 5-292. MiscDataClasses (Class Diagram)

CHART R3B3 Detailed Design 5-532 12/23/2008

5.28.1.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

handleEventData().

5.28.1.1.2 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

5.28.1.1.3 NotificationShortcutListItem (Class)

This class represents an item in a notification shortcut list.

5.28.1.1.4 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.28.1.1.5 SystemProfileNotificationProperties (Class)

This class contains functionality for accessing notification settings in the system profile.

5.28.1.1.6 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is

also used to interact with the server to change system profile settings.

5.28.1.1.7 TempObjectStore (Class)

This class provides a self cleaning storage area for temporary objects.

5.28.1.1.8 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

5.28.1.1.9 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.28.1.1.10 WebHARMessageNotifier (Class)

This interface provides access to HAR notification capabilities for a device (DMS or

SHAZAM) that is used to notify the public of a HAR message being broadcast.

5.28.1.1.11 WebOpCenter (Class)

This class is used to wrap an OperationsCenter object to allow it to be cached in the

CHART GUI servlet and to allow the cached data to be accessed within Velocity templates.

CHART R3B3 Detailed Design 5-533 12/23/2008

5.28.1.1.12 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART

shared resources in the system, corresponding to the SharedResource IDL interface.

5.28.1.1.13 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

CHART R3B3 Detailed Design 5-534 12/23/2008

5.28.1.2 MiscDataClasses2 (Class Diagram)

This diagram contains additional classes in the chartlite.data package that did not fit on the

first diagram.

DynamicImageFileKeeper

«interface»

W ebPortLocationData

W ebPortManagerCommsData

W ebIPPortLocationData

*

1

getPortManagerCommsData(idx : int) : WebPortManagerCommsData
getPortManagerCommsDataObjects() : WebPortManagerCommsData[]
getPortTypeStr() : String
getPortWaitTimeSec() : int
isPortTypeISDN() : boolean
isPortTypePOTS() : boolean
isPortTypeRS232() : boolean
isPortTypeTelephony() : boolean

m_portLocationData : PortLocationData

getDevicePhoneNumber() : String
getDirectPortName() : String
getFormattedDevicePhoneNumber() : String
getPortManagerName() : String

m_data : PortManagerCommsData

getIPAddress() : String
getTCPPortNumber() : int

m_ipPortLocationData : IPPortLocationData

getDynamicImageFilenamesToKeep() : ArrayList<String>

Figure 5-293. MiscDataClasses2 (Class Diagram)

5.28.1.2.1 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

5.28.1.2.2 WebIPPortLocationData (Class)

This class wraps the IPPortLocationData IDL structure and provides accessor methods to

get the data. This class has data for identifying a TCP/IP address and port.

5.28.1.2.3 WebPortLocationData (Class)

This class wraps the PortLocationData IDL structure and provides accessors to get the data.

The structure contains data for using ports of the same type, managed by one or more

PortManager objects.

5.28.1.2.4 WebPortManagerCommsData (Class)

This class wraps the PortManagerCommsData IDL structure and provides accessors to get

the data. The structure contains data for using a port managed by a PortManager object.

CHART R3B3 Detailed Design 5-535 12/23/2008

5.28.1.3 chartlite.data_location_classes (Class Diagram)

This diagram shows classes used by the CHART GUI servlet related to location

information that is cached in the data model.

WebObjectLocationSupporter

«interface»

WebMilePostIntersecting
FeatureData

0..11

WebRoadwayLocationAliasInfo0..1 1

0..1 1

0..1

1

0..1

1

WebObjectLocation

1

1

1

1

*

WebIntersectingFeatureLocationInfo

WebRouteType

«enumeration»

0..1

1

WebIntersectingFeatureType

«enumeration»

WebIntersectingFeatureProximity

WebIntersectingFeatureProximityType

«enumeration»

0..11

0..11

0..11

0..1

1

0..1

1

0..1

1

11

11

WebRouteNumber

WebRoadwayLocation

WebRouteInfo

WebFreeformRouteInfo

0..11

0..11

WebRegionInfo

WebStateInfo

WebCountyInfo

1

1

1

areAliasNamesSpecified() : boolean
getCountyInfo() : WebCountyInfo
getGeoLocation() : GeoLocation
getGeoLocationSourceDesc() : String
getInternalAliasName() : String
getLocationDesc() : String
getNotificationSuggestedLocationDesc(
 props : SystemProfileNotificationProperties) : String
getPublicAliasName() : String
getRegionInfo() : WebRegionInfo
getRoadwayLocation() : WebRoadwayLocation
getStateInfo() : WebStateInfo
isCountySpecified() : boolean
isGeoLocationSpecified() : boolean
isLocationDescOverridden() : boolean
isRegionSpecified() : boolean
isRoadwayLocationSpecified() : boolean
isStateSpecified() : boolean
showIntRouteName() : boolean
showRouteName() : boolean

m_location : ObjectLocation
getStateCode() : String
getStateFIPSCode() : String
getStateName() : String

m_stateInfo : StateInfo

getDirection() : int
getDirectionName() : String
getFormalRouteInfo() : WebRouteInfo
getFreeformRouteInfo() : WebFreeformRouteInfo
getIntersectingFeature() : WebIntersectingFeatureLocationInfo
getNotificationSuggestedLocationDesc(
 s tateCode : String, showRouteName : String,
 showIntRouteName : String) : String
getRouteType() : RouteType
getRouteTypeDesc() : String
isDirectionDefined() : boolean
isDirectionNone() : boolean
isFormalRouteSpecification() : boolean
isFreeformRouteSpecification() : boolean

m_location : RoadwayLocation

getCountyCode() : String
getCountyDesc(stateInfo : WebStateInfo) : String
getCountyFIPSCode() : String
getCountyName() : String

m_countyInfo : CountyInfo

getRegionDesc(stateInfo : WebStateInfo) : String
getRegionName() : String

m_regionInfo : RegionInfo

getCountyInfo() : WebCountyInfo
getInternalAliasName() : String
getPublicAliasName() : String
getRegionInfo() : WebRegionInfo
getRoadwayLocation() : WebRoadwayLocation
getStateInfo() : WebStateInfo
isCountySpecified() : boolean
isRegionSpecified() : boolean
isRoadwayLocationSpecified() : boolean
isStateSpecified() : boolean

m_aliasInfo : RoadwayLocationAliasInfo

getFeatureType(): WebIntersectingFeatureType
getFormalRouteInfo() : WebRouteInfo
getFreeformRouteInfo() : WebFreeformRouteInfo
getMilePostInfo() : WebMilePostIntersectingFeatureData
getProx imity() : WebIntersectingFeatureProximity
hasFormalRouteSpecification() : boolean
hasFreeformRouteSpecification() : boolean
isMilePost() : boolean
isRoad() : boolean

m_info : IntersectingFeatureLocationInfo

getNotificationSuggestedRouteDesc(
 s tateCode:String, showName:boolean) : String
getRoadName() : String
getRouteNumber() : WebRouteNumber
getRouteType() : RouteType
getRouteTypeDesc() : String
getRouteTypeValue() : int
getWebRouteType() : WebRouteType

m_routeInfo : RouteInfo

getRouteDescription() : String
getRouteType() : RouteType
getRouteTypeDesc() : String
getRouteTypeValue() : int
getWebRouteType() : WebRouteType

m_routeInfo : FreeformRouteInfo

MilePost
Road

getDesc(stateCode : String,
 routeType : WebRouteType) : String
getNumber() : String
getPrefix() : String
getSuffix() : String

m_routeNumber : RouteNumber

getAbbrev iatedDirectionDesc() : String
getAbbreviatedProximityDesc() : String
getDirectionDesc(abbrev iateDirName : boolean) : String
getDistanceFromFeatureMilesStr() : String
getDistanceFromFeatureMilliMiles() : int
getLongDirectionDesc() : String
getLongProximityDesc() : String
getProx imityDesc(abbrev iate : boolean) : String
getProx imityTypeValue() : int
isAt() : boolean
isEastOf() : boolean
isNorthOf() : boolean
isPast() : boolean
isPrior() : boolean
isSouthOf() : boolean
isWestOf() : boolean

m_proximity : IntersectingFeatureProximity

Interstate
State
US
County
Government
Munic ipal
OtherPublic
OtherStateRoad
Other
Unknown

getMilePostMilliMiles() : int
getMilePostTypeName() : String
getMilePostTypeValue() : int
getMilesStr() : String
isCountyMilePost() : boolean
isStateMilePost() : boolean

m_data : MilePostIntersectingFeatureData

At
EastOf
NorthOf
Past
Prior
SouthOf
WestOf

getLocation() : WebObjectLocation

Figure 5-294. chartlite.data_location_classes (Class Diagram)

5.28.1.3.1 WebCountyInfo (Class)

This class provides access to the CountyInfo struct which contains information about a

county.

5.28.1.3.2 WebFreeformRouteInfo (Class)

This class provides access to the FreeformRouteInfo struct which contains information

CHART R3B3 Detailed Design 5-536 12/23/2008

about a route where only the route description is known (not the formal route number).

5.28.1.3.3 WebIntersectingFeatureLocationInfo (Class)

This class provides access to the IntersectingFeatureLocationInfo struct which contains

information about a point along a roadway.

5.28.1.3.4 WebIntersectingFeatureProximity (Class)

This class provides access to the IntersectingFeatureProximity struct which contains

information about the proximity (direction and distance) of a point relative to an

intersecting feature.

5.28.1.3.5 WebIntersectingFeatureProximityType (Class)

The enumeration contains the supported proximity values to describe a point relative to an

intersecting feature.

5.28.1.3.6 WebIntersectingFeatureType (Class)

The enumeration contains the supported types of intersecting features.

5.28.1.3.7 WebMilePostIntersecting FeatureData (Class)

This class contains data describing a mile post intersecting feature, which can be a state or

county milepost.

5.28.1.3.8 WebObjectLocation (Class)

This class provides access to the ObjectLocation struct which contains information about

the location of an object in the system.

5.28.1.3.9 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.28.1.3.10 WebRegionInfo (Class)

This class provides access to the RegionInfo struct which contains information about a

region.

5.28.1.3.11 WebRoadwayLocation (Class)

This class provides access to the RoadwayLocation struct which contains information about

a location on a roadway.

5.28.1.3.12 WebRoadwayLocationAliasInfo (Class)

This class provides access to the RoadwayLocationAliasInfo struct which contains

CHART R3B3 Detailed Design 5-537 12/23/2008

information about a location alias.

5.28.1.3.13 WebRouteInfo (Class)

This class provides access to the RoutInfo struct which contains information about a formal

route specification (i.e., one where the route prefix, number, and suffix are used).

5.28.1.3.14 WebRouteNumber (Class)

This class provides access to the RouteNumber struct which contains information about a

formal route number, where the prefix, number, and suffix are known.

5.28.1.3.15 WebRouteType (Class)

This enumeration contains the allowable route types.

5.28.1.3.16 WebStateInfo (Class)

This class provides access to the StateInfo struct which contains information about a state.

CHART R3B3 Detailed Design 5-538 12/23/2008

5.29 Chartlite.data.dms-data

5.29.1 Classes

5.29.1.1 GUIDMSDataClasses (Class Diagram)

This diagram shows GUI data classes related to DMS management.

In WebChart2DMS

DMSTravInfoMsg
Editor True Display

In TempObjStore

WebObjectLocationSupporter

«interface»

New for R3B3

1

DMSTravInfoMsg
Editor True Display

In TempObjStore

1

WebExternalDMS
Configuration

DynamicImage
FileKeeper

«interface»

WebExternalDMS

ModelObserver

«interface»

DynamicImage
FileKeeper

«interface»

DMSTravInfoMsgTrueDisplayMgr

1

DMSTravInfoMsg
DataSupplier

«interface» *

1

In WebChart2DMS

11

WebDMSConfiguration

WebChart2DMS

WebHHMMRange

1

WebDMS

Searchable

«interface»

WebSharedResource

«interface»

WebHARMessageNotifier

«interface»

FolderEnabled

«interface»

ArbitratedDevice

«interface»

NameFilterable

«interface»

WebAdministered

«interface»

WebDevice

«interface»

WebDMSTravInfoMsg

WebChart2DMSConfiguration

WebDMS(dms:DMS, id:Identifier,
 config:WebDMSConfiguration, status : DMSStatus,
 dm : DataModel, cp : SystemContextProvider)
getBeaconState() : boolean
getBeaconStatusString() : String
getConfig() : WebDMSConfiguration
getDMSRef() : DMS
getDynImageFileDir() : File
getFactoryID() : Identifier
getGIFEncoder() : MultiMsgGIFEncoder
getHardwareStatusString() : String
getInterLineSpacing() : int
getLastStatusTimeString() : String
getMultiMessage() : String
getOpStatusString() : String
getStatus() : DMSStatus
getStatusString() : String
getTrueDisplayFileName() : String
getTrueDisplayImageHeight() : int
getTrueDisplayImageWidth() : int
getTrueDisplayPixelCols() : Int
getTrueDisplayPixelRows() : int
isBlank() : boolean
setFactoryID(factoryID : Identifier) : void
updateConfig(config : DMSConfiguration,
 event : DMSEvent) : void
updateStatus(status : DMSStatus) : void

getChart2DMSConfig() : WebChart2DMSConfiguration
getChart2DMSRef() : Chart2DMS
getChart2DMSStatus() : Chart2DMSStatus
getEnabledDMSTravInfoMsgID() : Identifier
getDMSTravInfoMsg(id : Identifier) : WebDMSTravInfoMsg
getDMSTravInfoMsgStateString() : String
getDMSTravInfoMsgStateReason() : String
hasActiveTrafficEvents() : boolean
hasInactiveTrafficEvents() : boolean
isHARAssociated() : boolean
-setupDMSTravInfoMsgs() : void
supportsEditingCommLossTimeoutInMaintModeOnly() : boolean
supportsExtendedStatus() : boolean
supportsNTCIPCommunityString() : String
supportsPixelTest() : boolean
supportsReset() : boolean
updateConfig(config : DMSConfiguration,
 event : DMSEvent) : void

getCharCols() : int
getCharHeightPixels() : int
getCharRows() : int
getCharWidthPixels() : int
getCommLossTimeoutMinutes() : int
getConfig() : DMSConfiguration
getDefaultLineJustification() : int
getDefaultPageOffTime() : int
getDefaultPageOnTime() : int
getGeometryString() : String
getLocation() : WebObjectLocation
getMaxPages() : int
getMaxPagesString() : String
getName() : String
getPixelCols() : int
getPixelRows() : int
getSignType() : int
getSignTypeString() : String
hasBeacons() : boolean
isCharMatrix() : boolean
isDefaultLineJustificationCenter() : boolean
isDefaultLineJustificationLeft() : boolean
isDefaultLineJustificationRight() : boolean
isFullMatrix() : boolean
isLineMatrix() : boolean
isSignTypeOther() : boolean
updateConfig(config : DMSConfiguration) : void

m_config : DMSConfiguration

WebDMSTravInfoMsg(dms:WebDMS,
 msg:DMSTravInfoMsg, dm:DataModel)
getTravInfoMsgID() : Identifier
getTravInfoMsgTemplateID() : Identifier
getTravelRouteIDs() : Identifier[]
isUsingTravelRoute(routeID : Identifier) : boolean
useAutoRowPositioning() : boolean
getTrueDisplayMgr() : DMSTravInfoMsgTrueDisplayMgr
update(msg : DMSTravInfoMsg) : void

m_msg : DMSTravInfoMsg
m_dm : DataModel

getExternalSystemID() : String
getExternalAgencyID() : String
getExternalObjectID() : String
getNetworkConnectionSite() : String
getOwningOrgID() : Identifier
getDirection() : int
getDirectionDesc() : String
updateConfig(config : DMSConfiguration) : void

getCommFailAlertOpCenter() : WebOpCenter
getCommFailNotificationGroup() : WebNotificationGroup
getCommPortConfig() : WebCommPortConfig
getChart2DMSConfig() : Chart2DMSConfiguration
getDropAddress() : int
getFormattedPhoneNumber() : String
getHWFailAlertOpCenter() : WebOpCenter
getHWFailNotificationGroup() : WebNotificationGroup
getMaxHalfSecondPageTimeValue() : int
getModelString() : String
getNetworkConnectionSite() : String
getNotifierMessage() : String
getNTCIPCommunityString() : String
getNTCIPFont(): int
getNTCIPLineSpacing(): int
getOwningOrgID() : Identifier
getOwningOrgName() : String
getPhoneNumber() : String
getPollingIntervalMInutes() : int
getPortLocationData() : WebPortLocationData
getIPPortLocationData() : WebIPPortLocationData
isADDCO() : boolean
isDeviceLoggingEnabled() : boolean
isFP2001() : boolean
isFP2001() : boolean
isFP9500() : boolean
isNotifierMessageUsingBeaconsEnabled() : boolean
isNTCIP() : boolean
isPCMS() : boolean
isPollingEnabled() : boolean
isSYLVIA() : boolean
isTS3001() : boolean
getTravelTimeMsgQueueLevel() : int
getTollRateMsgQueueLevel() : int
getAssociatedTravelRouteIDs() : Identifier[]
getDMSTravInfoMsgs() : WebTravInfoMsg[]
getDMSTravInfoMsg(id : Identifier) : WebDMSTravInfoMsg
isUsingCustomSchedule() : boolean
areSpecificTimesEnabled() : boolean
getCustomSchedule() : WebTimeOfDayRange[]
updateConfig(config : DMSConfiguration) : void

m_c2Config : Chart2DMSConfiguration

DMSTravInfoMsgTrueDisplayMgr(
 dms : WebDMS,
 msg : WebDMSTravInfoMsg,
 useDummyDataIfMissing : boolean)
getGIFFilename() : String
getImageHeightPixels() : int
getImageWidthPixels() : int
getLastErrorMsg() : String
updateGIF() : void
getDMSTravInfoMsg() : WebDMSTravInfoMsg

m_dms : WebDMS
m_msg : WebDMSTravInfoMsg
m_useDummyDataIfMissing : boolean
m_filename : String
m_imageWidth : int
m_imageHeight : int
m_lastErrorMsg : String
m_dynamicImageFilesnamesToKeep :
 ArrayList<String>

getStartTimeHours() : int
getStartTimeMins() : int
getEndTimeHours() : int
getEndTimeMins() : int

m_timeRange : HHMMRange

Figure 5-295. GUIDMSDataClasses (Class Diagram)

CHART R3B3 Detailed Design 5-539 12/23/2008

5.29.1.1.1 ArbitratedDevice (Class)

This interface allows a class to use a WebArbQueue to track the current state of a device's

arbitration queue.

5.29.1.1.2 DMSTravInfoMsg DataSupplier (Class)

This interface provides data for travel routes used in a DMSTravInfoMsg. It will be used to

substitute the template tags with route-specific data, in order to format the template and

produce MULTI. This is needed in the GUI for true display, and is needed in the server for

formatting messages to send to a DMS. The routeNum parameter corresponds to route

numbers contained in the template data tags, and it is a 1-based index. These methods will

throw an exception if the requested data is not available.

5.29.1.1.3 DMSTravInfoMsgTrueDisplayMgr (Class)

This class manages the true display image for a single DMS traveler info message.

5.29.1.1.4 DynamicImage FileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

5.29.1.1.5 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

5.29.1.1.6 ModelObserver (Class)

This interface must be implemented by any object which would like to attach to the

DataModel as an observer and get updated as system objects are added, deleted or changed.

5.29.1.1.7 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the

ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable

objects in the cache.

5.29.1.1.8 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.29.1.1.9 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

5.29.1.1.10 WebChart2DMS (Class)

This class extends WebDMS and wraps the Chart2DMS CORBA interface, providing

CHART R3B3 Detailed Design 5-540 12/23/2008

access to CHART2-specific functionality.

5.29.1.1.11 WebChart2DMSConfiguration (Class)

This class wraps the Chart2DMSConfiguration IDL valuetype and adds accessor methods.

5.29.1.1.12 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.29.1.1.13 WebDMS (Class)

This class represents a dynamic message sign.

5.29.1.1.14 WebDMSConfiguration (Class)

This class wraps the DMSConfiguration IDL structure and adds accessor methods.

5.29.1.1.15 WebDMSTravInfoMsg (Class)

This class wraps the DMSTravInfoMsg IDL structure that represents a traveler info

message used by a DMS, and provides accessor methods.

5.29.1.1.16 WebExternalDMS (Class)

This class wraps the ExternalDMS CORBA interface and provides access to cached data

specific to external DMSs.

5.29.1.1.17 WebExternalDMS Configuration (Class)

This class wraps the ExternalDMSConfiguration IDL structure and provides accessor

methods to access the data.

5.29.1.1.18 WebHARMessageNotifier (Class)

This interface provides access to HAR notification capabilities for a device (DMS or

SHAZAM) that is used to notify the public of a HAR message being broadcast.

5.29.1.1.19 WebHHMMRange (Class)

This class contains information about a time-of-day range that contains hours and minutes.

5.29.1.1.20 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.29.1.1.21 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART

shared resources in the system, corresponding to the SharedResource IDL interface.

CHART R3B3 Detailed Design 5-541 12/23/2008

5.29.1.2 GUIDMSDataClasses2 (Class Diagram)

This diagram shows additional GUI data classes related to DMS management.

WebDMSFactory

WebUniquelyIdentifiable

«interface»

WebAdministered

«interface»

WebDMSFactory(dmsFactory:DMSFactory, factoryID:Identifier, factoryName:String)
createDMS(dmsInfo:DMSInfo, dm:DataModel, scp:SystemContextProvider) : WebDMS
getFactoryRef() : DMSFactory

Figure 5-296. GUIDMSDataClasses2 (Class Diagram)

5.29.1.2.1 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

5.29.1.2.2 WebDMSFactory (Class)

This class wraps the DMSFactory CORBA interface and provides additional GUI

funcitonality including caching the factory name and ID.

5.29.1.2.3 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

CHART R3B3 Detailed Design 5-542 12/23/2008

5.29.2 Sequence Diagrams

5.29.2.1 DiscoverDMSClassesCommand:discoverDMSClasses (Sequence Diagram)

This diagram shows the processing to find (discover) DMS-related objects, which happens

periodically or as requested. The DMS factories are queried from the trader group, and if

the WebDMSFactory objects are not already found in the DataModel cache, the wrapper

objects are created and added to the cache. Each factory is then called to obtain the list of

DMSs it owns. If the corresponding WebDMS is already in the DataModel cache, it is

retrieved from the cache and is called to update its cached configuration and status data. If

not already in the cache, the WebDMSFactory class is called to create the new WebDMS

wrapper object, as shown in the WebDMSFactory:createDMS sequence diagram.

See the createDMS
sequence diagram for
details .

dmsID:Identifier

[*for
each

DMSInfo]

DMS WebDMS

getDMSInfoList()
DMSInfo[]

getObject(dmsID)
WebDMS or null

updateConfig(dmsInfo.config)
updateStatus(dmsInfo.status)

objectUpdated(dmsID)

[WebDMS
not found]

createDMS(dmsInfo, m_dataModel, m_sysContextProvider)
WebDMS

DiscoverDMS
ClassesCommand

DiscoverDMS
ClassesCommand TraderGroup

DMSFactory
Helper DMSFactory DataModel WebDMSFactory

discoverDMSClasses()
findAllObjectsOfType(

SERVICE_TYPE_DMS_FACTORY.value)

org.omg.CORBA.Object[]

narrow(obj)
DMSFactory

getID()

create(factory, factoryID, factory.getName())

getObject(factoryID)
WebDMSFactory or null

[* for
each

factory]

create(dmsInfo.dmsID)

objectAdded(dmsID, webDMS)

[WebDMSFactory
found] objectAdded(factoryID, webDMSFactory)

Figure 5-297. DiscoverDMSClassesCommand:discoverDMSClasses (Sequence Diagram)

CHART R3B3 Detailed Design 5-543 12/23/2008

5.29.2.2 DMSTravInfoMsgTrueDisplayMgr:updateGIF (Sequence Diagram)

This diagram shows how the graphical representation of a DMS traveler info message is

updated. The DMSTravInfoMsgTrueDisplayMgr is called to update the image. It gets the

MultiMsgGIFEncoder from the WebDMS, which can be null if the sign is of the wrong

type or the font is not available. The template ID is used to retrieve the cached

WebDMSTravInfoMsgTemplate, to get the template configuration. Next a

DMSTravInfoMsgTemplateFormatter is created and called to format the template,

replacing the template's tags to obtain a MULTI representation of the message using the

current travel route data. After getting the MULTI, the MultiMsgGIFEncoder is called to

encode the message as a GIF image. The GIF filename and pixel dimensions are stored for

later use.

MultiMsgGIFEncoder or null

WebDMSTravInfoMsgTemplate or null

String (filename)

Save Filename And
Image Dimensions Or Error Msg

For Later Use

[encoder is
null]

[template
not found]

[formatting
error]

[encoding
error]

WebDMSTravInfoMsg
WebMessageTemplate

FactoryWrapper
WebDMSTravInfo

MsgTemplate

getTravInfoMsgTemplateID()

get()
getCachedDMSTravInfoMsgTemplate(templateID)

getConfig().getRawConfig()
useAutoRowPositioning()

MULTI

encodeImage(multi, false, 0, "DMSTravInfoMsg_" + msgID, dynImageDir)

create() MultiMsgGIFEncoder

DMSTravInfoMsg
TemplateFormatter

System

WebDMS

updateGIF()

formatMulti(templateConfig, m_msg, m_useDummyDataIfMissing,
useAutoRowPositioning)

getDynImageFileDir()

DMSTravInfoMsg
TrueDisplayMgr

getGIFEncoder()

Figure 5-298. DMSTravInfoMsgTrueDisplayMgr:updateGIF (Sequence Diagram)

CHART R3B3 Detailed Design 5-544 12/23/2008

5.29.2.3 WebChart2DMS:create (Sequence Diagram)

This diagram shows the processing when a new WebChart2DMS wrapper is created. First

it calls the WebDMS base class to initialize, which sets up the GIF encoder. The

WebChart2DMS then constructs a WebArbQueue object, and sets up the

WebDMSTravInfoMsg objects and initializes the corresponding GIF files as described in

the sequence diagram: setupDMSTravInfoMsgs.

narrow(chart2DMS)

create(dmsID, arbQueue, ...)

return from WebDMS
constructor

See the setupDMSTravInfoMsgs
sequence diagram for details.setupDMSTravInfoMsgs()

DataModel

NOTE - also call detachObserver() when
removing from the DataModel (i.e., when a DMSDeleted
event is handled and in DMSReqHdlr.deleteDMS())

attachObserver(this, DataModel.NORMAL)

WebDMSFactory
or

model-specific
subclass constructor

WebArbQueue

create(chart2DMS, id, status, webDMSConfig,
dataModel, sysContextProvider)

setupGIFEncoder()

WebChart2DMS ArbitrationQueueHelper

super(chart2DMS, id, status,
webDMSConfig,

dataModel, sysContext)

ArbitrationQueue

Figure 5-299. WebChart2DMS:create (Sequence Diagram)

CHART R3B3 Detailed Design 5-545 12/23/2008

5.29.2.4 WebChart2DMS:setupDMSTravInfoMsgs (Sequence Diagram)

This diagram shows how the DMS traveler info messages are set up within the

WebChart2DMS wrapper object. For each DMSTravInfoMsg within the configuration, it

creates a new WebDMSTravInfoMsg wrapper and associated

DMSTravInfoMsgTrueDisplayMgr for managing the image files. The GIF image for each

message is created, as described in the updateGIF sequence diagram.

setupDMSTravInfoMsgs()

Add WebDMSTravInfoMsg
To Cache

Clear Cache
Of WebDMSTravInfoMsg

Objects

WebChart2DMS

WebChart2DMS
WebChart2DMS

Configuration

WebDMSTravInfoMsg

See the updateGIF()
sequence diagram for
details.

DMSTravInfoMsg
TrueDisplayMgr

Save Parameters

[* for each
DMSTravInfoMsg

in
Chart2DMSConfig]

updateGIF()

create(webDMS, dmsTravInfoMsg, dataModel)

create(webDMS, this, true)

getChart2DMSConfig()

Figure 5-300. WebChart2DMS:setupDMSTravInfoMsgs (Sequence Diagram)

CHART R3B3 Detailed Design 5-546 12/23/2008

5.29.2.5 WebChart2DMS:updateConfig (Sequence Diagram)

This diagram shows the processing when the CHART2DMSConfiguration is updated,

which can happen during discovery or as a result of CORBA events being pushed. If the

CORBA event param is null or the event type indicates a config change, the WebArbQueue

is updated, the entire Chart2DMSConfiguration is replaced within the

WebChart2DMSConfiguration wrapper object, and the GIF encoder is set up again. If the

event is null, all of the WebDMSTravInfoMsg objects are replaced and their GIF files are

regenerated. If these objects are not replaced but the GIF encoder was updated, the GIFs

managed by all of the WebDMSTravInfoMsg objects are updated. If the event type

indicates a DMSTravInfoMsg was added, a new WebDMSTravInfoMsg is created and

added to the cache. If a message was updated, the WebDMSTravInfoMsg is called to

update itself and update the GIF file it manages. If a message was removed, the

corresponding WebDMSTravInfoMsg is removed from the cache. Finally if a message was

added, changed, or removed, the array of DMSTravInfoMsg within the

Chart2DMSConfiguration is replaced with the array from the new configuration.

[dmsEvent == null or dms event type == DMSConfigChanged]
setupGIFEncoder()

System

WebChart2DMS

updateConfig(
newConfig,
dmsEvent)

Replaces all WebDMSTravInfoMsg objects
and rebuilds associated GIF images. See
setupDMSTravInfoMsgs sequence diagram

[new WebDMSTravInfoMsg created]
Add To Cache

[dmsEvent != null and event type == msg removed]
Remove WebDMSTravInfoMsg From Cache

[dmsEvent != null and GIF encoder setup]
[* for each msg]

getTrueDisplayMgr().updateGIF()

[dmsEvent == null]
setupDMSTravInfoMsgs()

WebArbQueue
WebChart2DMS

Configuration

Set up the GIF encoder
conditionally for efficiency, since
not all changes will require a new
GIF encoder (only font metrics or
sign metrics or multi defaults) but
if a new GIFEncoder is created, the
WebDMSTravInfoMsg images need
to be updated.

[dmsEvent == null or
dms event type ==
DMSConfigChanged]

update()

[dmsEvent == null or dms event type == DMSConfigChanged]
updateConfig(config)

updateGIF()

DMSTravInfoMsg
TrueDisplayMgr

Replace cached msg

The dmsEvent parameter
will be null if the method
is not called from event
processing code (e.g., from
discovery code). If null,
it signifies to replace the
whole configuration.

Replace m_travInfoMsgList
array in cached Chart2DMSConfiguration
with array from new configuration.

[dmsEvent != null and event type == msg added]
create(dms, msg, dataModel)

Updates the GIF file for all cached
WebDMSTravInfoMsg objects, but does not
replace the WebDMSTravInfoMsg objects themselves.
See the updateGIF sequence diagram.

[dmsEvent != null and event type == msg changed]
update(msg)

[dmsEvent != null and event type ==
msg added or changed or removed]

See Note

WebDMSTravInfoMsg

Figure 5-301. WebChart2DMS:updateConfig (Sequence Diagram)

CHART R3B3 Detailed Design 5-547 12/23/2008

5.29.2.6 WebChart2DMS:update_ModelChange (Sequence Diagram)

This diagram shows the processing when the WebChart2DMS is called by the DataModel

when object changes have occurred. Only changes related to the WebTravelRoute class are

considered, and the ID of a changed WebTravelRoute is found and all of the cached

WebDMSTravInfoMsg objects are asked whether they are using the route. If the message

is using the route, its ID is put into a HashSet to mark those messages needing image

updates. After all changed routes have been processed, the message IDs stored in the

HashSet are used to get the WebDMSTravInfoMsg objects and update their images. (The

use of the DataModel observer mechanism and the HashSet prevents an image from being

generated if it contains multiple routes with changed data, as multiple route changes are

accumulated and processed at one time.)

WebTravelRoute WebDMSTravInfoMsg
DMSTravInfoMsg
TrueDisplayMgr

getID()

isUsingTravelRoute(routeID)

[using route]
Add Msg ID To Hash Set

Needing GIF Update

[* for each
WebDMSTravInfoMsg]

[* for each
ObjectChange]

getTrueDispayMgr()

getDMSTravInfoMsg(msgID)
[* for each

msgID in HashSet]

ObjectChange

getObject()
WebTravelRoute

DataModel
WebChart2DMS ModelChange

This update mechanism
assumes that when
WebTravelRoute data is
updated, the DataModel's
objectUpdated() method is
called.

It would be more effic ient if
objectUpdated() is called
only if the data values
within the WebTravelRoute
actually change.

update(modelChange)
getChanges(WebTravelRoute.c lass)

ObjectChange[]

updateGIF()

Figure 5-302. WebChart2DMS:update_ModelChange (Sequence Diagram)

CHART R3B3 Detailed Design 5-548 12/23/2008

5.29.2.7 WebDMSFactory:createDMS (Sequence Diagram)

This diagram shows how a WebDMS object is created, or one of its subclasses. The

dmsType is used to determine whether the DMS is an external DMS or a CHART DMS. If

it is a CHART DMS, the model ID from the Chart2DMSConfiguration is used to determine

what model of DMS is used. Depending on these values the CORBA "helper" classes are

called to get the type-specific CORBA interface references: ExternalDMS, FP9500DMS,

TS3001DMS, SylviaDMS, or PCMSDMS. Then these references are used to create the

appropriate type-specific wrapper object, after creating a WebChart2DMSCOnfiguration to

wrap the configuration. If it is a CHART DMS but not one the above types, a

WebChart2DMS is created. If it is not a CHART or external DMS, a WebDMS is created.

WebDMSFactory

createDMS(dmsInfo,
dataModel,

contextProvider)

WebDMS

DMSReqHdlr
or

DiscoverDMS
ClassesCommand

FP9500DMS

[is FP9500DMS]
create(fp9500DMS, id, config, status, dataModel, contextProvider)

[dmsInfo.dmsType == CHART_DMS and model is TS3001]
narrow()

TS3001DMS

[is TS3001DMS]
create(ts3001DMS, id, config, status, dataModel, contextProvider)

[dmsInfo.dmsType == CHART_DMS and model is Sylvia]
narrow()

[is SylviaDMS]
create(sylviaDMS, id, config, status, dataModel, contextProvider)

[dmsInfo.dmsType == CHART_DMS and model is PCMS]
narrow()

[is PCMSDMS]
create(pcmsDMS, id, config, status, dataModel, contextProvider)

[WebDMS not created]
create(dms, id, config, status, dataModel, contextProvider)

setFactoryID(dmsInfo.factoryID)

[dmsInfo.dmsType == CHART_DMS and WebDMS not created]
narrow()

Chart2DMS

[is Chart2DMS and WebDMS not created]
create(chart2DMS, id, config, status, dataModel, contextProvider)

PCMSDMS

SylviaDMS

WebExternalDMS

ExternalDMSHelper

[is ExternalDMS]
create(externalDMS, id, config, status, dataModel, contextProvider)

[dmsInfo.dmsType == EXTERNAL_DMS]
narrow()

Identifier

FP9500DMSHelper

WebFP9500DMS

TS3001DMSHelper

WebTS3001DMS

WebSylviaDMS

WebPCMSDMS

WebChart2DMS

WebSylviaDMS
Helper

WebPCMSDMS
Helper

WebChart2DMS
Helper

ExternalDMS

create(dmsInfo.dmsID)

[dmsInfo.dmsType == CHART_DMS and model is FP9500]
narrow()

Not shown due to space:
a WebDMSConfiguration or
type-specific subclass is created
and passed as a parameter when
creating these objects.

Figure 5-303. WebDMSFactory:createDMS (Sequence Diagram)

CHART R3B3 Detailed Design 5-549 12/23/2008

5.30 Chartlite.data.video-data

5.30.1 Classes

5.30.1.1 GUIVideoDataClasses (Class Diagram)

This diagram shows GUI data classes related to video management.

DynListSubject
«interface»

WebVideoSink

WebObjectLocationSupporter
«interface»

WebVideoSource

WebVideoProvider

WebVideoSourceConfig

WebVideoProviderConfig

WebDevice
«interface»

WebUniquelyIdentifiable
«interface»

11

WebCameraConfig

WebCamera

NOTE: only the portions of the video classes
relevant to the location R3B3 changes are shown here,
as all existing GUI video data classes would
fill more than one class diagram.

getID() : Identifier
getName() : String

isOffline() : boolean
isOnline() : boolean
isInMaintMode() : boolean
isHardwareFailed() : boolean
isCommFailed() : boolean
isCommMarginal() : boolean

PROPERTY_NAME
PROPERTY_DESCRIPTION
PROPERTY_REGION
PROPERTY_LOCATION
PROPERTY_LOCAL_DISPLAYS
PROPERTY_STATUS
PROPERTY_OWNER
PROPERTY_CONTROLLED_BY
PROPERTY_ROUTE
PROPERTY_DIRECTION
PROPERTY_COUNTY
PROPERTY_MILE_POST
PROPERTY_CONN_SITE

PROP_NAME
PROP_OWNER
PROP_GROUPS
PROP_STATUS
PROP_CURRENT_DISPLAY
PROP_CONN_SITE

getVideoCameraRef() : VideoCamera
getCameraConfig() : WebCameraConfig
updateConfig(config : VideoCameraConfig) : void

m_camera : VideoCamera

getLocation() : WebObjectLocation
setConfig(config : VideoCameraConfig) : void

m_config : VideoCameraConfig

Figure 5-304. GUIVideoDataClasses (Class Diagram)

CHART R3B3 Detailed Design 5-550 12/23/2008

5.30.1.1.1 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.30.1.1.2 WebCamera (Class)

This class wraps the VideoCamera CORBA reference and stores cached configuration and

status for fast local access.

5.30.1.1.3 WebCameraConfig (Class)

This class wraps the VideoCameraConfig structure defined in the IDL and provides

accessor methods.

5.30.1.1.4 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.30.1.1.5 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.30.1.1.6 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

5.30.1.1.7 WebVideoProvider (Class)

This class wraps the VideoProvider CORBA reference and stores cached configuration and

status for fast local access.

5.30.1.1.8 WebVideoProviderConfig (Class)

This class wraps the VideoProviderConfig structure defined in the IDL and provides

accessor methods.

5.30.1.1.9 WebVideoSink (Class)

This class wraps the VideoSink CORBA reference and stores cached configuration and

status for fast local access.

5.30.1.1.10 WebVideoSource (Class)

This class wraps the VideoSource CORBA reference and stores cached configuration and

status for fast local access.

CHART R3B3 Detailed Design 5-551 12/23/2008

5.30.1.1.11 WebVideoSourceConfig (Class)

This class wraps the VideoSourceConfig structure defined in the IDL and provides accessor

methods.

CHART R3B3 Detailed Design 5-552 12/23/2008

5.31 Chartlite.data.location-data

5.31.1 Classes

5.31.1.1 GUILocationDataClasses (Class Diagram)

This diagram shows data classes related to location data. Most location classes can be

found in the parent data package.

WebRoadwayLocationLookup

get() : WebRoadwayLocationLookup
getCountyRegionStateDesc(countyInfo : WebCountyInfo,
 regionInfo WebRegionInfo, stateInfo : WebStateInfo) : String
getAliases() : WebRoadwayLocationAliasInfo[]
getCounties(stateCode : String) : WebCountyInfo[]
getCountyRegionStateDescs() : String[]
getDefaultStateCode() : String
getInternalAliasNames() : String[]
getIntersectingRoutes(stateCode : String, countyCode : String,
 routeNumber : RouteNumber) : WebRouteInfo[]
getRegions(stateCode : String) : WebRegionInfo[]
getRoutesByRouteType(stateCode : String, countyCode : String,
 routeType : RouteType) : WebRouteInfo[]
getStates() : WebStateInfo[]

m_lookupWrapper : FirstAvailableOfferWrapper
m_cachedStates : WebStateInfo[]
m_cachedCounties : HashMap<String; WebCountyInfo[]>
m_cachedRegions : HashMap<String; WebRegionInfo[]>
m_cachedAliases : WebRoadwayLocationAliasInfo[]
m_cachedRoutes : HashMap<MainRouteHashKey; WebRouteInfo[]>
m_defaultStates : WebStateInfo[]
m_defaultStateCode : String
m_defaultCounties : HashMap<String; WebCountyInfo[]>
m_defaultRegions : HashMap<String; WebRegionInfo[]>
m_timeAfterFailureToAllowCallsSec : int
m_lastCallFailureTime : long

Figure 5-305. GUILocationDataClasses (Class Diagram)

5.31.1.1.1 WebRoadwayLocationLookup (Class)

This class wraps the RoadwayLocationLookup interface and provides default values, data

caching, and other auxiliary functionality.

CHART R3B3 Detailed Design 5-553 12/23/2008

5.32 Chartlite.data.shazam-data

5.32.1 Classes

5.32.1.1 GUIShazamClasses (Class Diagram)

This diagram shows classes related to SHAZAMs that are used to store data pertaining to

SHAZAMs in the GUI object cache.

11

1

1

SHAZAM
«interface»1

1

WebSHAZAM

SHAZAMConfiguration

«typedef»

SHAZAMStatus

«typedef»

WebObjectLocation

New for R3B3

11

WebObjectLocationSupporter

«interface»

updateLocation(loc:ObjectLocation):void
getLocation():WebObjectLocation

Figure 5-306. GUIShazamClasses (Class Diagram)

5.32.1.1.1 SHAZAM (Class)

This interface class is used to identify the SHAZAM-specific methods which can be used to

interface with a SHAZAM field device. It specifies methods for activating and deactivating

the SHAZAM in maintenance mode, refreshing the SHAZAM (commanding the device to

its last known status), changing the configuration of the SHAZAM, and removing the

SHAZAM. This interface is implemented by a SHAZAMImpl class, which uses a helper

ProtocolHdlr class to perform the model specific protocol for device command and control.

5.32.1.1.2 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to

CHART R3B3 Detailed Design 5-554 12/23/2008

communicate configuration information to/from the database, and to/from the GUI clients.

The GUI sends a SHAZAMConfiguration when creating a SHAZAM or modifying the

configuration of an existing SHAZAM.Device Location member has been modified for

R3B3. Now it contains a detailed location information.

5.32.1.1.3 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store

status within the SHAZAM object, and is also used to communicate configuration

information to/from the database, and to the GUI clients (one-way).

5.32.1.1.4 WebObjectLocation (Class)

This class provides access to the ObjectLocation struct which contains information about

the location of an object in the system.

5.32.1.1.5 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.32.1.1.6 WebSHAZAM (Class)

This class is a wrapper for a SHAZAM CORBA object, used to cache data related to the

SHAZM in the GUI object cache and to provide access to the SHAZAM configuration and

status data on web pages.

CHART R3B3 Detailed Design 5-555 12/23/2008

5.33 Chartlite.data.har-data

5.33.1 Classes

5.33.1.1 GUIHARDataClasses (Class Diagram)

This diagram shows classes used to store HAR related data in the GUI cache. New for

R3B3 is the WebObjectLocation which is available in a WebHARConfig.

WebObjectLocation

New for R3B3

1

1

WebHISDR1500HAR WebHISDR1500HARConfig

SyncHAR

«interface»

ISSAP55HAR

«interface»

SynchronizableHAR

«interface»

HISDR1500HAR

«interface»

ISSAP55HARConfig

«typedef»

SyncHARConfig

«typedef»

SynchronizableHARConfig

«typedef»

HISDR1500HARConfig

«typedef»
11

1

1

*

1

1 1

1

1

1

1

1

1

1

1 1

1

1

1

WebISSAP55HARConfig

11
11

1

1

1 1

1

1

1

1

11

11

11

WebHAR WebHARConfig

HARConfig
«typedef»

HARStatus
«typedef»

HAR

«interface»

WebArbQueue

WebHARFactory

HARFactory

«interface»

WebSynchronizableHAR WebSynchronizableHARConfig

WebSyncHAR WebSyncHARConfig

WebISSAP55HAR

WebObjectLocationSupporter
«interface»

getWebConfig():WebHARConfig
updateLocation(loc:ObjectLocation):void

getObjectLocation():WebObjectLocation

Figure 5-307. GUIHARDataClasses (Class Diagram)

5.33.1.1.1 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to

broadcast traffic related information over a localized radio transmitter, making the

CHART R3B3 Detailed Design 5-556 12/23/2008

information available to the traveler. This interface contains methods for getting and

setting configuration, getting status, changing communications modes of a HAR, and

manipulating and monitoring the HAR in maintenance and online modes.

5.33.1.1.2 HARConfig (Class)

This class holds data pertaining to a HAR device's configuration.

5.33.1.1.3 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a

requester to acquire a list of HAR objects under the domain of the specific HARFactory

object.

5.33.1.1.4 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data

contained in this class is that status information which can be transmitted from the HAR to

the client as necessary. This struct is also used to within the HAR Service to transmit data

to/from the HARControlDB database interface class. (The HAR implementation also

contains other private status data elements which are not elements of this class.)

5.33.1.1.5 HISDR1500HAR (Class)

This interface is implemented by objects that provide for the control of an HIS model

DR1500 HAR.

5.33.1.1.6 HISDR1500HARConfig (Class)

This class holds configuration data for an HIS model DR1500 HAR.

5.33.1.1.7 ISSAP55HAR (Class)

5.33.1.1.8 ISSAP55HARConfig (Class)

This class holds configuration data for an ISS model AP55 HAR

5.33.1.1.9 SyncHAR (Class)

This class is used to represent a synchronized Highway Advisory Radio (HAR) device. A

synchronized HAR can have constituent HARs that it operates in a synchronized mode,

allowing a continuous message to be delivered to the motorist as they travel out of range of

one HAR and into the range of another.

5.33.1.1.10 SyncHARConfig (Class)

This class holds configuration data for a synchronized HAR.

CHART R3B3 Detailed Design 5-557 12/23/2008

5.33.1.1.11 SynchronizableHAR (Class)

This CORBA interface is implemented by objects that allow for control of HAR devices

which can become constituents of a SyncHAR.

5.33.1.1.12 SynchronizableHARConfig (Class)

This class holds configuration for a HAR that can operate in a synchronized mode.

5.33.1.1.13 WebArbQueue (Class)

This class is a GUI wrapper for a CORBA ArbitrationQueue object.

5.33.1.1.14 WebHAR (Class)

This class is a GUI wrapper for a CORBA HAR object.

5.33.1.1.15 WebHARConfig (Class)

This class is a wrapper for a HARConfig object.

5.33.1.1.16 WebHARFactory (Class)

This class is a wrapper for a HARFactory used to store data pertaining to the HAR factory

in the GUI cache.

5.33.1.1.17 WebHISDR1500HAR (Class)

This class is a GUI wrapper for a HISDR1500HAR CORBA object.

5.33.1.1.18 WebHISDR1500HARConfig (Class)

This class is a wrapper for a HISDR1500HARConfig object.

5.33.1.1.19 WebISSAP55HAR (Class)

This class is a GUI wrapper for a ISSAP55HAR CORBA object.

5.33.1.1.20 WebISSAP55HARConfig (Class)

This class is a wrapper for an ISSAP55HARConfig object.

5.33.1.1.21 WebObjectLocation (Class)

This class provides access to the ObjectLocation struct which contains information about

the location of an object in the system.

5.33.1.1.22 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

CHART R3B3 Detailed Design 5-558 12/23/2008

5.33.1.1.23 WebSyncHAR (Class)

This class is a GUI wrapper for a SyncHAR CORBA object.

5.33.1.1.24 WebSyncHARConfig (Class)

This class is a wrapper for a SyncHARConfig object.

5.33.1.1.25 WebSynchronizableHAR (Class)

This class is a GUI wrapper for a SynchronizableHAR CORBA object.

5.33.1.1.26 WebSynchronizableHARConfig (Class)

This class is a wrapper for a SynchronizableHARConfig object.

CHART R3B3 Detailed Design 5-559 12/23/2008

5.34 Chartlite.data.arbqueue-data

5.34.1 Classes

5.34.1.1 chartlite.data.arbqueue_classes (Class Diagram)

This diagram shows classes related to the arbitration queue.

ArbitratedDevice

«interface»

WebArbQueueEntryOwner

«interface»

getID() : Identif ier
getName() : String
getDeviceTypeTagStr() : String
getArbitrationQueue() : ArbitrationQueue
getWebArbQueue() : WebArbQueue
getActiveTraff icEvents() : WebTraff icEvent[]
getInactiveTraff icEvents() : WebTraff icEvent[]
getActiveEntryOw ners() : WebArbQueueEntryOw ner[]

getID() : Identif ier
getName() : String
getControllingOpCenterID() : Identif ier
getControllingOpCenterName() : String

Figure 5-308. chartlite.data.arbqueue_classes (Class Diagram)

5.34.1.1.1 ArbitratedDevice (Class)

This interface allows a class to use a WebArbQueue to track the current state of a device's

arbitration queue.

5.34.1.1.2 WebArbQueueEntryOwner (Class)

This interface specifies methods to be implemented by all objects that may place entries on

an arbitration queue.

CHART R3B3 Detailed Design 5-560 12/23/2008

5.35 Chartlite.data.travelroutes-data

5.35.1 Classes

5.35.1.1 GUITravelRouteClasses (Class Diagram)

This diagram shows the classes used by the GUI that are related to travel route

management.

CHART R3B3 Detailed Design 5-561 12/23/2008

E is toll rate stats E is tvl time stats

TravelTimeRangeDef

SystemPr ofileTravelTimeProperties

*

*
uses

1

1

retrieves
from
cache

WebTravelRouteUser

«interface»

TollRateRouteManager

1

1

uses

*1
WebTollRateRoute

ExtTollSpec

«struct»

1 1

RoadwayLinkManager

com.vividsolutions.jts.index.quadtree.Quadtree

RoadwayLinkQuery

quad tree for link start points

*

1

1

1

1

1

uses

1
1

WebRoadwayLinkListItemlinks hashed by Identifier

1

TimeStampedObject

«interface»

1

*

WebTr avelRouteFactor y

1

1

*

1

*

1

creates

*

1

DataModel

1

1

*

1

HistoryList<E extends TimeStampedObject>

*

WebTollRateStats

RouteTollRateStats

«struct»

RouteTollRateHistRecord

«struct»

current

tvl time hist

tvl time hist

current

11
constructed

from

11
constructed

from

0..1

1

current

*

1

toll rate hist

1

1

1

0..1

1

1
1

WebTravelRouteStatus

WebRoadwayLocation

WebStateInfo

WebCountyInfo

*

1

*1

TravelRouteFactory

«interface»

TravelRoute

«interface»

WebTravelRoute

DiscoverTravelRouteClassesCmd

QueableCommand

«interface»

Discover yDr iver

ObjectCache

CommandQueue

Tr avelRoutePushConsumer

BasePushConsumer

WebTravelRouteConfig

TravelRouteConfig

«struct»

1

1

1

1

1

1

11

11

WebRoadwayLinkConfig

RoadwayLinkConfig

«struct»WebRoadwayLink

WebTravelRouteLink

RouteLink

«struct»

11

E is toll rate stats

1
constructed

from

LinkTravTimeStats

«struct»

1

0..1

E is tvl time stats

1

RouteTr avTimeStats

«struct»

RouteTravTimeHistRecord

«struct»

1

1

constructed
from

1

constructed
from

11

WebTravelTimeStats

LinkTravTimeHistRecord

«struct»

1

1

1

1 constructed
from

1

11
11

1

1

1

1

*1
creates

1

1

creates

WebTravelRouteConsumer

«interface»

*
1

WebDMS

*

1

java.util.Hashtable

1

handleEventData(any:Any):void
routeTravelTimeUpdated(data:RouteTravTimeUpdate):void
routeTollRateUpdated(data:RouteTollRateUpdate):void
routeAdded(data:RouteConfigEvent):void
routeConfigChanged(data:RouteConfigEvent):void
routeDeleted(id:Identifier):void

get():TollRateRouteManager
addOrUpdateTollRateRoute(info:TollRateRouteInfo):void
getTollRateRoutes():WebTollRateRoute[]

-m_list:ArrayList<WebTollRateRoute> -m_lastUpdated:Date

execute():void
-discoverClasses():void
-discoverEventChannels():void

-m_ecg:EventConsumerGroup
-m_dataModel:DataModel
-m_poa:POA
-m_traderGroup:TraderGroup

getRef():TravelRouteFactory

isDMS():boolean
getName():String
getRoutesInUse():Identifier[]

m_stateCode:String
m_countyName:String
m_routeTypeAbbv:String
m_routeNumber:String
m_directionName:String
m_extLinkID:String

-m_travelTime:int
-m_subtractAmt:int
-m_addAmt:int

getTravelTimeRangeDefs():TravelTimeRangeDef[]
setTravelTimeRangeDefs(props:Properties,defs:TravelTimeRangeDef[])
getTravelTimeSchedUseSpecificTimes():boolean
setTravelTimeSchedUseSpecificTimes(props, enable:boolean):void
getTravelTimeSchedSpecificTimes():HHMMRange[]
setTravelTimeSchedSpecificTimes(props, times:HHMMRange[]):void
getTravelTimeTrendThreshold():int
setTravelTimeTrendThreshold(props:Properties, pct:int):void
getTravelTimeTrendSampleSize():int
setTravelTimeTrendSampleSize(props:Properties,sampleSize:int):void
getTravelTimeExpirationMins():int
setTravelTimeExpirationMins(props:Properties,expirationMins:int):void

m_sysProfileProps:SystemProfileProperties

getConfig():WebTravelRouteConfig
getStatus():WebTravelRouteStatus
getLink(id:Identifier):WebTravelRouteLink
getLinks():WebTravelRouteLink[]
updateConfig(cfg:TravelRouteConfig):void
updateStatus(stat:RouteFullStats):void
updateTrvlTimeStats(routeStats, linkStats)
updateTollRateStats(tollStats)
getUsedBy():WebTravelRouteUser[]
getRef():TravelRoute

getLink(id:Identifier):WebRoadwayLink
getLinks():WebRoadwayLink[]
suggestLinks(refLink:WebRoadwayLink, num:int):WebRoadwayLinkListItem[]
findLinks(refLink:WebRoadwayLink,query:RoadwayLinkQuery):
 WebRoadwayLinkListItem[]
addOrUpdateLink(RoadwayLinkConfigInfo):void
getStatesInUse():WebStateInfo[]
getCountiesInUse():WebCountyInfo[]
getRouteTypesInUse():WebRouteType[]
getRouteNumbersInUse():WebRouteNumber[]

isDMS():boolean
getName():boolean

getEffectiveTimeSecs():int

updateTrvlTimeStats(stats:RouteTravTimeStats)
updateTollRateStats(stats:RouteTollRateStats)

supportsTollRates() : boolean
supportsTravelTimes() : boolean

updateConfig(routeLink:RouteLink):void
setStatus(stats:WebTravelTimeStats):void
setHistory(hist:HistoryList<WebTravelTimeStats>):void
updateStatus(stats:LinkTravTimeStats):void
getStatus():WebTravelTimeStats
getHistory():HistoryList<WebTravelTimeStats>
setSettings(RouteLink):void

addEntry(entry:E):void
size():int
toArray():E[]
toBucketArray(bucketTimes:long[]):E[]
trimList():void

-m_maxEntries:int
-m_list:java.lang.LinkedList
-m_maxAge:int

hasExpireTime():boolean

hasQuality():boolean
hasTrend():boolean

m_distanceFromPrior:double

linkId: Identifier
percentToInclude: short
minAllowedQual: TravTimeQuality

Figure 5-309. GUITravelRouteClasses (Class Diagram)

5.35.1.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

handleEventData().

CHART R3B3 Detailed Design 5-562 12/23/2008

5.35.1.1.2 com.vividsolutions.jts.index.quadtree.Quadtree (Class)

This class is a structure that allows data to be indexed geographically.

5.35.1.1.3 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The

CommandQueue has a thread that it uses to process each QueueableCommand in a first in

first out order. As each command object is pulled off the queue by the CommandQueue's

thread, the command object's execute method is called, at which time the command

performs its intended task.

5.35.1.1.4 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup

mechanism for locating any object, and methods which allow for the retrieval of all objects

of a particular type. Additionally, this class provides the ability to attach observer objects

which are notified when objects are added to or removed from the model. Objects may also

notify the DataModel that they have been modified. The model will periodically notify all

attached observers of the changes to objects in the model.

5.35.1.1.5 DiscoverTravelRouteClassesCmd (Class)

This class is a queueable command that when executed finds travel route related objects in

the CORBA trading service and maintains cached data by either adding new objects to the

GUI's data model or by updating the existing cached data.

5.35.1.1.6 DiscoveryDriver (Class)

This class drives the periodic discovery of objects from other services within the CHART

system. Other objects in the system that need access to other service's objects add their

own QueuableCommand to the DiscoveryDriver. Each time discovery is performed, the

discovery driver uses a command queue to execute all queueable commands that have been

added in a separate thread of execution. The commands are added to the command queue

immediately upon execution, and then executed in serial fashion via the command queue

until all commands have executed. The frequency of discovery is controlled by a property.

Discovery occurs more frequently immediately after service startup, to more quickly

discover objects from other services which may also be starting up at more or less the same

time. The DiscoveryDriver can be configured to have multiple threads to allow concurrent

discovery of different objects.

5.35.1.1.7 ExtTollSpec (Class)

This structure is used to identify a toll rate route. It contains the supplying external system,

the start ID and end ID of the toll rate route (which is the "key" used to identify the toll rate

route, and the name by which the external system refers to the route.

CHART R3B3 Detailed Design 5-563 12/23/2008

5.35.1.1.8 HistoryList<E extends TimeStampedObject> (Class)

This class is used to maintain historical data. It contains limits on the number of entries as

well as the maximum entry age. It provides methods to "bucketize" the data to allow data

from two or more HistoryLists to be shown using consistent time intervals for the data.

5.35.1.1.9 java.util.Hashtable (Class)

This class implements a hashtable, which is a data structure that maps keys to values. Any

non-null object can be used as a key or as a value. Objects used as keys implement the

hashCode method which is inherited by all objects from the java.lang.Object class.

5.35.1.1.10 LinkTravTimeHistRecord (Class)

This structure is used to store the most recent X historical link travel time data points

acquired by the system. This is a circular array, with the head (oldest record) referenced in

the LinkTravelTimeHistStats. The tail (newest record) is head-1 (mod X), and is always

the same data point as is contained in the LinkTravelTimeStats structure.

5.35.1.1.11 LinkTravTimeStats (Class)

This structure contains the most recent travel time data point acquired for a roadway link.

It matches the most recent record in the LinkTravelTimeHistStats.

5.35.1.1.12 ObjectCache (Class)

The ObjectCache is a wrapper for the DataModel. It provides access to DataModel

methods to find objects in the data model, delegating those methods to the DataModel

itself. It also provides additional methods of finding name filtered objects and discovering

"duplicate" objects (as defined by an isDuplicateOf() method of the Duplicatable interface).

5.35.1.1.13 QueableCommand (Class)

This interface is implemented by objects that can be placed on a command queue.

5.35.1.1.14 RoadwayLinkConfig (Class)

This structure contains the configuration data for a roadway link. It includes the external

system name (e.g., "INRIX"), the ID by which the external system identifies the link, and

location data.

5.35.1.1.15 RoadwayLinkManager (Class)

This class is used to cache and provide access to roadway link data. This manager class is

used instead of just storing roadway link data in the data model because the roadway link

data needs to be indexed geographically (not just by ID as supported by the data model).

This class is a singleton class and is accessible via the get() method in any code that runs in

the same java virtual machine.

CHART R3B3 Detailed Design 5-564 12/23/2008

5.35.1.1.16 RoadwayLinkQuery (Class)

This class holds data that is used to search for links to a travel route. All of the fields are

optional, a null value is used to indicate the field is not to be used in the search.

5.35.1.1.17 RouteLink (Class)

This structure makes the association between a travel route and one roadway link which

helps comprise the route, together with parameters associated with the use of the link within

that particular route: the percent of the link to include in the route, and the minimum

acceptable quality for link travel time data as used in that particular route.

5.35.1.1.18 RouteTollRateHistRecord (Class)

This structure is used to store the most recent X historical route toll rate data points

accuumlated by the system. This is a circular array, with the head (oldest record)

referenced in the RouteTollRateHistStats. The tail (newest record) is head-1 (mod X), and

is always the same data point as is contained in the RouteTollRateStats structure.

5.35.1.1.19 RouteTollRateStats (Class)

This structure contains the current toll rate data for a travel route. This includes the time the

rate became effective and the toll rate itself. This data is also provided in the most recent

entry in the history structure. The toll rate field may contain a negative number defined by

StatsConstants, which indicates an error. There are two other fields NOT provided in the

history structure -- the time the toll rate expires, and a reason string. This will be the empty

string if the toll rate has been successfully provided recently, or details on the error

condition if an error constant is specified.

5.35.1.1.20 RouteTravTimeHistRecord (Class)

This structure is used to store the most recent X historical route travel time data points

accuumlated by the system. This is a circular array, with the head (oldest record)

referenced in the RouteTravelTimeHistStats. The tail (newest record) is head-1 (mod X),

and is always the same data point as is contained in the RouteTravelTimeStats structure.

5.35.1.1.21 RouteTravTimeStats (Class)

This structure contains the current travel time data for a travel route. This includes the time

the travel time was computed, and the computed speed. This data is also provided in the

most recent entry in the history structure. The travel time may contain a negative number

defined by StatsConstants, which indicates an error. There are two other fields NOT

provided in the history structure -- a computed trend (UP, DOWN, or FLAT) and a reason

string. This will be the travel time calculation if it has been computed successfully, or

details on the error condition if an error constant is specified.

5.35.1.1.22 SystemProfileTravelTimeProperties (Class)

This class is a wrapper for SystemProfileProperties that provides easy access to travel time

CHART R3B3 Detailed Design 5-565 12/23/2008

related properties. It also provides static methods that make it easy to populate a Properties

object when setting travel time related properties.

5.35.1.1.23 TimeStampedObject (Class)

This interface is implemented by classes that wish to be able to be stored in a HistoryList.

5.35.1.1.24 TollRateRouteManager (Class)

This class is used to cache toll rate sources and to provide access to them.

5.35.1.1.25 TravelRoute (Class)

This is the primary CORBA interface for working with travel routes in CHART. This

interface provides methods for getting various collections of configuration and/or statistical

data for a travel route. It also provides methods for objects to register to be

TravelRouteConsumer for the travel route (for instances, DMSs that have the route enabled

in a traveler information message). Finally it provides methods for updating and removing

travel routes.

5.35.1.1.26 TravelRouteConfig (Class)

This structure holds the part of the Travel Route configuration pertaining to travel times, if

the travel route is configured to track travel times. It contains the IDs of the links

comprising the route, but not the link configurations themselves. (See

RouteAndLinkConfig.)

5.35.1.1.27 TravelRouteFactory (Class)

This interface is the entry point for the Travel Route Management. It serves up travel

routes (also an interface) and roadway links (structure data). It provides various operations

for acquiring travel routes and roadway links. Since roadway links are not maintained as a

separate interface, the factory provides the primary operations for acquiring link

configuration and statistical data (although a TravelRoute interface also provides methods

for acquiring such data about the links directly associated with it).

5.35.1.1.28 TravelRoutePushConsumer (Class)

This class is used to process CORBA events received from a TravelRoute event channel.

5.35.1.1.29 TravelTimeRangeDef (Class)

This class holds data for a travel time range definition. It has methods that can convert this

object to a JSON object for persistence in the system profile, and to allow its data to be

loaded from a JSON object when depersisting from the system profile.

5.35.1.1.30 WebCountyInfo (Class)

This class provides access to the CountyInfo struct which contains information about a

CHART R3B3 Detailed Design 5-566 12/23/2008

county.

5.35.1.1.31 WebDMS (Class)

This class represents a dynamic message sign.

5.35.1.1.32 WebRoadwayLink (Class)

This class is a wrapper for data pertaining to a Roadway Link.

5.35.1.1.33 WebRoadwayLinkConfig (Class)

This class is a wrapper for a RoadwayLinkConfig that allows data from the

RoadwayLinkConfig to be accessed from dynamic web pages.

5.35.1.1.34 WebRoadwayLinkListItem (Class)

This class is a data holder used to store a WebRoadwayLink and a distance from the end of

another link.

5.35.1.1.35 WebRoadwayLocation (Class)

This class provides access to the RoadwayLocation struct which contains information about

a location on a roadway.

5.35.1.1.36 WebStateInfo (Class)

This class provides access to the StateInfo struct which contains information about a state.

5.35.1.1.37 WebTollRateRoute (Class)

This class is a wrapper for data from a TollRateRouteInfo object obtained from the travel

route factory. It is used to cache data pertaining to a toll rate route in the GUI's data model.

(A Toll Rate Route can be used as the toll rate source for a travel route).

5.35.1.1.38 WebTollRateStats (Class)

This class is a wrapper for either of the two flavors of toll rate statistics that may be

obtained from a travel route. The expiration time is optional and will only be present if

constructed from an actual toll rate status (rather than a historical status).

5.35.1.1.39 WebTravelRoute (Class)

This class is a wrapper for a CORBA TravelRoute object and is used to cache data

pertaining to a travel route in the GUI's data model.

5.35.1.1.40 WebTravelRouteConfig (Class)

This class wraps the TravelRouteConfig IDL structure and provides accessor methods.

CHART R3B3 Detailed Design 5-567 12/23/2008

5.35.1.1.41 WebTravelRouteConsumer (Class)

This interface is implemented by GUI classes that wrap CORBA objects that can act as a

TravelRouteConsumer. In R3B3 this will include only WebDMS objects.

5.35.1.1.42 WebTravelRouteFactory (Class)

This class is a wrapper for a CORBA TravelRouteFactory object used to cache data

pertaining to the travel route factory in the GUI's data model.

5.35.1.1.43 WebTravelRouteLink (Class)

This class holds data pertaining to a link that is included in a travel route.

5.35.1.1.44 WebTravelRouteStatus (Class)

This class holds status data pertaining to a travel route.

5.35.1.1.45 WebTravelRouteUser (Class)

This interface is implemented by objects that are considered users of travel routes.

5.35.1.1.46 WebTravelTimeStats (Class)

This class is a wrapper for any of the four flavors of travel time data that may be obtained

from a travel route. There are two optional fields, trend and quality which are present

depending on the structure used to construct the object.

CHART R3B3 Detailed Design 5-568 12/23/2008

5.35.2 Sequence diagrams

5.35.2.1 chartlite.data.travelroutes.HistoryList:addElement (Sequence Diagram)

This diagram shows the processing that takes place when an element is added to a

HistoryList. The new item is added to the tail of a linked list, and then the list is

maintained. First, the list is trimmed as needed from the head end (which has the oldest

item in the list) to keep the list size within the maximum length. Next, items are trimmed

from the head end if their effective time indicates they exceed the maximum age for items

in the list.

System

HistoryList LinkedList TimeStampedObject

addElement(E)

addLast(E)

removeFirst()
E

[*while LinkedList.size()
> max HistoryList size]

getFirst()
E

getEffectiveTimeSecs()
int

This functionality will be in
a method named
"trimList" that can also be
called prior to converting
list to an array.

[effective time older
than max age]
removeFirst()

[*while first element
effective time older

than max age]

Figure 5-310. chartlite.data.travelroutes.HistoryList:addElement (Sequence Diagram)

CHART R3B3 Detailed Design 5-569 12/23/2008

5.35.2.2 chartlite.data.travelroutes.HistoryList:toBucketArray (Sequence Diagram)

This diagram shows the processing that is performed to retrieve the entries in a HistoryList

in pre-defined time period buckets. An array of "buckets" is passed in to define the time

boundary of each bucket in decreasing order (1:00, 12:55, 12:50, etc.). The list of elements

in the linked list is first trimmed to make sure we don't have any old elements, and then

dumped to an array for processing. The array of elements is processed from oldest to

newest because we will store at most 1 element per bucket, so if 2 or more fall into the

same bucket the newer element will overwrite the older element. For each element, the list

of buckets is checked to find the bucket whose time is greater than the effective time of the

element. Once a bucket is found, the element is stored in that bucket, but the bucket index

is not moved in case the next element processed will fit in that same bucket. (Because the

elements are time ordered, we can be sure that the next element will not belong in a bucket

we have already visited). After all elements are processed or the bucket at index zero is not

appropriate for an element, the processing stops and the bucketized array is returned. Note

that this array can have null elements for buckets that did not have any elements that fit.

TimeStampedObject

int

bucketIndex = numBuckets - 1

[bucket time at bucketIndex < effective time of E]
bucketIndex = bucketIndex - 1

toArray()

elementIndex = num elements - 1

[while
elementIndex

>= 0]]

elementIndex = elementIndex - 1

Note that we only decrement
the bucket index when the element
doesn't fit. When we process the
next (newer) element, it might fall
into this same bucket and overwrite
the previous value.

Clean old elements from the list
before we start bucketizing.

Traverse element array from oldest
to newest so if multiple fit
in a single bucket, the newest
will be used.

[bucket time at bucketIndex >= effective time of E]
store E in array at bucketIndex

trimList()

E[]

System

HistoryList<E>

E[]

Create array that is same size
as number of buckets.

LinkedList

toBucketArray(buckets)

create

getEffectiveTimeSecs()

[loop until E can be
placed in a bucket,
or at bucket zero

and still no fit]

E[]

Figure 5-311. chartlite.data.travelroutes.HistoryList:toBucketArray (Sequence Diagram)

CHART R3B3 Detailed Design 5-570 12/23/2008

5.35.2.3 chartlite.data.travelroutes.RoadwayLinkManager:addOrUpdateLink (Sequence

Diagram)

This diagram shows the processing that is performed when the addOrUpdateLink method of

the RoadwayLinkManager is called. This method is designed to be called during discovery

of roadway links to ensure that new links get added to the manager and existing links get

updated as needed. The Hashtable is called to retrieve the WebRoadwayLink object for a

given link ID - if the link has been previously added it will exist in the hashtable and be

returned, otherwise null will be returned.

If the link already exists in the hashtable, it is called to determine if the current location

(start/end points) in the existing WebRoadwayLink match the location in the

RoadwayLinkConfigInfo that was passed to this method. If the location data is updated, the

WebRoadwayLink is removed from the link starting point and end point quad trees. The

data in the WebRoadwayLink is then updated with the data from the RoadwayLinkConfig

as needed.

If the link does not already exist in the hashtable, a WebRoadwayLink object is created to

wrap the RoadwayLinkConfig and it is stored in the hashtable.

If the link was newly created above, or existed but its location has changed, then the link is

added to the starting and ending point quad trees.

CHART R3B3 Detailed Design 5-571 12/23/2008

create(Identifier, RoadwayLinkConfig)

put(Identifier,WebRoadwayLink)

insert(linkStartPoint,WebRoadwayLink)

insert(linkEndPoint,WebRoadwayLink)

Hashtable WebRoadwayLink Quadtree Quadtree

The following is done if a link with the given Identifier already exists in Hashtable

addOrUpdateLink(RoadwayLinkConfigInfo)

get(linkID)
WebRoadwayLink or null

sameLocation(RoadwayLinkConfig)
boolean

update(RoadwayLinkConfig)

[not same location]
remove(linkStartPoint,WebRoadwayLink)

[not same location]
remove(linkEndPoint,WebRoadwayLink)

Make sure the state, county, route type, and route
for the link being added/updated exists in the appropriate
hashtable. If not, then add.

The following is done if a link with the given Identifier does not already exist in Hashtable

The following is done if the link did not already exist OR the location changed

System

RoadwayLinkManager

maintain cache of states, counties,
route types, and routes

Figure 5-312. chartlite.data.travelroutes.RoadwayLinkManager:addOrUpdateLink

(Sequence Diagram)

CHART R3B3 Detailed Design 5-572 12/23/2008

5.35.2.4 chartlite.data.travelroutes.RoadwayLinkManager:suggestLinks (Sequence

Diagram)

This diagram shows the processing that is performed when the suggestLinks method of the

RoadwayLinkManager is called. This method is designed to find a path of links that start

with the given priorLink. An ArrayList is constructed to hold the links that will be

returned, and a query is made into the link starting point quadtree to find the link (or links)

that start within the specified threshold distance from the end point of the priorLink.

Each link returned from the query is processed as follows: A check is made to make sure

the link is not in the opposing direction of the priorLink, the distance from the prior link is

computed, a WebRoadwayLinkListItem is constructed with the WebRoadwayLink from the

list and the distance from the prior link, the item is added to a temporary array list. This

temporary array list is sorted by distance from the prior link (nearest to furthest) and then

each of these links is added to the return link (provided we have not reached the max

number of links to return). The priorLink local variable is set to the first WebRoadwayLink

in this and will be used for the query performed in the next iteration of the outer loop.

The method ends when the maximum number of suggestions is reached or an iteration

results in no new links being added (either none returned from the query, or the ones that

were returned were all in the opposing direction).

CHART R3B3 Detailed Design 5-573 12/23/2008

ArrayList

Keep track of the number of suggestions we add during each iteration of the outer loop.
When we hit a query that returns zero, we're finished even if we don't have the desired
number of suggestions.

create

add(WebRoadwayLinkListItem)

sort()

[for each
item in

List]

set the "priorLink" to the first item in the lis t so the next query will
be based on its ending point. That way our suggestion will attempt
to follow a path that includes the c losest links in the case when
multiple links are returned from the quad tree query.

Sort on distance to
prior link.

temp lis t used
for sorting.

[suggested link is opposing direction of prior link
and same road]

continue

WebRoadwayLinkListItem[]

[while more
items in temp

ArrayList
AND

size of return
ArrayList

is < n

System
RoadwayLinkManager Quadtree

link start points

Envelope

Envelope is in the same package as Quadtree and defines a bounding rectangle.
Construct one that has a center that is the end point of the priorLink and
uses the threshold distance to construct a square around that point. (c irc les are
not supported by Envelope). This will be suffic ient for our purposes, for we
will be using a very small threshold (if not zero) because in most cases the start
point of the next link exactly equals the end point of the prior link on a s ingle roadway.

ArrayList

List of suggested links to be returned.

List

GISUtil

WebRoadwayLinkListItem

suggestLinks(priorLink, threshold, n)

create

query(Envelope)

List

create

add(WebRoadwayLinkListItem)

[while
numAdded > 0

 AND
sizeof ArrayList

is < n]

[loop variable is zero]
set local "priorLink" variable

to the link just added

create

numAdded += 1

toArray()

create(suggestedLink, distanceToPrior)

calcDistanceMeters(priorLinkEndPoint, suggestedLinkStartPoint)
double

metersToMiles(meters)
double

get(i)
suggestedLink

priorLink is the starting link ... we will return
links that extend a path from the end of that link.
threshold is the maximum distance the starting point
of one link can be from the ending point of the prior
link to be considered a suggested link, and n is the
maximum number of suggested links to return.

Figure 5-313. chartlite.data.travelroutes.RoadwayLinkManager:suggestLinks (Sequence

Diagram)

CHART R3B3 Detailed Design 5-574 12/23/2008

5.35.2.5 chartlite.data.travelroutes.TravelRoutePushConsumer:routeAdded (Sequence

Diagram)

This diagram shows the processing that takes place when the GUI receives a

ROUTE_ADDED event. The processing shown takes place after the BasePushConsumer

has called the TravelRoutePushConsumer's handleEventData method and that method calls

routeAdded to process the event. A new WebTravelRoute object is constructed and its

configuration is updated using the configuration data received in the event. The

TravelRoute is then called to retrieve the current status data which is then used to update

the status in the WebTravelRoute. The new WebTravelRoute object is stored in the data

model (GUI cache), and if an object for a travel route with the same ID previously existed

the GUI will log a message to warn that an "added" event was received for a travel route

that already existed in the cache. Note that this situation is not necessarily a problem, the

GUI that was used to add the object to the system could have added it to the cache itself

before the corba event was recieved. In any event, we'll want to use the data from the

server rather than data that may have been added by the GUI.

Trav elRoute

routeAdded(
RouteConf igEv ent)

create

updateConf ig(Trav elRouteConf ig)

getFullStats()
RouteFullStats

[objectAdded did NOT return null]
Log message - object existed

objectAdded(WebTrav elRoute)

System

Trav elRoutePushConsumer DataModel

WebTrav elRoute

updateStatus(RouteFullStats)

null or WebTrav elRoute

Figure 5-314. chartlite.data.travelroutes.TravelRoutePushConsumer:routeAdded

(Sequence Diagram)

CHART R3B3 Detailed Design 5-575 12/23/2008

5.35.2.6 chartlite.data.travelroutes.TravelRoutePushConsumer:routeConfigChanged

(Sequence Diagram)

This diagram shows the processing that takes place when the GUI receives a

ROUTE_CONFIG_CHANGED event. The processing shown takes place after the

BasePushConsumer has called the TravelRoutePushConsumer's handleEventData method

and that method calls routeConfigChanged to process the event. The WebTravelRoute for

which the event was pushed is found in the data model, and its updateConfig method is

called (see details on updateConfig SD). The TravelRoute CORBA object reference is also

stored in the WebTravelRoute, replacing any existing reference.

System
Trav elRoutePushConsumer DataModel WebTrav elRoute

See updateConf ig SD.
NOTE: conf ig is updated
in a way that allows links
to be re-ordered without
losing existing link status.

getObject(routeID)

updateConf ig(
Trav elRouteConf ig)

routeConf igChanged(
RouteConf igEv ent)

WebTrav elRoute

setRef (Trav elRoute)

Figure 5-315. chartlite.data.travelroutes.TravelRoutePushConsumer:routeConfigChanged

(Sequence Diagram)

CHART R3B3 Detailed Design 5-576 12/23/2008

5.35.2.7 chartlite.data.travelroutes.TravelRoutePushConsumer:routeDeleted (Sequence

Diagram)

This diagram shows the processing that takes place when the GUI receives a

ROUTE_DELETED event. The processing shown takes place after the

BasePushConsumer has called the TravelRoutePushConsumer's handleEventData method

and that method calls routeDeleted to process the event. The WebTravelRoute object that

caches data for the travel route being deleted is retrieved from the data model, and each of

its consumers are called to notify them that the route is being deleted. This allows the

cached consumer objects to remove their references to the route being deleted. The

WebTravelRoute is then removed from the data model.

WebTravelRoute

objectRemoved(routeID)

getObject(routeID)

routeDeleted(routeID)

System
TravelRoutePushConsumer DataModel WebTravelRouteConsumer

routeDeleted(routeID)

[*for each
consumer in

consumerList]

Figure 5-316. chartlite.data.travelroutes.TravelRoutePushConsumer:routeDeleted

(Sequence Diagram)

CHART R3B3 Detailed Design 5-577 12/23/2008

5.35.2.8 chartlite.data.travelroutes.TravelRoutePushConsumer:routeTollRateUpdated

(Sequence Diagram)

This diagram shows the processing that takes place when the GUI receives a

ROUTE_TOLL_RATE_UPDATED event. The processing shown takes place after the

BasePushConsumer has called the TravelRoutePushConsumer's handleEventData method

and that method calls routeTollRateUpdated to process the event. The WebTravelRoute

for which the event was pushed is found in the data model, and its updateTollRateStats

method is called. The WebRouteStatus is called to update the route's toll rate status, which

updates the current status and also updates the toll rate history list.

System
TravelRoutePushConsumer DataModel WebTravelRoute WebTravelRouteStatus

WebTollRateStats

Use to replace existing
stats (if any)

WebTollRateStats

HistoryList

routeTollRateUpdated(
RouteTollRateUpdatedEvent)

getObject(routeID)
WebTravelRoute

updateTollRateStats(
RouteTollRateStats)

create

addEntry(WebTollRateStats)

hasExpiration(false)

updateTollRateStats(
RouteTollRateStats)

Figure 5-317.

chartlite.data.travelroutes.TravelRoutePushConsumer:routeTollRateUpdated (Sequence

Diagram)

CHART R3B3 Detailed Design 5-578 12/23/2008

5.35.2.9 chartlite.data.travelRoutes.TravelRoutePushConsumer:routeTravelTimeUpdated

(Sequence Diagram)

This diagram shows the processing that takes place when the GUI receives a

ROUTE_TRAVEL_TIME_UPDATED event. The processing shown takes place after the

BasePushConsumer has called the TravelRoutePushConsumer's handleEventData method

and that method calls routeTravelTimeUpdated to process the event. The WebTravelRoute

for which the event was pushed is found in the data model, and its updateTrvlTimeStats

method is called, passing both the route travel time status and the array of travel time

statuses for each of the route's links. The WebRouteStatus is called to update the route's

travel time status, and it updates the current status and also updates the travel time history

list. The WebTravelRoute then processes the travel time status for each link. It retrieves the

link from its internal list of links and calls its updateTrvlTimeStats method. That method

updates the current travel time stats and also updates the travel time history for the link.

DataModel

getObject(routeID)

create

WebTravelRouteLink

WebTravelTimeStats

getLink(linkID)

updateTravelTimeStats(LinkTravelTimeStats)

create

use to replace existing
travel time stats (if any)

WebTravelTimeStats

HistoryList

hasTrend(false)

[*for each link
in linkStats]

routeTravelTimeUpdated(
RouteTravelTimeUpdateEvent)

WebTravelRoute
use to replace existing
travel time stats (if any)

HistoryList

updateTrvlTimeStats(
routeStats)

WebTravelRoute WebTravelRouteStatus

WebTravelTimeStats

WebTravelTimeStats

updateTrvlTimeStats(
routeStats, linkStats)

System

TravelRoutePushConsumer

create

hasQuality(false)

addEntry(WebTravelTimeStats)

addEntry(WebTravelTimeStats)

create

hasTrend(false)

Figure 5-318.

chartlite.data.travelRoutes.TravelRoutePushConsumer:routeTravelTimeUpdated

(Sequence Diagram)

CHART R3B3 Detailed Design 5-579 12/23/2008

5.35.2.10 chartlite.data.travelroutes.WebTravelRoute:updateConfig (Sequence

Diagram)

This diagram shows the processing that takes place when the configuration of a

WebTravelRoute is updated. A new WebTravelRouteConfig data is created using the

configuration data in the given TravelRouteConfig object, creating lists of objects where

appropriate. The travel route link configuration data is not processed as part of

WebTravelRouteConfig construction because the WebTravelRoute stores data for each link

separate from the WebTravelRouteConfig. After the WebTravelRouteConfig is created, the

RouteLink objects in the travel route config's travel time data are processed. First the

WebTravelRoute's existing WebTravelRouteLink objects are stored in a hashtable for later

reference. Each RouteLink is then processed. If a WebTravelRouteLink object already

exists for the link, it is retrieved from the Hashtable and its configuration data is updated. If

the link is newly added to the travel route, a new WebTravelRouteLink object is created. In

either case, the WebTravelRouteLink object is stored in an array list. This technique has

the effect of reording the list of links if needed, adding new links, and removing links that

no longer exist in the configuration. At the same time, the status data for any existing links

is preserved.

CHART R3B3 Detailed Design 5-580 12/23/2008

If null, that's OK. The getter
method will always
attempt a lookup if our member
variable is null.

System

WebTravelRoute

WebTravelRouteConfig

WebRoadwayLocation

WebStateInfo

WebCountyInfo

WebTravelRouteLink

getLink(linkID)

updateConfig(routeConfig)

create(routeConfig)

create
[*for each route

in routeList]

create
[*for each state

in stateList]

create
[*for each county

in countyList]

add(WebTravelRouteLink)

getObject(consumerID)
[*for each consumer

in consumerList]

WebTravelRouteLink[]

DataModel

store existing links
in Hashtable

Create new array of links, using existing
or creating new as needed. This enforces
the order of links in the new config, and preserves
the status of existing links.

Replace existing array of links with new array, which could have previously existing
links, new links, and whose order is as specified.

WebRoadwayLink
[*for each RouteLink in

routeConfig.travelTimeCfg]

WebTravelRouteConsumer or null

toArray()

replace WebTravelRouteLink[]

java.util.Hashtable

java.util.ArrayList

store TravelRouteConfig

create

put(linkID, WebTravelRouteLink)[*for each
WebTravelRouteLink]

create

get(linkID)
WebTravelRouteLink OR null

[WebTravelRouteLink is null]
create

setConfig(routeLink)

RoadwayLinkManager

Figure 5-319. chartlite.data.travelroutes.WebTravelRoute:updateConfig (Sequence

Diagram)

CHART R3B3 Detailed Design 5-581 12/23/2008

5.35.2.11 chartlite.data.travelroutes.WebTravelRoute:updateStatus (Sequence

Diagram)

This diagram shows the processing that takes place when the WebTravelRoute's

updateStatus method is called. This method is provided the full status and is used to

completely replace the existing status data for the travel route, including its toll rate status

and history, travel time status and history, and the status and history of each of the travel

route's links. A new WebTravelRouteStatus object is constructed using data from the

RouteFullStats structure that was obtained from the server. It stores the route's toll rate

status (if any) in a WebTollRateStats object, and creates a HistoryList<WebTollRateStats>

to hold the toll rate history. It then processes each toll rate history record in order (using

the oldest record index and looping around to the beginning of the array if needed) and adds

each to the HistoryList. Similar processing is done for the route's travel time stats and

history. Next, the WebTravelRoutes processes the status for each link. It finds the link in

its internal list and then constructs a WebTravelTimeStats object with the new status data

and calls the setStatus method of the WebTravelRouteLink. Finally, the WebTravelRoute

processes the travel time history for each link. It creates a

HistoryList<WebTravelTimeStats> for the link and then processes each history record for

the link, adding it to the HistoryList in order. To process the history list in order, we start at

the index of the oldest record, proceed to the end of the array, and continue at the beginning

if needed. After constructing and populating the new HistoryList, the

WebTravelRouteLink's setHistory() method is called to replace any existing history.

CHART R3B3 Detailed Design 5-582 12/23/2008

setHistory(HistoryList)

[* for each
link in

routeFullStats.
linkHistStats]

getLink(linkID)

WebTravelRouteLink

getLink(linkID)

WebTravelTimeStats

HistoryList

WebTravelTimeStats

create(LinkTravelTimeStats)

setStatus(WebTravelTimeStats)

[* for each link in
linkStats]

create

create(LinkTravelTimeHistRecord)

addElement(WebTravelTimeStats)

[* for each
record in

routeLinkHistStats.
linkHistStats]

Traverse array of
history from oldest
to newest starting at
index of oldest element
and wrapping around
if needed to beginning of
the array, ending with the
newest element.

[tollRateStats.length > 0]
create(RouteTollRateStats)

create(RouteTollRateHistRecord)

create

addElement(WebTollRateStats)
[* for each record

in routeTollRateHistory]

WebTravelTimeStats

HistoryList
create

WebTravelTimeStats

[tvlTimeStats.length > 0]
create(RouteTravelTimeStats)

create(RouteTravelTimeHistRecord)

[* for each record in
routeTvlTimeHistory]

Will replace existing
WebTravelRouteStatus (if any)

addElement(WebTravelTimeStats)

System

WebTravelRoute

WebTravelRouteStatus

WebTollRateStats

WebTollRateStats

HistoryList

Traverse array of
history from oldest
to newest starting at
index of oldest element
and wrapping around
if needed to beginning of
the array, ending with the
newest element.

updateStatus(routeFullStats)

create

Figure 5-320. chartlite.data.travelroutes.WebTravelRoute:updateStatus (Sequence

Diagram)

CHART R3B3 Detailed Design 5-583 12/23/2008

5.35.2.12 chartlite.data.travelroutes:TravelRouteDiscovery (Sequence Diagram)

This diagram shows the discovery processing related to travel routes. Discovery is the

process of finding objects in the CHART server and adding them (or updating them) in the

GUI's cache. First travel route event channels are discovered using an existing CHART

utility method. Next, travel route factories are discovered. Each factory is called to obtain

the lists of roadway links, toll rate routes, and travel routes it serves. Each travel route is

called to obtain its configuration and status data. If a travel route does not already exist in

the GUI cache, it is added. Otherwise the existing cached object is updated with the new

configuration and status data.

[WebTravelRoute created]
objectAdded(WebTravelRoute)

[WebTravelRouteFactory created]
objectAdded(WebTravelRouteFactory)

TollRateRouteManager

TollRateRouteInfo[]

[*for each
toll route]

getTollRateRoutes()

addOrUpdateTollRateRoute(TollRateRouteInfo)

RoadwayLinkManager

addOrUpdateLink(RoadwayLinkConfigInfo)[*for each
link]

find TravelRouteFactory Objects

TravelRouteFactoryHelperTravelRouteFactory

DataModel

WebTravelRouteFactory

run()

discoverEventChannelsOfName()

numChannelsDiscovered

findAllObjectsOfType()

org.omg.CORBA.Object[]

narrow()
TravelRouteFactory

getLinksConfigs()
RoadwayLinkConfigInfo[]

getID()
Identifier

getObject(factoryID)
WebTravelRouteFactory OR null

[WebTravelRouteFactory is null]
create

[WebTravelRouteFactory is NOT null]
update()

getTravelRoutes()

getRouteConfig()

See WebTravelRoute.updateConfig SD

updateConfig(routeConfig)

[*for each route]

See WebTravelRoute.updateStatus SD

[WebTravelRoute is null]
create

updateStatus(routeFullStats)

[*for each
factory]

WebTravelRoute

getObject(routeID)
WebTravelRoute OR null

getFullStats()
RouteFullStats

TravelRoute

TravelRouteInfo[]

TravelRouteConfig

WebRoadwayLink

getName()
name

System
(CommandQueue)

DiscoverTravelRouteClassesCmd TraderGroup

Figure 5-321. chartlite.data.travelroutes:TravelRouteDiscovery (Sequence Diagram)

CHART R3B3 Detailed Design 5-584 12/23/2008

5.36 Chartlite.data.templates-data

5.36.1 Classes

5.36.1.1 GUIMessageTemplateDataClasses (Class Diagram)

This diagram shows GUI classes related to traveler information message template data.

CHART R3B3 Detailed Design 5-585 12/23/2008

WebMessageTemplateFactoryWrapper

WebTravelTimeRangeFormat

WebTollRateTimeFormat

WebDistanceFormat

1

1

11

MessageTemplatePushConsumer

BasePushConsumer

DiscoverTemplateClassesCmd

QueueableCommand
«interface»

DMSTravInfoMsgTemplate
«interface»

WebTravelTimeFormat

WebTollRateFormat

WebUniquelyIdentifiable
«interface»

*

1

WebDMSTravInfoMsgTemplate

WebDMSTravInfoMsgTemplateConfig

getID() : Identifier
getName() : String

createDMSTravInfoMsgTemplate(token:byte[],
 config:DMSTravInfoMsgTemplateConfig) : WebDMSTravInfoMsgTemplate
updateCachedTemplatesAndFormats() : void
getCachedDMSTravInfoMsgTemplates() : WebDMSTravInfoMsgTemplate[]
getCachedTollRateTimeFormats() : WebTollRateTimeFormat[]
getCachedTravelTimeFormats() : WebTravelTimeFormat[]
getCachedTravelTimeRangeFormats() : WebTravelTimeRangeFormat[]
getCachedTollRateFormats() : WebTollRateFormat[]
getCachedDistanceFormats() : WebDistanceFormat[]
get() : WebMessageTemplateFactoryWrapper
addTemplateToCache(template : WebDMSTravInfoMsgTemplate) : void
removeTemplateFromCache(id : Identifier) : void
getCachedDMSTravInfoMsgTemplate(id : Identifier) : WebDMSTravInfoMsgTemplate
hasTemplateWithDescription(desc : String, idToExclude : Identifier) : boolean

m_wrapper : FirstAvailableOfferWrapper
m_dmsTravInfoMsgTemplates : Hashtable
m_tollRateTimeFormats : WebTollRateTimeFormat[]
m_travelTimeFormats : WebTravelTimeFormat[]
m_travelTimeRangeFormats : WebTravelTimeRangeFormat[]
m_tollRateFormats : WebTollRateFormat[]
m_distanceFormats : WebDistanceFormat[]

WebDMSTravInfoMsgTemplate(id : Identifier,
 config : DMSTravInfoMsgTemplateConfig,
 ref : DMSTravInfoMsgTemplate)
getConfig() : WebDMSTravInfoMsgTemplateConfig
getRef() : DMSTravInfoMsgTemplate
updateCachedData(config : DMSTravInfoMsgTemplateConfig) : void

getConfig(token: AccessToken) :
 DMSTravInfoMsgTemplateConfig
setConfig(token: AccessToken,
 config: DMSTravInfoMsgTemplateConfig) : void
remove(token: AccessToken) :void()

getName() : String
getNumRows() : int
getNumCols() : int
getNumPages() : int
getMessage() : String
getTravelTimeFormat() : WebTravelTimeFormat
getTravelTimeRangeFormat() : WebTravelTimeRangeFormat
getTollRateFormat() : WebTollRateFormat
getTollRateTimeFormat() : WebTollRateTimeFormat
getDistanceFormat() : WebDistanceFormat
isDestTagAlignmentLeft() : boolean
isDestTagAlignmentRight() : boolean
isDestTagAlignmentCenter() : boolean
isRowDiscardedIfRouteDataMissing() : boolean
isPageDiscardedIfRouteDataMissing() : boolean
isMessageDiscardedIfRouteDataMissing() : boolean
getPageOnTimeTenths() : int
getPageOffTimeTenths() : int
update(config : DMSTravInfoMsgTemplateConfig) : void
getRawConfig() : DMSTravInfoMsgTemplateConfig

m_config : DMSTravInfoMsgTemplateConfig

m_format : TollRateFormat

m_format : TravelTimeFormat

m_format : TravelTimeRangeFormat

m_format : TollRateTimeFormat

execute()
interrupted()

m_format : DistanceFormat

getDataModel() : DataModel
getPushConsumer() : PushConsumer
push(data:Any) : void
setPushConsumer(consumer:PushConsumer):void
handleEventData(data:Any) : void

handleDMSTravInfoMsgTemplateAdded(info : DMSTravInfoMsgTemplateInfo) : void
handleDMSTravInfoMsgTemplateConfigChanged(info : DMSTravInfoMsgTemplateInfo) : void
handleMessageTemplateRemoved(id : byte[]) : void

Figure 5-322. GUIMessageTemplateDataClasses (Class Diagram)

5.36.1.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

CHART R3B3 Detailed Design 5-586 12/23/2008

handleEventData().

5.36.1.1.2 DiscoverTemplateClassesCmd (Class)

This class is called to periodically discover message template classes from the trading

service and CHART Message Utility Service.

5.36.1.1.3 DMSTravInfoMsgTemplate (Class)

The DMSTravlInfoMsgTemplate interface is implemented by objects that allow execution

of tasks associated with DMS travel information message templates.

5.36.1.1.4 MessageTemplatePushConsumer (Class)

5.36.1.1.5 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.36.1.1.6 WebDistanceFormat (Class)

5.36.1.1.7 WebDMSTravInfoMsgTemplate (Class)

This class wraps the DMSTravInfoMsgTemplate CORBA object representing a message

template. It caches the data represented by the remote object and provides accessors for

easy access to the cached data.

5.36.1.1.8 WebDMSTravInfoMsgTemplateConfig (Class)

This class wraps the DMSTravInfoMsgTemplateConfig CORBA structure and provides

accessor methods for use in the GUI.

5.36.1.1.9 WebMessageTemplateFactoryWrapper (Class)

This class provides access to functionality provided by the MessageTemplateFactory

CORBA objects in the system. It is also used to store cached data from the factories

including the data formats and message templates in the system.

CHART R3B3 Detailed Design 5-587 12/23/2008

5.36.1.1.10 WebTollRateFormat (Class)

5.36.1.1.11 WebTollRateTimeFormat (Class)

5.36.1.1.12 WebTravelTimeFormat (Class)

5.36.1.1.13 WebTravelTimeRangeFormat (Class)

5.36.1.1.14 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

CHART R3B3 Detailed Design 5-588 12/23/2008

5.36.2 Sequence Diagrams

5.36.2.1 chartlite.data.templatemanagement:discoverTemplateClasses (Sequence

Diagram)

This diagram shows how DMS traveler information message templates and the available

data formats are discovered. The discovery driver will periodically call the

DiscoverTemplateClassesCmd to execute. The event channels are queried from the

CORBA Trading Service, and they are added to the event consumer group to register the

consumers and monitor the event channels. The GUIMessageTemplateFactoryWrapper is

called to update the cached templtes and formats. It uses a FirstAvailableOfferWrapper to

call the first available MessageTemplateFactory (or call one that is known to work, if the

first one recently failed). The factory is queried to obtain the templates, which are

replicated in the database. If a templates is already cached but is not in the newly obtained

list, it will be removed from the cache. If the template is already cached, it will be updated.

If it is not in the cache, a new WebDMSTravInfoMsgTemplate object is created and added

to the cache. The factory is then called to get each type of format. The formats are

wrapped in GUI-specific wrapper objects to allow easier access, and these are cached for

future use.

CHART R3B3 Detailed Design 5-589 12/23/2008

org.omg.CORBA.Object[]

DiscoverTemplateClassesCmd

Discovery
Driver

TraderGroup

This queries the trading service
for event channels and adds them to
the event consumer group.

execute() getEventChannelsOfName(
eventConsumerGroup,

channelName, pushConsumer)

number of channels added

[not in newly obtained lis t]
Remove From Cache

[* while hasNext()
and no factory

queried successfully]

GUIMessageTemplate
FactoryWrapper

FirstAvailable
OfferWrapper java.util.Iterator

WebDMSTravInfo
MsgTemplate

WebTollRate
Format

WebTravelTime
Format

WebTollRate
TimeFormat

Use the message template factory type.

Message
TemplateFactory

[* for each
template in

cache]

findAllObjectsOfType()

get()

createIterator()

MessageTemplateFactory

getTollRateFormats()

getTravelTimeRangeFormats()

getDistanceFormats()

[not in cache]
Create And Add To Cache

[* for each
newly obtained

template]

[* for each format]
create

[* for each format]
create

WebDistance
Format

updateCachedTemplatesAndFormats()

next

getDMSTravInfoMsgTemplates()

getTravelTimeFormats()

getTollRateTimeFormats()

DMSTravInfoMsgTemplateInfo[]

[already in cache]
update(config)

[* for each format]
create

[* for each format]
create

[* for each format]
create

Relace Cached Formats
With New Formats

WebTravelTime
RangeFormat

Figure 5-323. chartlite.data.templatemanagement:discoverTemplateClasses (Sequence

Diagram)

CHART R3B3 Detailed Design 5-590 12/23/2008

5.36.2.2 chartlite.data.templatemanagement:handleEventData (Sequence Diagram)

This diagram shows the processing when a message template CORBA event is received. If

the event type indicates that a new message template was added, a new

WebDMSTravInfoMsgTemplate object is created and added to the cache in the

WebMessageTemplateFactoryWrapper. If the event type indicates that the template

configuration was changed, the template wrapper is retrieved from the cache and called to

update its configuration in memory. If the event type indicates that a template was

removed, the template wrapper object is removed from the cache.

The template may already be cached
if it was added by this instance of the GUI,
as it will be added immediately after calling
the server to create the template, but this is
also dependent on a race condition with the
CORBA event.

return from handleDMSTravInfoMsgTemplateAdded()

CommandQueue
MessageTemplate

PushConsumer
WebMessageTemplate

FactoryWrapper

new :
WebDMSTravInfo

MsgTemplate
new:

WebDMSTravInfo
MsgTemplateConfig

handleEventData(any)

get()

[not already cached]
c reate(id, config, ref)

[event type == template added]
handleDMSTravInfoMsgTemplateAdded(templateInfo)

getCachedDMSTravInfoMsgTemplate(templateID)
null or WebDMSTravInfoMsgTemplate

[not already cached]
addTemplateToCache(webTemplate)

create(config)

WebDMSTravInfo
MsgTemplate

WebDMSTravInfo
MsgTemplateConfig

[event type == conf changed]
handleDMSTravInfoMsgTemplateConfigChanged(templateInfo)

getCachedDMSTravInfoMsgTemplate(templateID)
WebDMSTravInfoMsgTemplate or null

[not null]
updateCachedData(config)

update(config)

Replace
Cached Config

return from handleDMSTrav InfoMsgTemplateConfigChanged()

get()

[event type == template removed]
handleMessageTemplateRemoved(templateID)

get()
removeTemplateFromCache(templateID)

Figure 5-324. chartlite.data.templatemanagement:handleEventData (Sequence Diagram)

CHART R3B3 Detailed Design 5-591 12/23/2008

5.37 Chartlite.data.geoareas-data

5.37.1 Classes

5.37.1.1 GUIGeoAreaClasses (Class Diagram)

This diagram contains classes related to geographic areas.

QueueableCommand

«interface»

Discov erGeoAreaClassesCmd

*

1

creates

GeoAreaPushConsumer

BasePushConsumer

SystemProfileGeographicAreaProperties

1

1

JSONArray

WebGeoPolygonPoint

1

1

contains

JSONObject

*

1

contains

WebGeoArea

handleEventData(any:Any):void
geoAreaAdded(data:GeoAreaEvent):void
geoAreaUpdated(data:GeoAreaEvent):void
geoAreaDeleted(id:Identifier):void

getRef():GeoArea
getName(): string
getDescription(): string
getNumberOfPoints(): int
getLatitudePoint(int num): int
getLongitudePoint(int num)
getID():Identifier

m_data: GeoAreaData
m_id: Identifier
m_dm:DataModel
m_ref: GeoArea

getLongitudePoint():int
getLatitudePoint():int

profile:PointLocationProfi le

getMinimumLatitudeBoundary():long
getMaximumLatitudeBoundary():long
getMinimumLongitudeBoundary():long
getMaximumLongitudeBoundary():long

m_sysProfi leProps:SystemProfi leProperties

Figure 5-325. GUIGeoAreaClasses (Class Diagram)

5.37.1.1.1 BasePushConsumer (Class)

This is a base class for push consumers. Derived classes must implement

CHART R3B3 Detailed Design 5-592 12/23/2008

handleEventData().

5.37.1.1.2 DiscoverGeoAreaClassesCmd (Class)

This diagram contains data classes related to geographic areas.

5.37.1.1.3 GeoAreaPushConsumer (Class)

This push consumer handles events related to adding, updating, or removing geographic

areas.

5.37.1.1.4 JSONArray (Class)

An array of JSONObjects.

5.37.1.1.5 JSONObject (Class)

This class is a utility that provides methods to allow for creating and parsing strings that use

JSON notation to represent an object's data elements.

5.37.1.1.6 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.37.1.1.7 SystemProfileGeographicAreaProperties (Class)

This class contains system profile properties related to geographic areas.

5.37.1.1.8 WebGeoArea (Class)

This class wraps a GeoArea object to provide methods for accessing the data from a

velocity template.

5.37.1.1.9 WebGeoPolygonPoint (Class)

This helper class wraps a PointLocationProfile structure.

CHART R3B3 Detailed Design 5-593 12/23/2008

5.37.2 Sequence Diagrams

5.37.2.1 chartlite.data.geoareamgmt:discoverGeoAreaClasses (Sequence Diagram)

This diagram shows how geographic areas are discovered. The discovery driver will

periodically call the DiscoverGeoAreasCmd to execute. The event channels are queried

from the CORBA Trading Service, and they are added to the event consumer group to

register the consumers and monitor the event channels. The factory is queried to obtain the

geo areas, which are replicated in the database. If a geo area is already cached but is not in

the newly obtained list, it will be removed from the cache. If the geo area is already

cached, it will be updated. If it is not in the cache, a new WebGeoArea object is created

and added to the cache.

Discovery
Driver

DiscoverGeoAreaClassesCmd TraderGroup

This queries the trading service
for event channels and adds them to
the event consumer group.

GeoAreaFactory

Use the geo area factory type.

WebGeoArea DataModel

org.omg.CORBA.Object[]

number of channels added

WebGeoArea

GeoArea[]

[for each
factory]

[for each
Geo Area]

[not in DataModel]
New(ref, data, DataModel)

update(data)

objectUpdated(id)

objectAdded(id)

execute()

getGeoAreas()

getEventChannelsOfName(
eventConsumerGroup,

channelName, pushConsumer)

findAllObjectsOfType()

Figure 5-326. chartlite.data.geoareamgmt:discoverGeoAreaClasses (Sequence Diagram)

CHART R3B3 Detailed Design 5-594 12/23/2008

5.38 Chartlite.data.alerts-data

5.38.1 Classes

5.38.1.1 data.alerts.classes (Class Diagram)

This diagram shows classes related to alerts that are used to store alerts in the data model.

For R3B2, one new alert type is being added, as annotated on the diagram. The remainder

of the classes shown on this diagram existed prior to R3B2.

New for R3B3

WebExternalConnectionAlert

updated for R3B3
for addition of failure
type

ExecuteScheduledActionsAlertData

1

Updated for R3B3

WebExecuteScheduledActionsAlert

1

1

1

1

Alert

«interface»

UnhandledResourcesAlertData

«datatype»
EventStillOpenAlertData

«struct»

1

1

1

DuplicateEventAlertData

«struct»

DeviceFailureAlertData

«struct»

1

1

1

AlertData

«datatype» 1

WebEventStillOpenAlertWebUnhandledResourcesAlertWebDeviceFailureAlert

1

WebAlert WebAlertHistory

WebDuplicateEventAlert WebGenericAlert

*

1

1

WebAlertType

«enumeration»

WebTravelTimeAlert

TravelTimeAlertData

«struct»

11

ExternalConnectionAlertData

«struct»

WebExternalEventAlert

ExternalEventAlertData

«struct»

WebTollRateAlert

TollRateAlertData

«struct»

1
1

1

1

1

1

1 1

m_alertType
m_name
m_systemProfilePrefix
m_defaultDefaultAcceptTimeMinutes
m_defaultMaxAcceptTimeMinutes
m_defaultDefaultDelayTimeMinutes
m_defaultEscalationTimeMinutes
m_defaultEnabledFlag
m_defaultAutoEscalateDisabled
DeviceFailure
DuplicateEvent
EventStillOpen
Generic
UnhandledResources
ExecuteScheduledActions
ExternalConnection
ExternalEvent
TollRate
TravelTime

getID():Identifier
getAlertRef():Alert
getDescription():String
isAccepted() : boolean
isClosed() : boolean
isDelayed() : boolean
isNew() : boolean
getCreationTime() : long
getClosedTime() : long
getNextActionTime():long
getResponsibleUser():String
getResponsibleCenter():WebOpCenter
getOpCenterVisibility():WebOpCenter[]
getNextOpCenterVis ibility():WebOpCenter[]
getDetailsPage() : String
getAlertHistory() : WebAlertHistory[]
getWebAlertType():WebAlertType

getDetailsPage():String
isDMS():boolean
isTSS():boolean
getDevice():WebDevice
getDMS():WebDMS
getTSS():WebTSS
isCommFailure():boolean
isHWFailure():boolean

WebAlertHistory(hist:AlertHistory)
getTimestamp() : long
getOpCenterName() : String
getOperatorName() : Str ing
getDescriptiveText():String

m_descriptiveText:String
m_timestamp:long
m_operatorName:String
m_opCenterName:String

getDetailsPage():String
getNewerEvent():WebTrafficEvent
getOlderEvent():WebTrafficEvent

getDetailsPage():String
getResolveAction():String
getExternalConnectionID():String
isWarning():boolean
getAlertStatusChangeTime():Date
getAlertStatusConfirmTime():Date

getDetailsPage():String

getDetailsPage():String
getResolveAction():String
getActions():WebActionData[]
getActionData():ActionData[]
getSchedule():WebSchedule

getDetailsPage():String
getOpCenter():WebOpCenter

getDetailsPage():String
getResolveAction():String
getExternalEvent():WebTrafficEvent
getTrafficEventRule():WebTrafficEventRule

getDetailsPage():String
getEvent():WebTrafficEvent

getDetailsPage():String
getResolveAction():String
getTravelRoute():WebTravelRoute

getDetailsPage():String
getResolveAction():String
getTravelRoute():WebTravelRoute
getAlertedTravelTimeStr():String
getAlertedTravelTimeEffTime():Date
getTravelTimeAlertLimitStr():String

Figure 5-327. data.alerts.classes (Class Diagram)

CHART R3B3 Detailed Design 5-595 12/23/2008

5.38.1.1.1 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and

provides operations used to manage an alert.

5.38.1.1.2 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.38.1.1.3 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DeviceFailureAlert. Specific to this alert is the traffic event id of the failed device event

causing the alert. Also included is information on the device failure type.

5.38.1.1.4 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a

DuplicateEventAlert. Specific to this alert are the event ids of the two probable duplicate

traffic events.

5.38.1.1.5 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to

an EventStillOpenAlert. Specific to this alert is the id of the traffic event that is still open.

5.38.1.1.6 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

to an ExecuteScheduledActionsAlert.

5.38.1.1.7 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the

interface which is having trouble and a flag indicating whether the connection is in failure

or warning status, the timestamp it transitioned. (The GUI displays additional data which is

best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a

textual description and alert management data.)

5.38.1.1.8 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the

event and the ID of the first rule found that requested an alert be sent. (Text in the base

AlertData structure provides a textual description and alert management data.)

5.38.1.1.9 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no

longer has data for its toll rate. (Text in the base AlertData structure provides a textual

description and alert management data.)

CHART R3B3 Detailed Design 5-596 12/23/2008

5.38.1.1.10 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit

and the travel time which exceeded the limit. (Text in the base AlertData structure provides

a textual description and alert management data.)

5.38.1.1.11 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific

to an UnhandledResourcesAlert.

5.38.1.1.12 WebAlert (Class)

This class is used to wrap a CORBA Alert object so that its data may be cached in the

CHART GUI servlet and to allow its data to be accessed from within a Velocity template.

5.38.1.1.13 WebAlertHistory (Class)

This class is used to wrap AlertHistory data to allow it to be accessed from within a

Velocity template.

5.38.1.1.14 WebAlertType (Class)

This enumeration indentifies the alert types supported by the system along with information

specific to each alert type that helps in using generic code to process all alert types. For

R3B2 the ExecuteScheduledActions alert type is added.

5.38.1.1.15 WebDeviceFailureAlert (Class)

This class is used to wrap a DeviceFailureAlert CORBA object and provide access to data

that is specific to this type of alert.

5.38.1.1.16 WebDuplicateEventAlert (Class)

This class is used to wrap a DuplicatEventAlert and provide access to its type specific data.

5.38.1.1.17 WebEventStillOpenAlert (Class)

This class is used to wrap an EventStillOpenAlert and provide access to its type specific

data.

5.38.1.1.18 WebExecuteScheduledActionsAlert (Class)

This class is used to cache data for an ExecuteScheduledActionsAlert in the GUI. It

provides access to the alert data and overrides the abstract methods of WebAlert to provide

a details page and resolve action specific to this alert type.

5.38.1.1.19 WebExternalConnectionAlert (Class)

This class is a GUI wrapper for an ExternalConnection alert. It provides access to data

CHART R3B3 Detailed Design 5-597 12/23/2008

contained in an ExternalConnectionAlertData object.

5.38.1.1.20 WebExternalEventAlert (Class)

This class is a GUI wrapper for an ExternalEventAlert. It provides access to data contained

in an ExternalEventAlertData object.

5.38.1.1.21 WebGenericAlert (Class)

This class is used to wrap a GenericAlert (manual alert).

5.38.1.1.22 WebTollRateAlert (Class)

This class is a GUI wrapper for a TollRateAlert. It provides access to data contained in a

TollRateAlertData object.

5.38.1.1.23 WebTravelTimeAlert (Class)

This class is a GUI wrapper for a TravelTimeAlert. It provides access to data contained in

an TravelTimeAlertData object.

5.38.1.1.24 WebUnhandledResourcesAlert (Class)

This class is used to wrap an UnhandledResourcesAlert and provide access to its type

specific data.

CHART R3B3 Detailed Design 5-598 12/23/2008

5.39 Chartlite.data.externalsystem-data

5.39.1 Classess

5.39.1.1 GUIExternalSystemClasses (Class Diagram)

This diagram contains data classes related to external interfaces.

DiscoverExternalClassesCmd
*1

creates

1

1

WebExternalSystemStatus

SystemProfileProperties

1 *
constructed from

WebExternalSystemConnection

*

1
creates

* 1
creates

1

1

ExternalSystemPushConsumer

WebExternalSystemClient

WebExternalDeviceWebExternalAgency

WebTrafficEventRule

trafficEventRuleAdded(TrafficEventRuleConfigEvent:evt)
trafficEventRuleChanged(TrafficEventRuleConfigEvent:evt)
trafficEventRuleRemoved(id:Identifier)
clientAdded(ClientConfigEvent:evt)
clientChanged(ClientConfigEvent:evt)
clientRemoved(id:Identifier)
connectionStatusChanged(ExternalSystemConnectionStatusEvent:info)
connectionConfigChanged(ExternalSystemConnectionConfigEvent:config)

getID(): String
getName(): String
getDescription(): String
isSupplier(): boolean
isConsumer(): boolean
getContactName():String
getContactPhone():String
getContactEmail():String
getPublicKeyStr():String
getPrivateKeyStr():String
compareTo():Int
getRoles():WebRole[]

m_id: String
m_name: String
m_description: String
m_supplier: boolean
m_consumer: boolean
m_contactName: String
m_contactPhone: String
m_contactEmail: String
m_publicKeyStr:String
m_roles:Role[]

get():SystemProfileProperties
getAlertArchiveTimeMinutes() : int
getAlertAudibleReminderInterval() : int
getAlertDefaultAcceptTimeMinutes(type:WebAlertType) : int
getAlertDefaultDelayTimeMinutes(type:WebAlertType) : int
getAlertDeviceFailureAudio() : byte[]
getAlertDuplicateEventAudio() : byte[]
getAlertEscalationTimeMinutes(type:WebAlertType) : int
getAlertEventStillOpenAudio() : byte[]
getAlertGenericAudio() : byte[]
getAlertMaxAcceptTimeMinutes(type:WebAlertType) : int
getAlertMaxDelayTimeMinutes(type:WebAlertType) : int
getAlertReminderAudio() : byte[]
getAlertUnhandledRsrcAudio() : byte[]
getNotificationProperties() : SystemProfileNotificationProperties
getScheduleRemovalTimeMinutes() : int
getScheduleActivationSuppressionTimeMinutes() : int
getMissedActivationGracePeriodMinutes()
getDefaultEventNearbyDevicesRadiusTenths() : int

execute():void
discoverClasses():void
discoverEventChannels():void

getID(): string
getDescription(): string
getGeographicalAreas(): WebGeoArea[]
getGeographicalAreaIDs(): Identifier[]
getRouteTypes(): string[]
getLanesClosed(): int
getLanesClosedFlag(): bool
getEventTypes(): int[]
getIssueAlertFlag(): bool
getInterestingFlag(): bool
getSearchText(): string[]
getNotificationTarget(): WebNotificationRecipient

 m_rule: TrafficEventRule

getName():String
getStatus():String
compareTo(): Int

m_ref: ExternalSystemConnection
m_config: ExternalSystemConfig
m_status: ExternalSystemStatus
m_id: Identifier

isOK():boolean
isWarning():boolean
isFailed():boolean
getStatusConfirmTime():Date
getStatusChangeTime():Date
getFailedTime():Date

m_status: ExternalSystemConnectionStatus

getID():Identifier
getAgencyName():String
getOrgID():String
compareTo():Int

m_id: Identifier
m_name: string
m_description: string
m_orgID: Identifer

getID(): Identifier
getAgencyName(): String
getName(): string
getDescription(): string
getLocation(): string
isIncluded(): bool
isExcluded(): bool
getDeviceType(): ExternalDeviceType

m_data: ExternalDeviceCandidateInfo

Figure 5-328. GUIExternalSystemClasses (Class Diagram)

CHART R3B3 Detailed Design 5-599 12/23/2008

5.39.1.1.1 DiscoverExternalClassesCmd (Class)

This class is called to periodically discover classes related to the external system from the

trading service and External Interface module. This includes traffic event rules, and external

connections

5.39.1.1.2 ExternalSystemPushConsumer (Class)

This event consumer class handles events related to traffic event rules, external system

clients, and external connections

5.39.1.1.3 SystemProfileProperties (Class)

This class is used to cache the system profile properties and provide access to them. It is

also used to interact with the server to change system profile settings.

5.39.1.1.4 WebExternalAgency (Class)

This class wraps an External Agency for display in the GUI.

5.39.1.1.5 WebExternalDevice (Class)

This class wraps an External Device for display in the GUI.

5.39.1.1.6 WebExternalSystemClient (Class)

This class wraps an external system client for display in the GUI

5.39.1.1.7 WebExternalSystemConnection (Class)

This class wraps an external system connection for display in the GUI.

5.39.1.1.8 WebExternalSystemStatus (Class)

This class wraps an ExternalSystemConnectionStatus class for display in the GUI

5.39.1.1.9 WebTrafficEventRule (Class)

This class wraps a TrafficEventRule for display in the GUI

CHART R3B3 Detailed Design 5-600 12/23/2008

5.39.2 Sequence Diagrams

5.39.2.1 chartlite.data.externalsystem:DiscoverExternalSystemClasses (Sequence

Diagram)

This diagram shows the processing that occrus for initial and periodic discovery of external

system classes. The external system classes consist of traffic event inclusion rules and

external connections.

ExternalSystemConnection
findAllObjectsOfType()

WebExternalSystemConnection

WebExternalSystemConnection

org.omg.CORBA.Object[]

[for each
connection]

[not in data model]
New(ref, data, datamodel)

[edit]
update(data)

[if newly discovered]
objectAdded(id, WebExternalSystemConnection)

TrafficEventRule Factory

WebTrafficEventRule

DataModel

execute()

number of channels added

org.omg.CORBA.Object[]

getTrafficEventRules()

[for each
rule]

update(data)

[if newly discovered]
objectAdded(id, WebTrafficEventRUle)

TrafficEventRuleFactory WebTrafficEventRule

getEventChannelsOfName
(eventConsumerGroup,

 channelName, pushConsumer)

findAllObjectsOfType()

[for each
 factory]

TrafficEventRuleConfig[]

[not in data model]
New(ref, data, datamodel)

[if update]
objectUpdated(id)

Discovery Driver

DiscoverExternalSystemClassesCmd TraderGroup

Figure 5-329. chartlite.data.externalsystem:DiscoverExternalSystemClasses (Sequence

Diagram)

CHART R3B3 Detailed Design 5-601 12/23/2008

5.39.2.2 ExternalSystemPushConsumer:clientAdded (Sequence Diagram)

This diagram shows the processing that occurs when a event comes in that indicates a new

external client was added.

System

ExternalSy stemPushConsumer

WebExternalSy stemClient

DataModel

[objectAdded did NOT return null]
Log message - object existed

clientAdded(ClientConf igEv ent: ev t)

new(ev t.conf ig,ev t.id)

objectAdded(WebExternalSy stemClient)
null of WebExternalSy stemClient

Figure 5-330. ExternalSystemPushConsumer:clientAdded (Sequence Diagram)

CHART R3B3 Detailed Design 5-602 12/23/2008

5.39.2.3 ExternalSystemPushConsumer:clientRemoved (Sequence Diagram)

This diagram shows the processing that occurs when a client removed event is received on

the event channel.

ExternalSystemPushConsumer

objectRemoved(clientID)

getObject(clientID)

System
DataModel

clientRemoved(Identifier:id)

WebExternalSystemClient

Figure 5-331. ExternalSystemPushConsumer:clientRemoved (Sequence Diagram)

5.39.2.4 ExternalSystemPushConsumer:clientUpdated (Sequence Diagram)

This diagram shows the processing that occurs when a client updated event comes in on the

event channel.

System

DataModel

getObject(clientID)

objectUpdated(clientID)

WebExternalSy stemClient

ExternalSy stemPushConsumer WebExternalSy stemClient

update(ev t.conf ig)

clientUpdated(ClientConf igEv ent:ev t)

Figure 5-332. ExternalSystemPushConsumer:clientUpdated (Sequence Diagram)

CHART R3B3 Detailed Design 5-603 12/23/2008

5.39.2.5 ExternalSystemPushConsumer:connectionStatusChanged (Sequence Diagram)

This diagram shows the processing that occurs when a connection status changed event

comes in.

System
WebExternalSystemConnection

getObject(id)

updateStatus(info.status)

new(info.id)

ExternalSystemPushConsumer DataModel

connectionStatusChanged
(ExternalSystemConnectionStatusEventInfo info)

WebExternalSystemConnection

objectUpdated(id)

Identifier

Figure 5-333. ExternalSystemPushConsumer:connectionStatusChanged (Sequence

Diagram)

CHART R3B3 Detailed Design 5-604 12/23/2008

5.40 Chartlite.data.tss-data

5.40.1 Classes

5.40.1.1 GUITSSDataClasses (Class Diagram)

This diagram shows objects related to adding TCP/IP connection functionality and geo

location to TSS's.

0..1

1

WebObj ectLocationSupporter
«interface»

WebIPPortLocationData

WebTSS

Searchable
«interface»

WebDev ice
«interface»

1

FolderEnabled
«interface»

NameFilterable
«interface»

WebAdministered
«interface»

WebTSSConfiguration
1

getConfig() : WebTSSConfiguration
getSpeedDesc() : String
getSpeedRangeDesc() : String

getTCPIPConfiguration():WebTCPIPConfig
getLocation() : WebObjectLocation
isExternal():boolean

m_config: TSSConfiguration

getIPAddress() : String
getTCPPortNumber() : int

m_ipPortLocationData : IPPortLocationData

Figure 5-334. GUITSSDataClasses (Class Diagram)

5.40.1.1.1 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

5.40.1.1.2 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the

ObjectCache. A NameFilter object is passed into the ObjectCache to select NameFilterable

objects in the cache.

5.40.1.1.3 Searchable (Class)

This interface allows objects to be searched for via a substring search.

CHART R3B3 Detailed Design 5-605 12/23/2008

5.40.1.1.4 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

5.40.1.1.5 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.40.1.1.6 WebIPPortLocationData (Class)

This class wraps the IPPortLocationData IDL structure and provides accessor methods to

get the data. This class has data for identifying a TCP/IP address and port.

5.40.1.1.7 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.40.1.1.8 WebTSS (Class)

This class wraps the TransportationSystemSensor CORBA interface, caches data, and

provides access to the cached data.

5.40.1.1.9 WebTSSConfiguration (Class)

This class wraps the TSSConfiguration IDL structure and provides accessors for easy

access to the data.

CHART R3B3 Detailed Design 5-606 12/23/2008

5.41 Chartlite.data.trafficevents-data

5.41.1 Classes

5.41.1.1 chartlite.data.trafficevents_classes (Class Diagram)

This diagram shows the main wrapper class used for storing traffic event related data in the

cache.

New for R3B3:
- getLocation() returns WebObjectLocation
 instead of WebTrafficEventLocation
- getPublicName() added
- DynamicImageFileKeeper interface added
- WebObjectLocationSupporter interface added

DynamicImageFileKeeper
«interface»

TrafficEventDataProvider
«interface»

WebTrafficEvent

Searchable
«interface»

WebArbQueueEntryOwner
«interface»

WebSharedResource
«interface»

WebAdministered
«interface»

WebUniquelyIdentifiable
«interface»

WebObjectLocationSupporter
«interface»

addEventAssociation(eventID:Identifier) : void
addResponseParticipation(p:ResponseParticipation, pd:ResponseParticipationData) : void
addResponsePlanItem(rpi:WebResponsePlanItem) : void
addResponsePlanItems(token:byte[], rpiData:ResponsePlanItemData[]) : void
displayPublicWebSiteAlert() : boolean
getAssociatedEventIdentifiers() : Identifier[]
getClosedDate() : Date
getCountyRegionStateDesc() : String
getDirectionDesc() : String
getDMSResponseDevices() : WebDMS[]
getEventType() : WebTrafficEventType
getEventTypeDesc() : abstract String
getHARResponseDevices() : WebHAR[]
getHistoryEntry(entryID:Identifier) : LogEntryWrapper
getImageName() : String
getInitiatingScheduleID() : Identifier
getInitiatingSchedule() : WebSchedule
getLaneClosureDesc() : String
getLaneConfiguration() : WebLaneConfiguration
getLaneDisplayLargeGIFManager() : LaneDisplayGIFManager
getLaneDisplaySmallGIFManager() : LaneDisplayGIFManager
getLatestHistoryEntries(num:int, numPreviousHolder:int[]) : LogEntryWrapper[]
getLocation() : WebObjectLocation
getLocationDesc() : String
getNextHistoryEntries(num:int, endSeq:int, numPreviousHolder:int[], numNextHolder:int[]):LogEntryWrapper[]
getNotificationRecords() : WebNotificationRecord[]
getNumLanesClosed() : int
getOpenedTimestamp() : int
getPriorHistoryEntries(num:int, endSeq:int, numPreviousHolder:int[], numNextHolder:int[]):LogEntryWrapper[]
getPublicName() : String
getRawBasicEventData() : BasicEventData
getResponseParticipation(id:Identifier):WebResponseParticipation
getResponseParticipations() : WebResponseParticipation[]
getResponsePlanItem(id:Identifier) : WebResponsePlanItem
getResponsePlanItemForTarget(targetID:Identifier) : WebResponsePlanItem
getResponsePlanItems() : WebResponsePlanItem[]
getSchedulesReferencing() : WebSchedule
getTimeLastModified() : int
getTrafficEventRef() : TrafficEvent
getValidResponseParticipantTypes() : ResponseParticipantType[]
getVehiclesInvolvedDesc() : String
hasDMSResponseDevices() : boolean
hasEventAssociations() : boolean
hasHARResponseDevices() : boolean
hasLaneConfig() : boolean
hasParticipants() : boolean
hasRoadConditions() : boolean
hasVehiclesInvolved() : boolean
isAssociatedWithEvent(id:Identifier) : boolean
isClosed() : boolean
isLaneConfigApplicable() : boolean
isNameOverridden() : boolean
isOpen() : boolean
isPending() : boolean
isPrimary() : boolean
removeEventAssociation(eventID:Identifier) : void
removeResponseParticipation(id:Identifier) : void
removeResponsePlanItem(id:Identifier) : void
removeResponsePlanItems(token:byte[], ids:Identifier[]) : String
supportsLaneConfig() : boolean
update() : void
update(eventData:BasicEventData) : void
update(eventData:BasicEventData, changeFlags:TrafficEventDataChanged[]) : void
updateAssociatedEvents() : void
updateBasicEventData() : void
updateCachedLocation(location:ObjectLocation) : void
updateEventHistory() : void
updateEventHistory(entries: LogEntry[]) : void
updateLaneConfig() : void
updateLaneConfig(config : LaneConfiguration) : void
updateOrClearLaneGIFs() : void
updateResponseParticipations() : void
updateResponsePlan() : void

getTrafficEventType():short
getBasicEventData():BasicEventData
getResponsePlanItemData():ResponsePlanItemData[]
getResponseParticipationData():ResponseParticipationData[]

Figure 5-335. chartlite.data.trafficevents_classes (Class Diagram)

CHART R3B3 Detailed Design 5-607 12/23/2008

5.41.1.1.1 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

5.41.1.1.2 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.41.1.1.3 TrafficEventDataProvider (Class)

This interface is implemented by classes that can provide data from a traffic event. This

interface exists because traffic event data may be accessible in different forms depending on

where the ActionExecutionGroup (and related classes) are being used. For example, the

data for a traffic event may be accessible via a cache of traffic event data or via a CORBA

object reference.

5.41.1.1.4 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console

pages.

5.41.1.1.5 WebArbQueueEntryOwner (Class)

This interface specifies methods to be implemented by all objects that may place entries on

an arbitration queue.

5.41.1.1.6 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.41.1.1.7 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART

shared resources in the system, corresponding to the SharedResource IDL interface.

5.41.1.1.8 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access.

It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.41.1.1.9 WebUniquelyIdentifiable (Class)

This interface provides functionality for GUI objects that represent UniquelyIdentifiable

objects as defined in the IDL.

CHART R3B3 Detailed Design 5-608 12/23/2008

5.41.1.2 chartlite.data.trafficevents_event_type_classes (Class Diagram)

This diagram shows classes used to cache traffic event related data in the CHART GUI

servlet.

WebWeatherServiceEvent

Added for R3B3:

getPublicIncidentTypeName()

WebCongestionEvent

WebDisabledVehicleEvent

WebSpecialEvent

WebIncident

WebTrafficEventType

«enumeration»

WebActionEvent

WebTrafficEvent

WebPlannedRoadwayClosure

WebSafetyMessageEvent

createBasicEventData(type:WebTrafficEventType, eventID:byte[]) : BasicEventData
fromIDLValue(value:int) : WebTrafficEventType
fromTypeName(name:String) : WebTrafficEventType
fromWebTrafficEventClass(theClass:Class) : WebTrafficEventType
getDefaultDefaultEventStillOpenRemindDelayMinutes() : int
getIDLValue() : short
getSysProfileKeyEventTypeName() : String
getTrafficEventClass() : Class
getTypeName() : String
getWebTrafficEventClass() : Class
supportsParticipation() : boolean
supportsResponsePlan() : boolean

ActionEvent
CongestionEvent
DisabledVehicleEvent
Incident
PlannedRoadwayClosure
SafetyMessageEvent
SpecialEvent
WeatherServiceEvent

getActionEventData() : ActionEventData
getActionEventRef() : ActionEvent
getOtherDescription() : String
hasDebris() : boolean
hasOther() : boolean
hasSignal() : boolean
hasUtility() : boolean

getCongestionEventData() : CongestionEventData
getCongestionEventRef() : CongestionEvent
isRecurring() : boolean

getSpecialEventRef() : SpecialEvent

getSafetyMessageEventRef() : SafetyMessageEvent

getEORSPermitTrackingNumber() : String
getPlannedRoadwayClosureEventData() : PlannedRoadwayClosureEventData
getPlannedRoadwayClosureRef() : PlannedRoadwayClosure

getIncidentData() : IncidentData
getIncidentRef() : Incident
getIncidentTypeName() : String
getMinNumCars() : int
getMinNumCommercialBus() : int
getMinNumLoadedCommercialBus() : int
getMinNumLoadedSchoolBus() : int
getMinNumMotorcycles() : int
getMinNumPickupVanSUVs() : int
getMinNumSchoolBus() : int
getMinNumSingleUnitTrucks() : int
getMinNumTractorTrailers() : int
getMinNumUnloadedCommericialBus() : int
getMinNumUnloadedSchoolBus() : int
getMinNumVehicles() : int
getNumCarsInvolved() : int
getNumCarsOverturned() : boolean
getNumLoadedCommercialBusInvolved() : int
getNumLoadedCommercialBusOverturned() : int
getNumLoadedSchoolBusInvolved() : int
getNumLoadedSchoolBusOverturned() : int
getNumMotorcyclesInvolved() : int
getNumPickupVanSUVsInvolved() : int
getNumPickupVanSUVsOverturned() : int
getNumSingleUnitTrucksInvolved() : int
getNumSingleUnitTrucksLostLoad() : int
getNumSingleUnitTrucksOverturned() : int
getNumTractorTrailersInvolved() : int
getNumTractorTrailersJackKnifed() : int
getNumTractorTrailersLostLoad() : int
getNumTractorTrailersOverturned() : int
getNumUnloadedCommercialBusInvolved() : int
getNumUnloadedCommercialBusOverturned() : int
getNumUnloadedSchoolBusInvolved() : int
getNumUnloadedSchoolBusOverturned() : int
getPublicIncidentTypeName() : String
getRoadConditionDesc() : String
getShortEventTypeDesc() : String
getVehiclesInvolvedDesc() : String
isHazmat() : boolean

abandonedVehicle() : boolean
callForService() : boolean
directions() : boolean
gas() : boolean
getDisabledVehicleData() : DisabledVehicleData
getDisabledVehicleEventRef() : DisabledVehicleEvent
getOtherDescription() : String
getVehicleMakeColor() : String
getVehicleTagInfo() : String
goneOnArrival() : boolean
hotShot() : boolean
other() : boolean
ownDisposition() : boolean
relayOperator() : boolean
tireChange() : boolean
water() : boolean

getOtherDescription() : String
getRoadConditionDesc() : String
getWeatherServiceEventData() : WeatherServiceEventData
getWeatherServiceEventRef() : WeatherServiceEvent
hasActionEventData() : boolean
hasRoadConditionsData() : boolean
isEvacuationRequired() : boolean
isFlood() : boolean
isHighWater() : boolean
isHurricane() : boolean
isLandslide() : boolean
isOther() : boolean
isOzone() : boolean
isRain() : boolean
isReducedVisibility() : boolean
isSevereWind() : boolean
isSnow() : boolean
isStormCleanupRequired() : boolean
isTornado() : boolean

Figure 5-336. chartlite.data.trafficevents_event_type_classes (Class Diagram)

5.41.1.2.1 WebActionEvent (Class)

This class is a wrapper for a CORBA ActionEvent that allows it to be cached and to be

accessed within Velocity templates.

5.41.1.2.2 WebCongestionEvent (Class)

This class is a wrapper for a CORBA CongestionEvent that allows it to be cached and to be

accessed from within Velocity templates.

CHART R3B3 Detailed Design 5-609 12/23/2008

5.41.1.2.3 WebDisabledVehicleEvent (Class)

This class is a wrapper for a CORBA DisabledVehicleEvent that allows it to be cached and

to be accessed from within a Velocity template.

5.41.1.2.4 WebIncident (Class)

This class is a wrapper for a CORBA Incident that allows it to be cached and to be accessed

from within a Velocity template.

5.41.1.2.5 WebPlannedRoadwayClosure (Class)

This class is a wrapper for a CORBA PlannedRoadwayClosure that allows it to be cached

and to be accessed from within a Velocity template.

5.41.1.2.6 WebSafetyMessageEvent (Class)

This class is a wrapper for a CORBA SafetyMessageEvent that allows it to be cached and

to be accessed from within a Velocity template.

5.41.1.2.7 WebSpecialEvent (Class)

This class is a wrapper for a CORBA SpecialEvent that allows it to be cached and to be

accessed from within a Velocity template.

5.41.1.2.8 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access.

It provides accessor methods to get the cached data, in addition to auxiliary methods.

5.41.1.2.9 WebTrafficEventType (Class)

This enumeration contains the traffic event types.

5.41.1.2.10 WebWeatherServiceEvent (Class)

This class is a wrapper for a CORBA WeatherServiceEvent that allows it to be cached and

accessed from within a Velocity template.

CHART R3B3 Detailed Design 5-610 12/23/2008

5.41.1.3 chartlite.data.trafficevents_misc_classes (Class Diagram)

This diagram shows miscellaneous classes related to traffic events.

New for R3B3:
- WebTrafficEventLocation removed
- DynamicImageFileKeeper interface added

WebVehicleType
«enumeration»

LaneDisplayGIFManager

LaneGIFData LaneGIFLaneData

*1

WebLaneConfiguration

DynamicImageFileKeeper
«interface»

WebTrafficEventFactory

WebLaneConfiguration(config:LaneConfiguration, eventDirection:short)
setConfigDirection(config:LaneConfiguration, eventDirection:short) : static void
setToDefaultStatus(config:LaneConfiguration, eventDirection:short) : static void
cloneConfig(config:LaneConfiguration) : LaneConfiguration
getClonedConfig() : LaneConfiguration
copy(newDir:short) : WebLaneConfiguration
copy() : WebLaneConfiguration
getClosureDesc() : String
getDescription() : String
getDirectionName(direction:short) : static String
getLane(laneIdx : int) : Lane
getLaneChangeTimeDesc(laneIdx : int) : String
getLaneConfiguration() : LaneConfiguration
getUtilLaneConfiguration() : chartlite.util.lane.LaneConfiguration
getLaneInfoString() : String
getLanes() : LaneWrapper[]
getLatestLaneChangedTime() : Date
getName() : String
getNumExistingLanes() : int
getNumLanes() : int
getNumLanesClosed() : int
getPercentageOfLanesClosed() : int
getReferenceDir() : short
getOppositeReferenceDir() : short
getReferenceDirName() : String
getReferenceDirAbbreviation() : String
getOppositeReferenceDirName() : String
getOppositeReferenceDirAbbreviation() : String
isConfigEmpty() : boolean
isDefaultStateOver(eventDirection:short) : boolean
setUnknownLanesOpen(eventDirection:short) : void
updateForEventDirection(eventDirection:short) : void
updateLaneDirectionsAndStates(laneDisplayLaneInfoStr:String) : void

-m_laneConfig : LaneConfiguration

LaneDisplayGIFManager(widthMultiplier:double, heightPixels:int, lineWidth:int, abbreviateDirNames:boolean, filenamePrefix:String, dynImageDir:File)
getDynamicImageFilenamesToKeep() : String[]
getFilename() : String
getGIFData(filename: String) : LaneGIFData
getHeightPixels() : int
getWidthPixels() : int
updateGIF(laneConfig : WebLaneConfiguration) : void

LaneGIFData(width:int, height:int, lanes:LaneGIFLaneData[], config:WebLaneConfiguration)
getConfig() : WebLaneConfiguration
getHeight() : int
getLanes() : LaneGIFLaneData[]
getWidth() : int

Car
LoadedCommercialBus
LoadedSchoolBus
Motorcycle
PickupVanSUV
SingleUnitTruck
TractorTrailer
UnloadedCommercialBus
UnloadedSchoolBus

LaneGIFLaneData(lane:chartlite.util.lane.Lane, pixelRect:Rectangle)
getLane() : chartlite.util.lane.Lane
getMaxX() : int
getMaxY() : int
getMinX() : int
getMinY() : int

Figure 5-337. chartlite.data.trafficevents_misc_classes (Class Diagram)

CHART R3B3 Detailed Design 5-611 12/23/2008

5.41.1.3.1 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

5.41.1.3.2 LaneDisplayGIFManager (Class)

This class manages a GIF file representation of a lane configuration. The configuration

may be updated, which would cause a new GIF file to be created.

5.41.1.3.3 LaneGIFData (Class)

This class contains metadata for a single instance of a GIF file, making it easy to create an

image map for the file via Velocity.

5.41.1.3.4 LaneGIFLaneData (Class)

This class represents a single lane within a single instance of a GIF file. It is used when

building an image map.

5.41.1.3.5 WebLaneConfiguration (Class)

This class wraps a LaneConfiguration structure and provides auxiliary methods for getting

and manipulating the data.

5.41.1.3.6 WebTrafficEventFactory (Class)

This class represents the TrafficEventFactory object in the server and wraps it to provide

faster access to cached data.

5.41.1.3.7 WebVehicleType (Class)

This enumeration lists the vehicle types that can be recorded in an Incident event

CHART R3B3 Detailed Design 5-612 12/23/2008

5.42 Chartlite.data.plans-data

5.42.1 Classes

5.42.1.1 plans_data_classes (Class Diagram)

This diagram shows classes related to filtering response plans/items.

DynamicImage
FileKeeper

«interface»

1

1

1

PlanTextFilterFlags

1

1

WebPlanFilterAttributes

1

PlanFilterAttributeList in IDL

1

1

1

PlanFilterAttributeList

1

WebPlan

* 1

WebPlanAttributeDataFilter

defined in IDL

<<struct>>
PlanFilterAttribute

String[] getEventTypeFiltersStrAry()
short[] getEventTypeFilters()
String[] getOpCenterFiltersStrAry()
String[] getLocationAliasFiltersStrAry()
String[] getCountyRegionsFiltersStrAry()
String[] getKeywordFiltersStrAry()
String getKeywordsInFilter()
WebTrafficEventType[] getWebTrafficEventTypesInFilter()
WebOpCenter[] getWebOpCentersInFilter()
String[] getWebOpCenterIDsInFilter()
boolean ex istsInFilter(String filterValue, String[] filterArray)
PlanFilterAttributes getPlanFilterAttributes()
void update(PlanFilterAttributes attributes)

PlanFilterAttributeList m_planFilterAttributes
DataModel m_dm

PlanFilterAttribute[] attributes

WebPlanAttributeDataFilter(WebPlanFilterAttributes attributes, Identifier filterID)
String getOperatorStr()
String[] getConnectionSiteNames()
PlanComparator getPlanComparator()
String[] getPlanCreatorNames()
WebPlanFilterAttributes getWebPlanFilterAttributes()
boolean isPlanNameChecked()
boolean isDeviceNameChecked()
boolean isDeviceTextChecked()
boolean isKeywordsChecked()
boolean matchesFilter()
boolean matchesStrArryFilter(String[] searchList String[] planLis t)
void setAnyAliasFlag(boolean anyValue)
boolean getAnyAliasFlag()
void setAnyCountyRegionFlag(boolean anyValue)
boolean getAnyCountyRegionFlag()
void setAnyEventFlag(boolean anyValue)
boolean getAnyEventFlag()
void setAnyOpCtrFlag(boolean anyValue)
boolean getAnyOpCtrFlag()
int getReturnFromAnyMatchValue(PlanAttrSpec ification discriminator)
update(PlanFilterAttributes attributes, PlanTextFilterFlags flags, LogicalOperator operator,
String[] connectionSites, String[] creatorNames)

LogicalOperator m_filterOperator
PlanComparator m_comparator
Identifier m_webFilterID
String[] m_connectionSites
String[] m_planCreatorNames
WebPlanFilterAttributes m_filterAttributes
PlanTextFilterFlags flags
boolean m_anyEventFlag
boolean m_anyAliasFlag
boolean m_anyCountyRegionFlag
boolean m_anyOpCenterFlag
Object m_lock

PlanTextFilterFlags(boolean, devName,
 boolean devText, boolean planName,
 boolean keywords)
boolean searchKeywords()
boolean searchDeviceName()
boolean searchPlanName()
boolean searchDeviceText()

boolean m_devName
boolean m_devText
boolean m_planName
boolean m_keywords

PlanFilterAttributeLis t getFilterableAttributes()
void setFilterableAttributes(FilterableAttribute[] attributes)
String getEventTypeFilter()
String getOpCtrFilter()
String getKeywordFilter()
String getCountyRegionFilter()
String getLocationAliasFilter()
String getPlanCreatorName()
PlanFilterAttributes getPlanFilterableAttr ibutes()
PlanFilterAttributes getPlanFilterableAttr ibutes(PlanTextFilterFlags flags)

WebPlanFilterAttributes m_filter
long m_lastUsedTimestamp
long m_planCreatedTimestamp
String m_planCreatorName

Figure 5-338. plans_data_classes (Class Diagram)

5.42.1.1.1 DynamicImage FileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

CHART R3B3 Detailed Design 5-613 12/23/2008

5.42.1.1.2 PlanFilterAttributeList (Class)

5.42.1.1.3 PlanTextFilterFlags (Class)

5.42.1.1.4 WebPlan (Class)

5.42.1.1.5 WebPlanAttributeDataFilter (Class)

5.42.1.1.6 WebPlanFilterAttributes (Class)

CHART R3B3 Detailed Design 5-614 12/23/2008

5.42.1.2 plans_data_classes (Class Diagram)

This diagram shows classes related to filtering response plans/items.

DynamicImage
FileKeeper

«interface»

1

1

1

PlanTextFilterFlags

1

1

WebPlanFilterAttributes

1

PlanFilterAttributeList in IDL

1

1

1

PlanFilterAttributeList

1

WebPlan

* 1

WebPlanAttributeDataFilter

defined in IDL

<<struct>>
PlanFilterAttribute

String[] getEventTypeFiltersStrAry()
short[] getEventTypeFilters()
String[] getOpCenterFiltersStrAry()
String[] getLocationAliasFiltersStrAry()
String[] getCountyRegionsFiltersStrAry()
String[] getKeywordFiltersStrAry()
String getKeywordsInFilter()
WebTrafficEventType[] getWebTrafficEventTypesInFilter()
WebOpCenter[] getWebOpCentersInFilter()
String[] getWebOpCenterIDsInFilter()
boolean existsInFilter(String filterValue, String[] filterArray)
PlanFilterAttributes getPlanFilterAttributes()
void update(PlanFilterAttributes attributes)

PlanFilterAttributeList m_planFilterAttributes
DataModel m_dm

PlanFilterAttribute[] attributes

WebPlanAttributeDataFilter(WebPlanFilterAttributes attributes, Identifier filterID)
String getOperatorStr()
String[] getConnectionSiteNames()
PlanComparator getPlanComparator()
String[] getPlanCreatorNames()
WebPlanFilterAttributes getWebPlanFilterAttributes()
boolean isPlanNameChecked()
boolean isDeviceNameChecked()
boolean isDeviceTextChecked()
boolean isKeywordsChecked()
boolean matchesFilter()
boolean matchesStrArryFilter(String[] searchList String[] planList)
void setAnyAliasFlag(boolean anyValue)
boolean getAnyAliasFlag()
void setAnyCountyRegionFlag(boolean anyValue)
boolean getAnyCountyRegionFlag()
void setAnyEventFlag(boolean anyValue)
boolean getAnyEventFlag()
void setAnyOpCtrFlag(boolean anyValue)
boolean getAnyOpCtrFlag()
int getReturnFromAnyMatchValue(PlanAttrSpecification discriminator)
update(PlanFilterAttributes attributes, PlanTextFilterFlags flags, LogicalOperator operator,
String[] connectionSites, String[] creatorNames)

LogicalOperator m_filterOperator
PlanComparator m_comparator
Identifier m_webFilterID
String[] m_connectionSites
String[] m_planCreatorNames
WebPlanFilterAttributes m_filterAttributes
PlanTextFilterFlags flags
boolean m_anyEventFlag
boolean m_anyAliasFlag
boolean m_anyCountyRegionFlag
boolean m_anyOpCenterFlag
Object m_lock

PlanTextFilterFlags(boolean, devName,
 boolean devText, boolean planName,
 boolean keywords)
boolean searchKeywords()
boolean searchDeviceName()
boolean searchPlanName()
boolean searchDeviceText()

boolean m_devName
boolean m_devText
boolean m_planName
boolean m_keywords

PlanFilterAttributeList getFilterableAttributes()
void setFilterableAttributes(FilterableAttribute[] attributes)
String getEventTypeFilter()
String getOpCtrFilter()
String getKeywordFilter()
String getCountyRegionFilter()
String getLocationAliasFilter()
String getPlanCreatorName()
PlanFilterAttributes getPlanFilterableAttributes()
PlanFilterAttributes getPlanFilterableAttributes(PlanTextFilterFlags flags)

WebPlanFilterAttributes m_filter
long m_lastUsedTimestamp
long m_planCreatedTimestamp
String m_planCreatorName

Figure 5-339. plans_data_classes (Class Diagram)

5.42.1.2.1 <<struct>> PlanFilterAttribute (Class)

5.42.1.2.2 DynamicImage FileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

5.42.1.2.3 PlanFilterAttributeList (Class)

5.42.1.2.4 PlanTextFilterFlags (Class)

5.42.1.2.5 WebPlan (Class)

5.42.1.2.6 WebPlanAttributeDataFilter (Class)

5.42.1.2.7 WebPlanFilterAttributes (Class)

CHART R3B3 Detailed Design 5-615 12/23/2008

5.43 Chartlite.servlet

5.43.1 Classes

5.43.1.1 ServletBaseClasses (Class Diagram)

This diagram shows classes related to the base CHART GUI servlet.

New for R3B3:

getEventCloseDevicesRadiusTenths()
setEventCloseDevicesRadiusTenths()

11 NavLinkRightschartlite.servlet.UserLoginSessionImpl

ServletDB

1 1

ServletProperties

*

1

1

1

MainServlet

RequestHandlerSupporter

«interface»

RequestHandlerMapping

1

1

1

1

1

RequestHandler

«interface»

1

org.apache.velocity.
VelocityServlet

UserLoggedOutPolicy

«enumeration»
RequestAction

getProperties():ServletProperties
getDB():ServletDB
getCachedObject(objID:Identifer):Object
getCachedObjectsOfType(type:Class):Object[]
getSysProfileProps():SystemProfileProperties
getORB():ORB
getRootPOA():POA
getPersistentPOA():POA
getTraderGroup():TraderGroup

handleRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context):Template

getUserLoggedOutPolicy():UserLoggedOutPolicy
getAction():String

getLocalMonitorGroupID():Identifier
getNavLinkRights():NavLinkRights
getLastAlertFilterSetting():String
initialWorkingPageShown() : boolean
setInitialWorkingPageShown(shown : boolean) : void
getInitialWorkingPageURL() : String
getHomeMonitorID() : Identifier
setHomeMonitorID(id:Identifier) : void
getMRUTrafficEventNotificationGroups() : WebNotificationGroup[]
getMRUTrafficEventNotificationIndividuals() : WebNotificationIndividual[]
getMRUStandaloneNotificationGroups() : WebNotificationGroup[]
getMRUStandaloneNotificationIndividuals() : WebNotificationIndividual[]
updateNotificationMRULists(recipients:WebNotificationRecipient[], isForEvent:boolean) : void
getEventCloseDevicesRadiusTenths(eventID : Identifier) : int
setEventCloseDevicesRadiusTenths(eventID : Identifier, tenths : int) : void

m_initializedNotificationMRULists : boolean
m_eventCloseDevicesRadiusTenthsTable : HashTable<Identifier; Integer>

getRequestAction():RequestAction
getRequestHandler():RequestHandler

DisplayLoginPage
DisplayError
DisplayNoContent
XMLError

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

isViewOnly():boolean
canManageEvents():boolean
canViewEventDetails():boolean
canHandleUncontrolledRes():boolean
canViewAlert(alert:WebAlert):boolean
canManageAlert(alert:WebAlert):boolean
canManageDictionary():boolean

getFramingTemplate():String
getNavBarTemplate():String
getErrorTemplate():String
trapUserEnabled():boolean
getXMLGeneralResultTemplate():String

5-340 ServletBaseClasses (Class Diagram)

5.43.1.1.1 chartlite.servlet.UserLoginSessionImpl (Class)

This class is used to store information about the logged in user. It is also the

implementation of the UserLoginSession CORBA interface that can be called from the

server to ensure the user is still logged in, send them an instant message, or force the user to

become logged out.

5.43.1.1.2 MainServlet (Class)

This class is the main class of the servlet. It handles all requests and dispatches them to the

appropriate request handler. It also acts as a RequestHandlerSupporter, which is passed to

each request handler to help them process requests.

CHART R3B3 Detailed Design 5-616 12/23/2008

5.43.1.1.3 NavLinkRights (Class)

This class provides user rights checking for the servlet. It contains a user's token and

provides easy to use methods that can check the presence of functional rights, combinations

of rights, or even rights that are specific to the object the user wishes to use.

5.43.1.1.4 org.apache.velocity. VelocityServlet (Class)

The base class for the Velocity template engine. This template engine is used to provide

dynamic content from the CHART GUI Servlet. The web pages are code in templates

using velocity specific macros. The code in the servlet loads data that will be shown on the

page into a velocity Context, and this VelocityServlet class is used to merge the content

with the template to create HTML for the browser to display.

5.43.1.1.5 RequestAction (Class)

This class contains information about an action that can be invoked via a request handler.

The action parameter is specified in the URL as the "action" parameter, or as the last part of

the servlet path. The user logged out policy specifies what the servlet should do if this

action is requested when the user is logged out.

5.43.1.1.6 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.43.1.1.7 RequestHandlerMapping (Class)

This class provides a mapping between an action and the request handler used to process a

request for that action.

5.43.1.1.8 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods

that are helpful to request handlers.

5.43.1.1.9 ServletDB (Class)

This class is used by the CHART GUI servlet to access CHART GUI specific data that is

stored in the database.

5.43.1.1.10 ServletProperties (Class)

This class provides access to properties defined in the chart gui's properties file.

5.43.1.1.11 UserLoggedOutPolicy (Class)

This enumeration specifies the types of actions that may be specified for responding to a

request that is received when the user is logged out.

CHART R3B3 Detailed Design 5-617 12/23/2008

5.43.1.2 ServletMiscClasses (Class Diagram)

This diagram shows miscellaneous classes used within the servlet.

In DataModel

In TempObjectStore

DynImageCleanupTask

j av a.util.TimerTask

DynamicImageFileKeeper
«interface» * 1

In DataModel

In TempObjectStore
* 1

CommandStatusMgr

UserFormData

HttpServ letRequestParameterSupplier

ExtendedCommandStatusImpl

1

RequestParameterSupplier
«interface»

*

addParamValue(name:String, value:String) : void
addParamValuesFromRequest(req:HttpServletRequest) : void
appendErrorMessage(errMsg:String) : void
clearAllParameters() : void
clearAutoErrorMsg() : void
clearParamValues(name:String) : void
containsValue(name:String, value:String) : boolean
getAutoErrorMsg() : String
getBooleanParm(name:String, displayName:String, required:boolean) : boolean
getDateParm(name:String, displayName:String, required:boolean) : Date
getDoubleParm(name:String, displayName:String, required:boolean) : double
getErrorMessage() : String
getID() : String
getIdentifierParm(name:String, displayName:String, required:boolean) : Identifier
getIdentifierParms(name:String, displayName:String, required:boolean) : ArrayList<Identifier>
getIntegerParm(name:String, displayName:String, required:boolean) : Integer
getIntParm(name:String, displayName:String, required:boolean) : int
getRequiredValue(name:String) : String
getStringParm(name:String, displayName:String, required:boolean) : String
getTotalErrorLength() : int
getValue(name:String) : String
getValue(name:String, trim:boolean) : String
getValues(name:String) : String[]
hasAutoErrorMsg() : boolean
hasError() : boolean
isParmPresent(name:String) : boolean
populateFromRequest(req : HttpServletRequest) : void
prefixErrorMessage(str : String) : void
setErrorMessage(str : String) : void
setID(id:String) : void
setParameterValue(name:String, value:String) : void
setParameterValues(name:String, values : ArrayList<String>) : void
setParameterValues(name:String, values : String[]) : void

getParameter(name:String) : String

m_req : HttpServletRequest

getDynamicImageFilenamesToKeep() : ArrayList<String>

DynImageCleanupTask(
 dynImageDir : File, dm : DataModel,
 tempObjStore : TempObjectStore,
 olderThanMinutes : int)
run()

5-341. ServletMiscClasses (Class Diagram)

5.43.1.2.1 CommandStatusMgr (Class)

This class manages command status objects served by the GUI.

5.43.1.2.2 DynamicImageFileKeeper (Class)

This interface allows an object to keep dynamic image files from being deleted by the

DynImageCleanupTask, which periodically deletes files that are no longer needed.

CHART R3B3 Detailed Design 5-618 12/23/2008

5.43.1.2.3 DynImageCleanupTask (Class)

This class periodically cleans up dynamic image files in the dynamic images directory that

are no longer needed. The files to keep are maintained by objects in the DataModel and

TempObjectStore that implement the DynamicImageFileKeeper interface.

5.43.1.2.4 ExtendedCommandStatusImpl (Class)

This is an abstract class that is extended by classes that implement the

ExtendedCommandStatus CORBA interface. It handles the basic implementation required

of a command status, and leaves the implementation of updateAny() and completedAny() to

the derived classes.

5.43.1.2.5 HttpServletRequestParameterSupplier (Class)

This class implements the RequestParameterSupplier interface to provide parameters from

the HttpsServletRequest.

5.43.1.2.6 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one

or more times.

5.43.1.2.7 RequestParameterSupplier (Class)

This interface allows parameter values to be queried. It is used to provide a common

interface for getting parameters from the HttpServletRequest or from the UserFormData.

5.43.1.2.8 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex

form, and provides convenience methods for parsing the values from the request.

CHART R3B3 Detailed Design 5-619 12/23/2008

5.43.2 Sequence Diagrams

5.43.2.1 DynImageCleanupTask:run (Sequence Diagram)

This diagram shows how old dynamic image files are cleaned up. The

DynImageCleanupTask is called periodically to run, and it finds all objects implementing

the DynamicImageFileKeeper interface in the DataModel and the TempObjectStore. It

asks them for the files they want to keep, and sets those files as excluded files in the

AgeBasedFilenameFilter. The filter is then called to get the files to delete, and the files are

deleted.

Timer
DynImageCleanupTask DataModel TempObjectStore DynamicImageFileKeeper

HashSet<String>

AgeBased
FilenameFilter

m_dynImagesDir :
File File

run()

getObjec tsOfType(
DynamicImageFileKeeper.class)

DynamicImageFileKeeper[]

getDynamicImageFilenamesToKeep()
ArrayList<String>

create

addAll(filenames)

[* for each file keeper]

getObjectsOfType(
DynamicImageFileKeeper.c lass)

DynamicImageFileKeeper[]

getDynamicImageFilenamesToKeep()
ArrayList<String>

addAll(filenames)

[* for each file keeper]

toArray(new String[0])
filenames : String[]

setExcludedFiles(filenames)

lis tFiles(m_filenameFilter)
oldFiles : File[]

delete()[* for each old file
not exc luded]

5-342. DynImageCleanupTask:run (Sequence Diagram)

CHART R3B3 Detailed Design 5-620 12/23/2008

5.44 Chartlite.servlet.usermgmt

5.44.1 Class Diagrams

5.44.1.1 chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to the system profile.

SystemProfileReqHdlr

RequestHandler
«interface»

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

processConfigAlertTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getConfigAlertTimeOutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
processConfigAlertEscalateTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
processConfigAlertArchiveTimeOut(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getConfigAlertEscalateArchiveTimeOutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setNotificationSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getNotificationSettingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getTravelTimeRangesForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setTravelTimeRanges(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getTravelTimeScheduleForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setTravelTimeSchedule(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getTravelTimeMiscSettingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setTravelTimeMiscSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getTSSSpeedSummaryRangesForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setTSSSpeedSummaryRanges(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getExternalConnectionsNotificationAndAlertsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setExternalConnectionsNotificationAndAlerts(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getExternalOrgToAgencyMappingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setExternalOrgToAgencyMappingsForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

5-343. chartlite.servlet.usermgmt.systemProfile_classes (Class Diagram)

5.44.1.1.1 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.44.1.1.2 SystemProfileReqHdlr (Class)

This class is a request handler that processes requests related to the system profile.

CHART R3B3 Detailed Design 5-621 12/23/2008

5.44.2 Sequence diagrams

5.44.2.1 SystemProfileReqHdlr:addDMSMsgComboProps (Sequence Diagram)

This diagram shows the processing that is performed in the addDMSMsgComboProps

method of the SystemProfileReqHdlr class. This method is used to read the parameters

passed from the DMS Message combination Rules form and store them into a Properties

object that can be passed to SystemProfileProperties object to set the properties. This

method exists prior to R3B3 and is upgraded in R3B3 to handle message combinations that

result from 2 new message queue buckets (priorities), Toll Rate and Travel Time. The

general pattern used by this method is to construct a property name using a prefix and IDL

values for the two types of priorities being combined. The parameter associated with the

check box that sets whether or not messages of those priorities can be combined is retrieved

from the HttpServletRequest. If the parameter is present, that indicates the box checked,

and otherwise the box is unchecked. The appropriate value (true or false) is stored in the

Properties object that was passed to the method using the appropriate property name. In

R3B3, the following parameters are added to the form and to this method:

canCombineUrgentWithTollRate canCombineUrgentWithTravelTime

canCombineIncidentWithTollRate canCombineIncidentWithTravelTime

canCombinePlannedClosureWithTollRate canCombinePlannedClosureWithTravelTime

canCombineTollRateWithTollRate canCombineTollRateWithTravelTime

canCombineTollRateWithCongestion canCombineTollRateWithSHAZAM

canCombineTravelTimeWithTravelTime canCombineTravelTimeWithCongestion

canCombineTravelTimeWithSHAZAM

CHART R3B3 Detailed Design 5-622 12/23/2008

[not null]
setProperty(propName, "true")

[null]
setProperty(propName, "false")

[*for each
possible

priority combination]

propName

System
SystemProfileReqHdlr Properties HttpServletRequest

This method already exists, but needs to be updated in R3B3 to support
the new travel time and toll rate arbitration queue buckets (priorities).

The following processing is completed for each of the checkboxes on the
DMS message combination form.

String

In R3B3, the following parameters are added:

canCombineUrgentWithTollRate
canCombineUrgentWithTravelTime
canCombineIncidentWithTollRate
canCombineIncidentWithTravelTime
canCombinePlannedClosureWithTollRate
canCombinePlannedClosureWithTravelTime
canCombineTollRateWithTollRate
canCombineTollRateWithTravelTime
canCombineTollRateWithCongestion
canCombineTollRateWithSHAZAM
canCombineTravelTimeWithTravelTime
canCombineTravelTimeWithCongestion
canCombineTravelTimeWithSHAZAM

addDMSMsgComboProps()

create(prefix + priority name 1
+ _ + priority name 2)

getParameter(paramName)
true or null

Figure 5-344. SystemProfileReqHdlr:addDMSMsgComboProps (Sequence Diagram)

CHART R3B3 Detailed Design 5-623 12/23/2008

5.44.2.2 SystemProfileReqHdlr:getExternalConnectionAlertAndNotificationSettingsForm

(Sequence Diagram)

This diagram shows the processing that occurs when an administrator chooses to manage

the External Connection Alert and Notification settings. The settings for each connection

are retrieved from the system profile in JSON string format. Each JSON string is parsed to

build a JSON object and placed in a JSON array which is ultimately added to the context.

FramingTemplate.vm

WebExternalSystemConnection[]

Administrator
ExternalSystemReqHdlr RequestHandlerSupporter SystemProfileProperties

JSONArray

[for each
connection]

getSystemProfileProps()
SystemProfileProperties

getExternalConnectionAlertAndNotificationSettings(connID:id)

JSON String

put("connections", JSONArray)

parse(jsonString)

JSONObject

create

add(JSONObject)

put("pageContent","externalsystem\ExternalSystemConnectionAlertSettings.vm")

JSONValue

ContextgetCachedObjectsOfType(WebExternalSystemConnection.c lass)

getExternalConnectionAlertAndNotificationSettingsForm(req,req,supp,ctx)

put("pageTitle","External System Connection Alert Settings")

Figure 5-345.

SystemProfileReqHdlr:getExternalConnectionAlertAndNotificationSettingsForm

(Sequence Diagram)

CHART R3B3 Detailed Design 5-624 12/23/2008

5.44.2.3 SystemProfileReqHdlr:getExternalOrgToAgencyMappingsForm (Sequence

Diagram)

This diagram show the processing that occurs when an administrator displays the external

agencies to oranizations mapping form.

Administrator
SystemProfileReqHdlr RequestHandlerSupporter Context

getExternalAgenciesToOrgsMappingForm()

check rights

[insufficient rights]
Error.vm

put("pageContent","externalsystem\ExternalSystemAgencyOrgMapping.vm")

template with agency and org mappings shown

SystemProfileProperties

WebAgency

getSysProfileProps()

[while prop
isn't null]

getProperty("agencyorgmapping[x]",null)
prop value or null

create

put("agencies", Arrays.sort(agencies)

Figure 5-346. SystemProfileReqHdlr:getExternalOrgToAgencyMappingsForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-625 12/23/2008

5.44.2.4 SystemProfileReqHdlr:getTSSSpeedSummaryRangesForm (Sequence Diagram)

This diagrams show the processing that occurs when an administrator has chosen to display

the TSS Speed Summary Ranges Form.

return EnclosingTemplate.vm

RequestHandlerSupporter SystemProfileProperties

check user rights

Context

getSysProfileProps()
SysProfileProperties

getTSSSpeedSummaryRanges()

int[]

put("TSSSpeedRanges", ranges)

put("pageContent", "TSSSpeedSummaryRangesForm.vm")

[no rights]
return error

Administrator
SystemProfileReqHdlr

getTSSSpeedSummaryRangesForm()

Figure 5-347. SystemProfileReqHdlr:getTSSSpeedSummaryRangesForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-626 12/23/2008

5.44.2.5 SystemProfileReqHdlr:getTravelTimeMiscSettingsForm (Sequence Diagram)

This diagram shows the processing that is performed when the administrator chooses to

display the form used to change miscellaneous travel time settings. If they have not been

granted the right to change the system profile, an error message is shown. Otherwise, the

settings are retrieved from the system profile and placed in a UserFormData object, which

is placed into the context so that the values can be used to pre-populate the form. The form

is then displayed to the user.

Administrator
SystemProfileReqHdlr NavLinkRights SystemProfileTravelTimeProperties SystemProfileProperties Context

UserFormData

setParameterValue("travelTimeTrendSampleSize",sampleSize)

setParameterValue("travelTimeExpirationMins",mins)

put("formData", UserFormData)

create

setParameterValue("travelTimeTrendTheshold",threshold)

int

getTravelTimeMiscSettingsForm()

canChangeSysProfile()
boolean

getTravelTimeProperties()

SystemProfileTravelTimeProperties

getTravelTimeTrendThreshold()

[no rights]
Error.vm

MiscTravelTimeSettings.vm

getTravelTimeTrendSampleSize()
int

int
getTravelTimeExpirationMins()

Figure 5-348. SystemProfileReqHdlr:getTravelTimeMiscSettingsForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-627 12/23/2008

5.44.2.6 SystemProfileReqHdlr:getTravelTimeRangesForm (Sequence Diagram)

This diagram shows the processing that is performed when the administrator chooses to

display the form used to set the travel time range definitions. If they have not been granted

the right to change the system profile, an error message is shown. Otherwise, the system

profile properties object is called to obtain a SystemProfileTravelTimeProperties object,

which is a wrapper that provides convenience methods for travel time related properties.

This object is called to retrieve the current travel time range definitions from the system

profile. The ranges are stored in the system profile as a string that uses JSON notation; this

string is passed to the constructor of TravelTimeRange which parses the string and stores

each range as a TravelTimeRangeDef object. This list of TravelTimeRangeDef objects is

obtained from the TravelTimeRange object and traversed. The values from each

TravelTimeRangeDef object are placed into a UserFormData object, using indexed

parameter names, with the index changing for each object processed. The number of ranges

is also placed in the form data. This form data object will be used by the form to populate

its form fields. This technique is used to allow the form to be easily re-populated if an error

is detected when the form is submitted. This form data object is put into the velocity

context and the TravelTimeRangeSettings form is displayed to the administrator.

CHART R3B3 Detailed Design 5-628 12/23/2008

create

setParameterValue("travelTime-n",travelTime)

setParameterValue("subtractAmt-n",subtractAmt)

setParameterValue("addAmt-n",addAmt)

[*for each
TravelTimeRangeDef]

put("formData", UserFormData)

getTravelTimeRangeDefs()

setParameterValue("numRanges", n)

Administrator
SystemProfileReqHdlr NavLinkRights SystemProfileTravelTimeProperties

TravelTimeRangeDef[]

UserFormData

n is the loop index

create(String)

TravelTimeRangeDef[]

TravelTimeRange

getRangeDefs()

SystemProfileProperties Context

getTravelTimeRangesForm()

canChangeSysProfile()
boolean

[no rights]
Error.vm

getTravelTimeProperties()

SystemProfileTravelTimeProperties

TravelTimeRangeSettings.vm

getProperty()
String

Figure 5-349. SystemProfileReqHdlr:getTravelTimeRangesForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-629 12/23/2008

5.44.2.7 SystemProfileReqHdlr:getTravelTimeScheduleForm (Sequence Diagram)

This diagram shows the processing that is performed when the administrator chooses to

display the form used to set the default (system-wide) travel time message display schedule.

If they have not been granted the right to change the system profile, an error message is

shown. Otherwise, the setting that specifies if specific time ranges are to be used (the

alternative is display travel time messages 24x7) is retrieved from the system profile

properties, as is the current list of specific time ranges. The time ranges are stored in the

system profile as a JSON encoded string and a utility method is used to convert the JSON

string into an array of HHMMRange objects. A UserFormData object is constructed and

the settings retrieved from the system profile properties are stored so that they may be used

to pre-populate the form. For the time ranges, the values are stored using an index

appended to the parameter name since there can be multiple time ranges. The form data is

placed in the context and the travel time message schedule form is displayed to the user.

TravelTimeMsgSchedule.vm

Administrator
SystemProfileReqHdlr NavLinkRights SystemProfilePropertiesSystemProfileTravelTimeProperties TravelTimeScheduleUtil

UserFormData

getTravelTimeScheduleForm()

canChangeSysProfile()
boolean

[no rights]
Error.vm

getTravelTimeProperties()

SystemProfileTravelTimeProperties

getTravelTimeSchedUseSpecificTimes()
boolean

getTravelTimeSchedSpecificTimes()

getProperty()
JSON String

timeRangesFromJSON(JSON string)

HHMMRange[]
HHMMRange[]

create

setParameterValue("useSpecificTimes", enabled)

setParameterValue("startHour-n", startHour)

setParameterValue("startMinute-n", startMinute)

Context

n is the loop index

setParameterValue("endHour-n", endHour)

setParameterValue("endMinute-n", endMinute)

[*for each range]

put("formData", formData)

setParameterValue("numRanges", n)

Figure 5-350. SystemProfileReqHdlr:getTravelTimeScheduleForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-630 12/23/2008

5.44.2.8 SystemProfileReqHdlr:setExternalAgencyToOrgMappings (Sequence Diagram)

This diagram shows the processing that occurs when an adminsitrator sets the external to

agency to CHART organization mappings

getStringParam(req,"defaultagenyorgmapping",null)

RequestHandlerSupporter

SystemProfileProperties

getSysProfileProps()

setProps(token, properties)

put("agencyorgmapping[x]","id|agency|org")

Administrator
SystemProfileReqHdlr

ServletUtil

Properties

put("defaultagencyorgmapping", default)

setExternalAgencyToOrgMappings()

check rights

[insufficient rights]
Error.vm

getStringParam(req, "agency[x]ID", null)

getStringParam(req,"agency[x]Text",null)

getStringParam(req,"agency[x]OrgMapping", null)

create

[for each agency
form item]

[problem updating 1 or more agencies]
Error.vm

Success.vm

Figure 5-351. SystemProfileReqHdlr:setExternalAgencyToOrgMappings (Sequence

Diagram)

CHART R3B3 Detailed Design 5-631 12/23/2008

5.44.2.9 SystemProfileReqHdlr:setExternalConnectionAlertAndNotificationSettingsForm

(Sequence Diagram)

This diagram shows the processing that occurs when the administrator submits the alert and

notifications settings for external connections.

Administrator

ExternalSystemReqHdlr

WebExternalSystemConnection

SystemProfileProperties

Properties

put("[CONNNAME]AlertAndNotificationSettings", jsonStr)

setProps(token, props)

SystemProfileProperties

WebExternalSystemConnection

String

put("failureTimeMinutes", minutes)

new()

put("sendWarnings", sendWarnings)

getSysProfileProperties()

getCachedObject(connID)

getExternalSystemIdentifier()

new()

boolean

geStringParam(req,"alertOpCtrID",null)
String

getBooleanParam(req,"sendNotifications")
boolean

getStringParam(req,"notificationGroupID", null)
String

getIdentifierParam(req,"connID",null)
Identifier

getIntParam(req,"failureTimeMins
Integer

setExternalConnectionAlertAndNotificationSettings(req,resp,supp,ctx)

toString()

Redirec t to System Settings Page

put("sendAlerts ", sendAlerts)

put("alertOpCtr",opCtrID)

put("sendNotifications", sendNotifications)

put("notificationGroupID", notificationGroupID)

getBooleanParam(req,"sendWarnings", false)
boolean

getBooleanParam(req,"sendAlerts", false)

Serv letUtil RequestHandlerSupporer

JSONObject

Figure 5-352.

SystemProfileReqHdlr:setExternalConnectionAlertAndNotificationSettingsForm

(Sequence Diagram)

CHART R3B3 Detailed Design 5-632 12/23/2008

5.44.2.10 SystemProfileReqHdlr:setTSSSpeedSummaryRanges (Sequence Diagram)

This diagrams shows the processing that occurs when an administrator submits the form for

specifying TSS speed summary ranges.

Context

put("heading", "Set TSS Speed Summary Ranges")

put("success", true)

put("buttonAction", "getEditSystemProfileForm")

return "EnclosingTemplate.vm"

[Insufficient Rights]
return error

getSysProfileProps()

SysProfileProperties

[while range[x]
not null

getStringParam(req,range[x],null)
range or null

new

append(range)

Properties

toString()

setProps(token, properties)

setProperty(PROP_NAME_TSS_SPEED_SUMMARY_RANGES, rangesString)

SystemProfileProperties

Build comma delimited
string of speed ranges

Administrator
SystemProfileReqHdlr RequestHandlerSupporter ServletUtil

StringBuffer

setTSSSpeedSummaryRanges

Check Rights

put("buttonName", "Back To System Profile")

put("pageContent", "Results.vm")

rangesString

create

Figure 5-353. SystemProfileReqHdlr:setTSSSpeedSummaryRanges (Sequence Diagram)

CHART R3B3 Detailed Design 5-633 12/23/2008

5.44.2.11 SystemProfileReqHdlr:setTravelTimeMiscSettings (Sequence Diagram)

This diagram shows the processing that is performed when the administrator chooses to

submit the form used to set the miscellaneous travel time settings. If they have not been

granted the right to change the system profile, an error message is shown. Otherwise, a

UserFormData object is constructed and populated with the request parameters. Each

expected request parameter is retrieved from the UserFormData and validation is

performed. Any detected errors result in the form being redisplayed with the user's entries

and an error message at the top. If there are no errors a Properties object is constructed and

populated with the data from the form. The Properties object is passed to the

SystemProfileProperties.setProps() method to store the settings in the server, and a

confirmation page is shown to the user.

canChangeSysProfile()

boolean
[no rights]
Error.vm

create

populateFromRequest(HttpServletRequest)

getIntParm("travelTimeTrendThreshold")
int

setTravelTimeTrendThreshold(props, threshold)

setProps(Properties)

Results.vm

put(propName, threshold)

setTravelTimeTrendSampleSize(props, sampleSize)
put(propName, sampleSize)

setTravelTimeExpirationMins(props, mins)
put(propName, mins)

Administrator

SystemProfileReqHdlr NavLinkRights

Request Parameters:
travelTimeTrendThreshold
travelTimeTrendSampleSize
travelTimeExpirationMins

UserFormData

SystemProfileProperties

Error if trend threshold is <= 0,
sample size < 1,
or expiration mins < 1

SystemProfileTravelTimeProperties

Properties

getIntParm("travelTimeTrendSampleSize")
int

getIntParm("travelTimeExpirationMins")
int

[Error]
setErrorMessage()

[error]
MiscTravelTimeSettings.vm

create

setTravelTimeMiscSettings()

Figure 5-354. SystemProfileReqHdlr:setTravelTimeMiscSettings (Sequence Diagram)

CHART R3B3 Detailed Design 5-634 12/23/2008

5.44.2.12 SystemProfileReqHdlr:setTravelTimeRanges (Sequence Diagram)

This diagram shows the processing that is performed when the administrator chooses to

submit the form used to set the travel time range definitions. If they have not been granted

the right to change the system profile, an error message is shown. Otherwise, a

UserFormData object is constructed and populated with the request parameters. A loop is

executed using an increasing index to retrieve the indexed request parameters for each

defined travel time range. Each set of parameters is used to construct a

TravelTimeRangeDef object, and each of these objects is stored in an ArrayList. The loop

ends when a parameter with the current index is not found. A Properties object is

constructed and populated using the static setTravelTimeRangeDefs method of the

SystemProfileTravelTimeProperties class. That class uses a TravelTimeRange object to

create the JSON string that is stored in the system profile (all JSON code related to travel

time ranges is located in the TravelTimeRange class). The Properties object is passed to the

SystemProfileProperties.setProps() method to store the travel time range settings in the

server, and a confirmation page is shown to the user.

int

getIntParm("addAmt-n")
int

[Error]
setErrorMessage()

[error]
TravelTimeRangeSettings.vm

create

create

add(TravelTimeRangeDef)

[*while parms exis t
with current index]

Properties

SystemProfileProperties

SystemProfileTravelTimeProperties

create

toArray()
TravelTimeRangeDef[]

setTravelTimeRangeDefs(props, TravelTimeRangeDef[])

setProps(Properties)

Administrator

SystemProfileReqHdlr NavLinkRights

Request Parameters:
An indexed set of fields, one set for each travel time range as follows:
travelTime-0, subtractAmt-0, addAmt-0
travelTime-1, subtractAmt-1, addAmt-1
...

UserFormData

n is the loop index

Errors include a non-increasing
travel time from one iteration to
 the next, or negative add/subract
amounts (zero is permitted)

TravelTimeRangeDef

ArrayList

setTravelTimeRanges()

canChangeSysProfile()

boolean
[no rights]
Error.vm

create

populateFromRequest(HttpServ letRequest)

getIntParm("travelTime-n")
int

getIntParm("subtractAmt-n")

Results .vm

create

getJSONString()

put(propName, JSONString)

setRangeDefs(TraveltimeRangeDef[])

TravelTimeRange

CHART R3B3 Detailed Design 5-635 12/23/2008

Figure 5-355. SystemProfileReqHdlr:setTravelTimeRanges (Sequence Diagram)

CHART R3B3 Detailed Design 5-636 12/23/2008

5.44.2.13 SystemProfileReqHdlr:setTravelTimeSchedule (Sequence Diagram)

This diagram shows the processing that is performed when the administrator chooses to

submit the form used to set the system-wide travel time message display schedule. If they

have not been granted the right to change the system profile, an error message is shown.

Otherwise, a UserFormData object is constructed and populated with the request

parameters. If the user has chosen to enter specific times when travel time messages may

be displayed (rather than indicating they can be displayed 24x7), a loop is executed using

an increasing index to retrieve the indexed request parameters for each defined time range.

Each set of parameters is used to construct an HHMMRange, and each of these objects is

stored in an ArrayList. The loop ends when a parameter with the current index is not

found. A Properties object is constructed and populated with the selection of whether or

not to use specific time ranges, and if specific time ranges are used the time ranges are

added to the properties object after converting the list to a JSON array. Note that when the

user chooses 24x7 (no specific time ranges), we leave the previous time ranges in-tact,

allowing the user to easily enable them in the future if desired without having to re-enter all

of the ranges. The Properties object is passed to the SystemProfileProperties.setProps()

method to store the settings in the server, and a confirmation page is shown to the user.

CHART R3B3 Detailed Design 5-637 12/23/2008

create

populateFromRequest(HttpServ letRequest)

getIntParm("startHour-n")
int

[useSpecificTimes is true]
setTravelTimeSchedSpecificTimes(props, HHMMRange[])

setProps(Properties)

Results .vm

put(propName, JSONString)

TravelTimeScheduleUtil

Only set if useSpecificTimes is true - otherwise
leave alone. This allows the admin to eas ily enable
the same specific times they had in the past without
hav ing to re-enter.

Only do this and the loop below if useSpecificTimes
is true.

getIntParm("endMin-n")
int

getBooleanParam("useSpecificTimes")
boolean

timeRangesToJSON(HHMMRange[])
String

setTravelTimeSchedUseSpecificTimes(useSpecificTimes)

put(propName, boolean s tring)

Administrator

SystemProfileReqHdlr NavLinkRights

Request Parameters:
specificTimes (boolean), and an indexed set of fields,
one set for each time range as follows:
startHour-0, s tartMin-0, endHour-0, endMin-0
startHour-1, s tartMin-1, endHour-1, endMin-1
...

UserFormData

SystemProfileProperties

n is the loop index

Errors include start time
after end time, etc.

HHMMRange

SystemProfileTravelTimeProperties

ArrayLis t

Properties

getIntParm("startMin-n")
int

getIntParm("endHour-n")
int

[Error]
setErrorMessage()

[error]
TravelTimeMsgSchedule.vm

create

create

add(HHMMRange)

[*while parms exis t
with current index]

create

toArray()
HHMMRange[]

setTravelTimeSchedule()

canChangeSysProfile()

boolean[no rights]
Error.vm

Figure 5-356. SystemProfileReqHdlr:setTravelTimeSchedule (Sequence Diagram)

CHART R3B3 Detailed Design 5-638 12/23/2008

5.45 Chartlite.servlet.tss

5.45.1 Classes

5.45.1.1 chartlite.servlet.tss_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to traffic sensor signs.

EditObj ectLocationSupporter
«interface»

AddRTMSFormData

EditTSSLocationSupporter

RequestHandler
«interface»

TSSReqHdlr

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

setTSSConfigBasicSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
getEditTSSLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
setTSSConfigCommSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter): String
processViewTSSProps(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURL() : String
setObjectLocation(location:ObjectLocation,
 req : HttpServletRequest,
 supporter : RequestHandlerSupporter) : String

EditTSSLocationSupporter(
 tss : WebTSS)
EditTSSLocationSupporter(
 formData : AddTSSFormData)

m_tss : WebTSS
m_formData : AddRTMSFormData

getConfig() : WebTSSConfiguration
getID() : String
getLastErrorMessage() : String
getSelectedFactoryID() : Identifier
setLastErrorMessage(errMsg : String) : void
setSelectedFactoryID(id : Identifier) : void

m_config : WebTSSConfiguration
m_lastErrorMsg : String
m_selectedFactoryID : Identifier
m_formDataID : String

Figure 5-357. chartlite.servlet.tss_classes (Class Diagram)

5.45.1.1.1 AddRTMSFormData (Class)

This class represents the data in the Add RTMS form.

CHART R3B3 Detailed Design 5-639 12/23/2008

5.45.1.1.2 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

5.45.1.1.3 EditTSSLocationSupporter (Class)

This class is used to support editing the location of an existing or new TSS.

5.45.1.1.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.45.1.1.5 TSSReqHdlr (Class)

This class handles requests related to traffic sensor systems such as RTMS.

5.45.1.2 chartlite.servlet.tss_dynlist_classes (Class Diagram)

This diagram shows classes related to using TSS devices in dynamic lists.

TSSStatusFilter

chartlite.servlet.tss.dynlist.
SpeedFilter

BaseDynListFilter

DynListFilter

«interface»

New for R3B3
DefaultDynList

*1

*1
creates

*

1

creates

DynListDelegateSupporter

«interface»

WebTSS

WebObjectLocation
Supporter

«interface»

11

DeviceStatusFilter

New for R3B3:

PROP_COUNTY
PROP_ROUTE
PROP_DIRECTION
PROP_PORT_MANAGERS
PROP_CONNECTION_SITE
PROP_STATE_MILEPOST
PROP_OWNING_ORG

TSSDynListSupporter

DynListSubject
«interface»

TSSDynListSubject

DynList

«interface»

TSSDynList

setTSSTypeInclusionFlags(HttpServletRequest:req,
 TSSDynList : dynList) : void

setShowExternalTSS(flag:boolean):void
setShowInternalTSS(flag:boolean):void
showExternalTSS():boolean
showInternalTSS():boolean
isExternalAgencySelected(agencyID : Identifier) : boolean
setExternalAgencySelected(agencyID : Identifier,
 selected : boolean) : void

m_showExternalTSS : boolean
m_showInternalTSS : boolean
m_externalAgencySelections : Hashtable<Identifier; Boolean>

PROP_NAME
PROP_LOCATION
PROP_AVG_SPEED
PROP_STATUS
PROP_LAST_UPDATE
PROP_COUNTY
PROP_ROUTE
PROP_DIRECTION
PROP_PORT_MANAGERS
PROP_CONNECTION_SITE
PROP_STATE_MILEPOST
PROP_OWNING_ORG

SpeedFilter(desc : String,
 navLinkRights : NavLinkRights)

m_navLinkRights : NavLinkRights

Figure 5-358. chartlite.servlet.tss_dynlist_classes (Class Diagram)

CHART R3B3 Detailed Design 5-640 12/23/2008

5.45.1.2.1 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

5.45.1.2.2 chartlite.servlet.tss.dynlist. SpeedFilter (Class)

This class is a filter for the TSS dynamic list that filters on the current speed value. For

R3B3, it will examine the user's rights for each TSS to determine whether the user is

allowed to view the average speed or speed ranges for a TSS, and will apply the filter based

on the viewable data.

5.45.1.2.3 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a

collection of columns, a collection of global filters, and a collection of subjects. Filters in

this list are treated additively - that is, a subject must pass all filters to be displayed.

5.45.1.2.4 DeviceStatusFilter (Class)

This class is a base filter for filtering on the device status. It must be extended to get the

WebDevice from the DynListSubject object.

5.45.1.2.5 DynList (Class)

This interface is implemented by classes that wish to provide dynamic list capabilities. A

dynamic list is a list of items that has one or more columns that can optionally be sorted,

and the list can be filtered by column values or by global filters.

5.45.1.2.6 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.45.1.2.7 DynListFilter (Class)

This interface is implemented by classes that are used to filter dynamic lists.

5.45.1.2.8 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.45.1.2.9 TSSDynList (Class)

This class implements the dynlist interface for TSS's in dynamic lists.

5.45.1.2.10 TSSDynListSubject (Class)

This class implements the DynListSubject interface and contains fields for sorting and

filtering TSS's in dynamic lists.

CHART R3B3 Detailed Design 5-641 12/23/2008

5.45.1.2.11 TSSDynListSupporter (Class)

This class implements the DynListDelegateSupporter for creating dynamic lists containing

TSS's

5.45.1.2.12 TSSStatusFilter (Class)

This filter extends the DeviceStatusFilter to provide status filtering for TSS objects.

5.45.1.2.13 WebObjectLocation Supporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.45.1.2.14 WebTSS (Class)

This class wraps the TransportationSystemSensor CORBA interface, caches data, and

provides access to the cached data.

CHART R3B3 Detailed Design 5-642 12/23/2008

5.45.2 Sequence Diagrams

5.45.2.1 EditTSSLocationSupporter:setObjectLocation (Sequence Diagram)

This diagram shows the processing to save the TSS location when the user submits the Edit

Location form. The SpecifyLocationReqHdlr calls the EditTSSLocationSupporter with the

location parsed from the request. If the location is being edited while adding an RTMS, the

configuration is retrieved and altered within the AddRTMSFormData object. If it is for an

existing TSS, the WebTSS is called to get the TSS reference, the configuration is queried

from the TSS, modified within the configuration, and the TSS is called to set the

configuration. If successful, the cached configuration is updated with the altered

configuration.

CHART R3B3 Detailed Design 5-643 12/23/2008

getAccessToken()

TSSConfiguration

Set Location Field
In Config

[exception]
error message

updateConfig(config)

SpecifyLocation
ReqHdlr

EditTSSLocation
Supporter AddRTMSFormData

WebTSS
Configuration WebTSS

RequestHandler
Supporter

UserLogin
SessionImpl

Transportation
SensorSystem

null

setConfiguration(token, config)

setObjectLocation(
objectLocation, req,
reqHdlrSupporter)

[supporter contains
AddRTMSFormData]

getConfig()

WebTSSConfiguration

getConfiguration()
TSSConfiguration

Set Location Field
In Config

null

[WebTSS]

getTSSRef()

getConfiguration(token)

getUserLoginSession(req)

Figure 5-359. EditTSSLocationSupporter:setObjectLocation (Sequence Diagram)

CHART R3B3 Detailed Design 5-644 12/23/2008

5.45.2.2 TSSListSupporter:createDynList (Sequence Diagram)

This diagram shows how the Detector/TSS dynamic list is created for viewing on the

Detector List page. A DefaultDynListCol object is created to represent each column. If a

column has a filter, the filter object is created and set into the column. If the column is to

be hidden by default, a call is made to the column set the default visibility. A new

TSSDynList object is created using the columns that were created. If the request indicates

that a global filter for the user's operation center folders should be used, the filter is created

and added to the dynamic list. Other filter values include one of the device status values,

which (if specified) is set in the device status filter. The setTSSTypeInclusionFlags()

method is called to apply the external / internal TSS flags specified in the request.

CHART R3B3 Detailed Design 5-645 12/23/2008

add(col)

create(PROP_CONNECTION_SITE, false)
create(col, "Connection Site")

setFilter(filter)
setDisplayedByDefault(false)
add(col)

create(STATE_MILEPOST, false)
create(col, "State Milepost")

setFilter(filter)
setDisplayedByDefault(false)
add(col)

create(PROP_OWNING_ORG, false)
create(col, "Owning Org")

setFilter(filter)
setDisplayedByDefault(false)
add(col)

System

TSSListSupporter

DefaultDynListCol

ArrayList
<DynListCol>

SpeedFilter

TSSStatusFilter

TSSStatusTime
Comparator

CountyState
RegionFilter

TextValueColFilter

DirectionFilter

createDynList(
req, supporter, dynListID)

create

create(PROP_NAME, false)
add(col)

create(PROP_LOCATION, false)
add(col)

create(PROP_AVG_SPEED, false)
create("Average Speed", navLinkRights)

setFilter(filter)
add(col)

create(PROP_STATUS, false)
create("Status")

setFilter(filter)
add(col)

create(PROP_LAST_UPDATE, comp, false)
create

add(col)

create(PROP_COUNTY, false)
create("County")

setFilter(filter)
add(col)

create(PROP_ROUTE, false)
create(col, "Route")

add(col)
setFilter(filter)

create(PROP_DIRECTION, false)
create("Direction")

setFilter(filter)
add(col)

create(PROP_PORT_MANAGERS, true)
create(col, "Port Managers")

setFilter(filter)
setDisplayedByDefault(false)

This will set the flags for
displaying internal / external TSS objects
based on request parameters.

DynList

TSSDynList

HttpServletRequest

OpCenterFolderFilter
create(dynListID, "Dectectors", colsArr)

getParameter("filterType")

[filterType is "OpCenterFolders"]
create

setFilterValue(supporter.getLoginSession(req).getWebOpCenter())

[folder filter created]
addGlobalFilter(filter)

[filterType is "Online", "Maintenance", "Offline",
"HardwareFailed", "CommFailed", "CommMarginal"]

setFilterValue(statusVal)

setTSSTypeInclusionFlags(req, dynList)

Figure 5-360. TSSListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-646 12/23/2008

5.45.2.3 TSSReqHdlr:getEditTSSLocationForm (Sequence Diagram)

This diagram shows how the Edit TSS Location form is displayed. The formDataID and

tssID parameters are parsed from the request, and one of these should be present (the

formDataID if a TSS is being added or the tssID if editing the location of an existing TSS).

If the formDataID is specified, the AddRTMSFormData object is retrieved from the

TempObjectStore, the form fields are saved into the form data, and a new

EditTSSLocationSupporter object is created. If the tss ID is specified, the WebTSS is

retrieved from the cache, the user's rights are checked for the given TSS's organization, and

the EditTSSLocationSupporter object is created. This object is added to the

TempObjectStore and the response is redirected so that the

displayEditObjectLocationDataForm request is invoked.

WebTSSConfiguration

isExternal()

WebTSS

getConfig()

[external TSS]
error

User
TSSReqHdlr HttpServletRequest

RequestHandler
Supporter

This is executed if the formDataID is specified.
This is used when adding an RTMS.
The presence of the AddRTMSFormData implies
that user rights were checked already.

This commits any user input for when
the form is displayed again after editing the
location.

TempObjectStore HttpServletResponse

EditTSSLocation
Supporter

This URL will be:
req.getRequestURI() +
"?action=displayEditObjectLocationDataForm" +
"&editLocationSupporterID=" + supporterID

getParameter("formDataID")

getParameter("tssID")
[neither specified]

error

getTempObjectStore()

getObject(formDataID)

[tssID specified]

AddRTMSFormData or null
[not found]

error

saveAddRTMSFormData(
req, formData, supporter)

create(formData)

getCachedObject(tssID)
WebTSS or null

[not found]
error

Check User's Configuration Rights
For The TSS's Organization

[no rights]
error

create(webTSS)

createTempObjectID()

add(supporterID, supporter)

encodeRedirectURL(url)
sendRedirect(encodedURL)

null

getEditTSSLocationForm(
req, resp, ctx, supporter)

Figure 5-361. TSSReqHdlr:getEditTSSLocationForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-647 12/23/2008

5.45.2.4 chartlite.servlet.tss:setTSSConfigCommSettings (Sequence Diagram)

This diagrams shows the processing that occurs when a TSS is configured for TCP/IP

communications.

update m_portLocData.m_ipPortLocationData

Redirect to view TSS properties

ServletUtil

geStringParam(req,"TCPIPAddress")

TSSReqHdlr
Administrator

setTSSConfigCommSettings

DeviceUtil

[config.m_portLocData.m_portType.equals(PortType.TCPIP]
parseTCPIPParams(req,config.m_portLocData)

getIntParam(req,"TCPIPPort")

Figure 5-362. chartlite.servlet.tss:setTSSConfigCommSettings (Sequence Diagram)

CHART R3B3 Detailed Design 5-648 12/23/2008

5.46 Chartlite.servlet.servlet-dynlist

5.46.1 Classes

5.46.1.1 ServletDynListClasses (Class Diagram)

This diagram shows classes that support dynamic lists.

CHART R3B3 Detailed Design 5-649 12/23/2008

DeviceStatusFilter

BaseDynListFilter

CountyStateRegionFilter

DynListFilter

«interface»

DirectionFilter

1

creates1

DynListSubject

«interface»

contains

*

LogEntryDynListSupporter

DynListReqHdlrDelegate

1

NavigatableDynList

DefaultDynList

LogEntryWrapper

1

1

DynListDelegateSupporter
«interface»

viewDynList(req:HttpServ letRequest, resp:HttpServ letResponse, ctx:Context, supporter:Reques tHandlerSupporter):String
viewDynListPage(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupportergetCurrentPage():int
filterDynList(req:HttpServletReques t, resp:HttpServletResponse, c tx :Contex t, supporter:RequestHandlerSupporter):String
sortDynList(req:HttpServletReques t, resp:HttpServletResponse, c tx :Contex t, supporter:RequestHandlerSupporter):String
getDynList(req:HttpServletRequest, supporter:Reques tHandlerSupporter):DynLis t
setColumnVisibility(req:HttpServletRequest, resp:HttpServletResponse,c tx:Contex t,supporter:RequestHandlerSupporter):String

-m_dynListTemplateName:String
-m_v iewDynListActionName:String
-m_dynListIDParamName:String
-m_propertyParamName:String
-m_filterValueParamName:String
-m_dynListContextName:String

-m_id:Identifier
-m_desc:String
-m_cols :DynListCol[]
-m_sortCol:DynListCol
-m_globalFilters:ArrayList<DynListFilter>
-m_subjects:ArrayList<DynLis tSubject>

getPropertyValue(property:DynListCol):String
getPropertyValues(property:DynListCol):String[]

setLogEntryTypeInclusionFlags(HttpServ letRequest req, LogEntryDynList dynLis t):void

s tatic getNumInstancesNotFinalized():int
compareTo(Object other): int
finalize():void
hashCode()boolean equals(Object other):int
getLogEntry():LogEntry

s tatic int m_numInstances

getEntriesOnPage(page:int, numEntries:int):LogEntryDynListSubjec t[]
getNumberOfPages():int
getNumEntriesPerPage():int
setNumEntriesPerPage(numEntries:Integer):void
setCurrentPage(page:Integer):void

m_currentPage:int
m_numEntriesPerPage:int

getWebDev ice(subject : DynListSubject) :
 WebDevice

OnlineAll
MaintAll
OfflineAll
HWFailedAll
CommMarginalAll
CommFailedAll
OnlineOK
OnlineCommMarginal
OnlineCommFailed
OnlineHWFailed
MaintOK
MaintCommMarginal
MaintCommFailed
MaintHWFailed
OfflineOK
OfflineCommMarginal
OfflineCommFailed
OfflineHWFailed

Figure 5-363. ServletDynListClasses (Class Diagram)

5.46.1.1.1 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

CHART R3B3 Detailed Design 5-650 12/23/2008

5.46.1.1.2 CountyStateRegionFilter (Class)

This class provides filtering on the county/state/region column of a dyn list. To use this

filter, the objects that implement the DynListSubject interface must also implement the

WebObjectLocationSupporter interface to be able to supply a WebObjectLocation for the

subject.

5.46.1.1.3 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a

collection of columns, a collection of global filters, and a collection of subjects. Filters in

this list are treated additively - that is, a subject must pass all filters to be displayed.

5.46.1.1.4 DeviceStatusFilter (Class)

This class is a base filter for filtering on the device status. It must be extended to get the

WebDevice from the DynListSubject object.

5.46.1.1.5 DirectionFilter (Class)

This class provides filtering on the direction column of a dyn list. To use this filter, the

objects that implement the DynListSubject interface must also implement the

WebObjectLocationSupporter interface to be able to supply a WebObjectLocation for the

subject.

5.46.1.1.6 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.46.1.1.7 DynListFilter (Class)

This interface is implemented by classes that are used to filter dynamic lists.

5.46.1.1.8 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter

dynamic lists can be passed from a request handler to this class, provided the URL used for

the requests contain parameters required by this class, such as the id of the list, the property

name, and/or the filter value.

5.46.1.1.9 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.46.1.1.10 LogEntryDynListSupporter (Class)

This class is a DynListDelegateSupporter for comm log entries. Its implementation of the

createDynList method sets up the columns for the list of comm log entries. Its

implementation of the getDynListSubjects method retrieves the log entries from the GUI's

CHART R3B3 Detailed Design 5-651 12/23/2008

CommLogManager and wraps them as LogEntryDynListSubjects.

5.46.1.1.11 LogEntryWrapper (Class)

This class provides accessor methods that provide access to the information in a

CHART2.LogCommon.LogEntry object. In R3B2 this class implements the

DynListSubject interface for use in DynLists

5.46.1.1.12 NavigatableDynList (Class)

This object extends the DefaultDynList class to provide page navigation of

DynListSubjects

CHART R3B3 Detailed Design 5-652 12/23/2008

5.46.2 Sequence Diagrams

5.46.2.1 chartlite.servlet.dynlist.DynListReqHdlrDelegate:createDynList (Sequence

Diagram)

This diagram shows the processing that occurs when a dynamic list is created. Starting in

R3B3, the operator may update the visible columns in the list. The visible columns data is

stored in a cookie, on a per device type basis. If a cookie is found, display settings are set

from it. If no cookie exists, a new one is created using the default column display values.

createDynList(req,supporter)

return DynList

TempObjectStore

TempObjectStore

DynListReqHdlrDelegate

RequestHandlerSupporter

getTempObjectStore()

add(id,dynList, maxListAgeSecs)

See chartlite.servlet.dynlist.setColumnVisibility

setColumnVisibility(req, response, resetToDefault:boolean)

DynListDelegateSupporterDynListReqHdlrDelegate

createDynList(req,supporter, response)

Figure 5-364. chartlite.servlet.dynlist.DynListReqHdlrDelegate:createDynList (Sequence

Diagram)

CHART R3B3 Detailed Design 5-653 12/23/2008

5.46.2.2 chartlite.servlet.dynlist.DynListReqHdlrDelegate:setColumnVisibility (Sequence

Diagram)

This diagram shows the processing that occurs for retrieving and setting the cookie

containing which columns to display in a dyn list. This method is called after initial

creation of a dynlist or when a request comes in to update the column settings. When an

operator updates the column settings, the cookie is updated using javascript.

boolean

DynListReqHdlrDelegate

Column cookie found

DynListReqHdlrDelegate DynLis tDelegateSupporter
HttpServ letRequest

Cookie

String

Map

DynList

Set

DynListCol

Iterator

StringBuffer

Cookie

HttpServletResponse

No column cookie found,
or set to default flag found
create one initialized with
default column states

new(name,stringbuffervalue)

new()

[for each
column]

entrySet()
Set

iterator()
Iterator

[while hasNext]

hasNext()

return void

getColumns()

DynListCol[]

getCookies()

boolean

cookieValueString.split(,)

setColumnForDisplay(displayColumn)

getColumn(columnNameString)

get(key)

cookieValuePairs []

create

cookieValuePair[]

setColumnVis ibility (req, response, setToDefault)

String

Cookie[]

getColumnVisibilityCookieKey()

DynLis tCol

getValue()

cookieValuePair.split(:)

[for each cookie
value pair

boolean

put(valuePair[0],valuePair[1])

String

[if first column]
append(",")

isDisplayedByDefault()
boolean

append("columnName:boolean")

setMaxAge(60 * 60 * 24 * 360)

addCookie(cookie)

getParameter("setDefaultColumnVisibility")

Figure 5-365. chartlite.servlet.dynlist.DynListReqHdlrDelegate:setColumnVisibility

(Sequence Diagram)

CHART R3B3 Detailed Design 5-654 12/23/2008

5.47 Chartlite.servlet.dms

5.47.1 Class diagrams

5.47.1.1 chartlite.servlet.dms.dynlist_classes (Class Diagram)

This diagram shows class items that extend the existing dms list functionality to include

new filter columns and the ability to hide/show internal and external DMS'.

DMSDynListSubj ect

DMSListSupporter

DynListSubj ect
«interface»

DynListDelegateSupporter
«interface»

DynList
«interface»

DMSDynList

PROP_BEACONS: String
PROP_CURRENT_MSG: String
PROP_LOCATION: String
PROP_STATUS: String
PROP_USED_BY: String
PROP_COUNTY: String
PROP_ROUTE: String
PROP_DIRECTION: String
PROP_PORTMANAGER: String
PROP_CONNECTIONSITE: String
PROP_TRAVELTIME_SCHEDULE_OVERRIDDEN: String
PROP_STATE_MILEPOST
PROP_OWNING_ORG
PROP_LAST_STATUS
PROP_DEF_TRAV_TIME_AND_TOLL_RATE_BUCKETS_OVERRIDDEN

setDMSTypeInclusionFlags(HttpServletRequest:req, DMSDynList:dynList)

COOKIE_NAME_COLUMN_VISIBILITY:String

setShowExternalDMS(flag:boolean)
setShowInternalDMS(flag:boolean)
showExternalDMS():boolean
showInternalDMS():boolean

m_showExternalDMS: boolean
m_showInternalDMS: boolean

Figure 5-366. chartlite.servlet.dms.dynlist_classes (Class Diagram)

5.47.1.1.1 DMSDynList (Class)

This class implements the dynlist interface for external devices in dynamic lists.

5.47.1.1.2 DMSDynListSubject (Class)

This class implements the DynListSubject interface and contains fields for displaying

DMS's in dynamic lists.

5.47.1.1.3 DMSListSupporter (Class)

This class implements the DynListDelegateSupporter for creating dynamic lists of DMS's

CHART R3B3 Detailed Design 5-655 12/23/2008

5.47.1.1.4 DynList (Class)

This interface is implemented by classes that wish to provide dynamic list capabilities. A

dynamic list is a list of items that has one or more columns that can optionally be sorted,

and the list can be filtered by column values or by global filters.

5.47.1.1.5 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.47.1.1.6 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

CHART R3B3 Detailed Design 5-656 12/23/2008

5.47.1.2 GUIDMSServletClasses (Class Diagram)

This diagram shows CHART GUI servlet classes related to dynamic message signs.

AddDMSFormData

EditObjectLocationSuppor ter

«interface»

EditDMSLocationSupporter

RequestHandler

«interface»

DMSReqHdlr

DMSEditorData

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

setDMSConfigBasicSettings(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
viewDMSMessageEditorForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
prepareDMSEditorFormData(req:HttpServletRequest, ctx:Context, supporter:RequestHandlerSupporter) : String
createDMSEditorData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorData
createDMSTravInfoMsgTemplateEditorData(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorData
saveDMSEditorDataFromForm(req:HttpServletRequest, supporter:RequestHandlerSupporter) : DMSEditorData
submitDMSTravInfoMsgTemplateEditorForm(editorData : DMSTravInfoMsgTemplateEditorData, req : HttpServletRequest) : String
createOrUpdateDMSTravInfoMsgTemplate(token : byte[], editorData : DMSTravInfoMsgTemplateEditorData) : String
getEditDMSLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
getAddEditDMSTravelerInfoMsgForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
getDMSTravelerInfoMsgTemplateDataJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context,
 supporter:RequestHandlerSupporter) : String
-parseTravelerInfoMsg(req:HttpServletRequest, supporter:RequestHandlerSupporter) : WebDMSTravInfoMsg
getDMSTravelerInfoMsgImageJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String
submitDMSTravelerInfoMsgForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURL() : String
setObjectLocation(location:ObjectLocation,
 req : HttpServletRequest,
 supporter : RequestHandlerSupporter) : String

DMSEditorData(editorDataID:String, geometries : DMSDisplayInfo[],
 manualEditor : boolean, submitAction : String)
beaconsEnabled() : boolean
getCurrentGeometry() : DMSDisplayInfo
getCurrentGeometryIdx() : int
getFormattedMulti() : String
getFormTitle() : String
getGeometries() : DMSDisplayInfo[]
getGeometry(idx : int) : DMSDisplayInfo
getID() : String
getLastValidEditorImageFilename() : String
getMaxCharCols() : int
getMaxCharRows() : int
getMaxPages() : int
getMinMaxHalfSecondPageTimeValue() : int
getMsgDescPrefix() : String
getMulti() : String
getNativeOrConvertedMulti() : String
getNumGeometries() : int
getPagesFromMulti() : DMSMessagePageInfo[]
getPlanTextMessage() : String
getSubmitFormAction() : String
hasBeacons() : boolean
hasCommonGeomtery() : boolean
hasEditRights(loginSession : UserLoginSessionImpl) : boolean
isManualEditor() : boolean
isMessageEdited() : boolean
isMessageTextRequired() : boolean
needsSpellCheck() : boolean
setBeaconsEnabled(enabled : boolean) : void
setCurrentGeometryIdx(idx : int) : void
setLastValidEditorImageFilename(filename : String) : void
setMessageEdited(edited : boolean) : void
setMsgDescPrefix(prefix : String) : void
setMulti(multi : String) : void
setNeedsSpellCheck(needsSpellCheck : boolean) : void
setPlanTextMsg(msg : String) : void
setShowAdvancedEditor(showAdv : boolean) : void
showAdvancedEditor() : boolean
supportsCategory() : boolean
supportsDescription() : boolean

m_editorDataID : String
m_submitFormAction : String
m_geometries : DMSDisplayInfo[]
m_isManualEditor : boolean
m_isManualAdvancedEditor : boolean
m_hasBeacons : boolean
m_beaconsEnabled : boolean
m_multiMsg : String
m_plainTextMsg : String
m_lastValidTrueDisplayImageFilename : String
m_currentGeometryIdx : int
m_isMessageEdited : boolean
m_needsSpellCheck : boolean
m_msgDescPrefix : String
m_hasCommonGeometry : boolean

EditDMSLocationSupporter(
 dms : WebDMS)
EditDMSLocationSupporter(
 formData : AddDMSFormData)

m_dms : WebDMS
m_formData : AddDMSFormData getConfig() : WebDMSConfiguration

getLastErrorMessage() : String
getSelectedFactoryID() : Identifier
setLastErrorMessage(errMsg : String) : void
setSelectedFactoryID(id : Identifier) : void

m_dmsConfig : WebDMSConfiguration
m_lastErrorMsg : String
m_selectedFactoryID : Identifier

Figure 5-367. GUIDMSServletClasses (Class Diagram)

5.47.1.2.1 AddDMSFormData (Class)

This class represents the data in the Add DMS and Copy DMS forms.

5.47.1.2.2 DMSEditorData (Class)

This class represents an instance of a DMS message being edited in an editor. It provides

storage so that the message and editor state can be preserved during interim requests before

the form is submitted. It also has logic for manipulating the editor session. This is a base

class and will be extended for specific editor types.

CHART R3B3 Detailed Design 5-657 12/23/2008

5.47.1.2.3 DMSReqHdlr (Class)

This class is a request handler used to process requests related to dynamic message signs

(DMS).

5.47.1.2.4 EditDMSLocationSupporter (Class)

This class is used to support editing the location of an existing or new DMS.

5.47.1.2.5 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

5.47.1.2.6 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests

CHART R3B3 Detailed Design 5-658 12/23/2008

5.47.2 Sequence Diagrams

5.47.2.1 chartlite.servlet.dms:createDMSEditorData (Sequence Diagram)

This diagram shows the creation of the new type of DMS editor data to support the new

DMS message templates. If the "editTravInfoMsgTemplate" parameter is present, a call

will be made to createDMSTravInfoMsgTemplateData(). If the user is editing an existing

template, the "templateID" parameter will be passed and this ID will be used to retrieve the

cached template wrapper object from the template factory wrapper, and the rows and

columns will be queried from the template. If the templateID is not specified, the user is

editing a new template, and the rows and columns must be specified in the request to

specify the template's size. The template factory wrapper is called to retrieve the list of all

formats for each appropriate type of tag. A new DMSTravInfoMsgTemplateEditorData

object is created to represent the editor state. If editing an existing template, the formats

used in the template will be added to the list of available formats if necessary so that they

are guaranteed to be in the selectable lists. The flag to show the advanced version of the

editor will be set to true. If createDMSEditorData() is invoked for other (existing) DMS

editor types, the functionality will remain unchanged.

CHART R3B3 Detailed Design 5-659 12/23/2008

[existing template]
getNumCols()

getCachedTravelTimeFormats()

getCachedTravelTimeRangeFormats()

WebTravelTimeFormat[]

WebTravelTimeRangeFormat[]

getCachedTollRateFormats()
WebTollRateFormat[]

getCachedTollRateTimeFormats()
WebTollRateTimeFormat[]

getCachedDistanceFormats()
WebDistanceFormat[]

DMSReqHdlr

DMSReqHdlr HttpServletRequest

DMSDisplayInfo

DMSTravInfoMsgTemplate
EditorData

RequestHandlerSupporter TempObjectStore

The pre-R3B3 functionality will remain
unchanged for the other editor types, but the
details are not shown here.

createDMSEditorData(req, supporter)
getParameter("editTravInfoMsgTemplate")

[editTravInfoMsgTemplate param found]
createDMSTravInfoMsgTemplateData(req, supporter)

[template ID not specified]
getParameter("charCols")

[template ID not specified]
getParameter("charRows")

create

[template ID not specified and
rows or columns not specified]

throw exception

create(editorDataID, template, displayInfo, allTravelTimeFormats, allTravelTimeRangeFormats,
 allTollRateFormats, allTollRateTimeFormats, allDistanceFormats)

setShowAdvancedEditor(true)

getTempObjectStore()

createTempObjectID()

DMSEditorData

[editTravInfoMsgTemplate param found]
DMSEditorData

Create Other Type Of DMSEditorData
Based On Other Parameters

[existing template]
Add Template's Formats

Are Present In Format Lists
If Necessary

WebMessageTemplate
FactoryWrapper

If the user is editing an existing template,
the templateID parameter will be specified.
If templateID is not specified, a new template
is being requested and in that case the
charCols and charRows parameters are required
to specify the template dimensions.

WebDMSTravInfo
MsgTemplate

getParameter("templateID")

[template ID specified]
getCachedDMSTravInfoMsgTemplate(templateID)

WebDMSTravInfoMsgTemplate or null

get()

[template ID specified but template not found]
throw exception [existing template]

getNumRows()

DMSEditorData

Figure 5-368. chartlite.servlet.dms:createDMSEditorData (Sequence Diagram)

CHART R3B3 Detailed Design 5-660 12/23/2008

5.47.2.2 chartlite.servlet.dms:createOrUpdateDMSTravInfoMsgTemplate (Sequence

Diagram)

This diagram shows the processing to create or update a DMS message template. It is

called after the editor data has been checked and determined to be OK to submit. The

template configuration and the WebDMSTravInfoMsgTemplate object are retrieved from

the editor data. A null template indicates that the template is being added, while a non-null

template indicates an edit operation. The template factory wrapper is called to check

whether the description is a duplicate of an existing template (excluding the current

template if it's an edit operation) and an error is returned if it is a duplicate. If creating a

new template, the template factory wrapper is called, and it iterates through the factories

that are known to the system. If the template was created, a new

WebDMSTravInfoMsgTemplate wrapper object is created and added to the cached

templates. If it is an edit operation, the template's CORBA reference is retrieved and called

to set the configuration, after which the cached configuration is updated within the existing

WebDMSTravInfoMsgTemplate wrapper object.

MessageTemplate
Factory

newTemplate :
WebDMSTravInfo

MsgTemplate

existingTemplate :
WebDMSTravInfo

MsgTemplate
DMSTravInfo
MsgTemplate

createDMSTravInfoMsgTemplate(token, config)

hasTemplateWithDescription(desc, templateID or null)

DMSReqHdlr
DMSReqHdlr

DMSTravInfoMsgTemplate
EditorData

createOrUpdate
DMSTravInfoMsgTemplate

(token, editorData)

create(id, config, templateRef)

[while hasNext()
and template not created
and no app-level error]

[successful]
WebDMSTravInfoMsgTemplate

DMSTravInfoMsgTemplate

setConfig(config)

updateCachedData(config)

null error msg

m_wrapper:
FirstAvailableOfferWrapper

Iterator

createIterator()
create

Iterator

hasNext()

next()

MessageTemplateFactory

DMSTravInfoMsg
TemplateConfig

create

If creating a new template, getTemplate()
will return null. If editing an existing template,
it will return the GUI wrapper object
for the template being edited.

getTemplateConfig()

DMSTravInfoMsg
TemplateConfig

getTemplate()

WebDMSTravInfoMsgTemplate
or null

WebMessageTemplate
FactoryWrapper

[duplicate description]
error msg

DMSTravInfoMsgTemplateInfo

[unsuccessful]
throw exception

Update Config

[template is null]
createDMSTravInfoMsgTemplate(token, config)

[template not null]
getRef()

[template created]
null error msg

addTemplateToCache(newTemplate)

[template not created]
throw exception

Figure 5-369. chartlite.servlet.dms:createOrUpdateDMSTravInfoMsgTemplate (Sequence

Diagram)

CHART R3B3 Detailed Design 5-661 12/23/2008

5.47.2.3 chartlite.servlet.dms:getAddEditDMSTravInfoMsgForm (Sequence Diagram)

This diagram shows how the form is displayed for adding or editing a DMS traveler info

message. The DMS ID is specified in the request and is used to look up the

WebChart2DMS object from the cache. After checking for the necessary user rights, the

DMS's character columns and rows are obtained and all cached

WebDMSTravInfoMsgTemplate objects are checked against these dimensions. If the rows

and columns are the same as that of the DMS, and if the number of pages does not exceed

the DMS's max pages, the template is added to a list. If it is an edit operation, the

travInfoMsgID parameter will be specified and will be used to look up the cached

WebDMSTravInfoMsg object. The templates, message, and DMS wrapper objects are put

into Velocity context so that the Velocity can access the data while building the HTML to

return.

TempObjectStore

getTempObjectStore()
createTempObjectID()

put("trueDisplayMgrID", tempObjID)

[message ID specified but
WebDMSTravInfoMsg

not found in config]
error

[travInfoMsgID not specified]
createUniqueID()

put("newTravInfoMsgID", newMsgID)

"PopupTemplate.vm"
put("pageContent", "dmsmgmt\AddEditDMSTravInfoMsg.vm")

WebDMSTrav
InfoMsgConfig

getParameter("travInfoMsgID")

getDMSTravInfoMsgConfig()

put("templates", templates)

[travInfoMsgID specified]
getDMSTravInfoMsg(travInfoMsgID)

WebDMSTravInfoMsg or null

Sort Templates By Name

put("travInfoMsg", message)
put("dms", dms)

User

DMSReqHdlr HttpRequestHandler
RequestHandler

Supporter

WebMessage
TemplateFactory

Wrapper
WebDMSTravInfo

MsgTemplate
WebDMSTravInfo

MsgTemplateConfigWebChart2DMS
WebChart2
DMSConfig Context

getAddEditDMSTrav
InfoMsgForm(

req, resp, c tx, supporter) getParameter("dmsID")

getCachedObject(dmsID)

WebChart2DMS or null

[not specified]
error

[DMS not found]
error

Check User's Rights
For The DMS's Organization

[no rights]
error

get()

getCachedDMSTravInfoMsgTemplates()
WebDMSTravInfoMsgTemplate[]

getConfig()
getNumRows()
getNumCols()

getChart2DMSConfig()
getCharRows()
getCharCols()

[template rows and cols same as DMS's and
num pages <= DMS max pages]

Add To List

getMaxPages()

getNumPages()
[* for each template]

[no matching templates]
error

Figure 5-370. chartlite.servlet.dms:getAddEditDMSTravInfoMsgForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-662 12/23/2008

5.47.2.4 chartlite.servlet.dms:getDMSEditorImageJSON (Sequence Diagram)

This diagram shows how the DMS editor image will be generated. First the current form

inputs are saved into the editor data. The editor may represent more than one sign size (or

"geometry") but the image is only displayed for one size. The current geometry index is

used unless otherwise specified by the "selectedGeometryIdx" parameter. The formatted

MULTI is queried from the editor data. For the template editor, this will cause the template

tags to be substituted with dummy data. For other manual editors, the MUTLI will be

returned as is, while for automatic formatting editors, the returned MULTI will be null. If

MULTI is returned, its "message statistics" are counted (i.e., the number of rols, columns,

and pages required for the message). The list of geometries represented by the editor is

checked against the MULTI stats to find the bad geometry indices (the sign sizes too small

to display the message), and for the selected index, flags for too many rows/columns/pages

are calculated. If the message is plain text (from an auto editor), the plain text is converted

to MULTI for each geometry and the bad geometry and too many rows/pages flags are set

on failure. The selected geometry index is used, and the plain text is converted to MULTI,

and the GIF image is created. If successful, the filename is set into the editor data, and the

selected geometry index is set as the current index in the editor data. Finally a JSON

response object is created that contains the filename, current geometry index, image

dimensions, and error information, and the JSON object is sent back to the browser. When

the browser receives the object, it will be able to use the fields using Javascript.

CHART R3B3 Detailed Design 5-663 12/23/2008

The image filename and the selected geometry
index are only set when the image generation
is successful (i.e., not too many rows, cols, pages).
So if an error occurs, we display the last valid image
and geometry.

getGeometry(selectedGeometryIdx)

[MULTI is null]
getMultiMessageThrows(plainTextMessage, geom)

GIF filename

setCurrentGeometryIndex(
selectedGeometryIdx)

WebDMSMessage

[MULTI is null]

getMultiMessageThrows(plainTextMessage, geom)

[page or row exception]
Add To Bad Geom Index List

[current index == selectedGeometryIndex and page or row exception]
Set Too Many Rows or Pages

[MULTI not null]

[* for each
geometry]

getIntParam(req, "startPageIdx", 0)

[bad selected index or
too many rows, cols,

or pages]

DMSDisplayInfo

createGIFImage(supporter, geom, multi,
beaconsOn, startPageIdx, "DMSEditor_")

setLastValidEditorImageFilename(
fileName)

MultiStats
Accumulator DMSDisplayInfo

getGeometries()

[MULTI not null]
getMessageStats(multi)

MultiMessageStats

DMSDisplayInfo[]

getCharCols()

DMSEditorData HttpServletRequest ServletUtil

Use the current geometry index,
unless another is specified
(and if so default to 0)

If it is the DMSTravInfoMsgTemplateEditorData,
it will replace the tags in the MULTI. For other
manual editor types, it will return the MULTI as is.
For auto editors it will return null.

getCurrentGeometryIdx()

[selectedGeometryIdx param not null]
getIntParam(req, "selectedGeometryIdx", 0)

MULTI (manual editor) or
null (auto editor)

Counts the number of rows,
columns, and pages necessary to
display the message.

The JSON response
object will be converted
to a Javascript object
with the same field
names that can be
used directly on the
editor web page.

put("imageHeight", imageHeight)
put("imageWidth", imageWidth)

getIntParam(req, "pixelSize", 4)

Calculate Image Height And Width
From "pixelSize" Param and Current Geometry

put("errMsg", errMsg)

sendJSONObject(resp, jsonObj)
null

JSONObject

JSONArraycreate()
put("imageFilename", editorData.getLastValidEditorImageFilename())

put("currentGeometryIdx", editorData.getCurrentGeometryIdx())
put("tooManyPages", tooManyPages)
put("tooManyRows", tooManyRows)

put("lineTooLong", lineTooLong)
create()

[* for each bad geometry index]
add(bad geometry index)

put("badGeometryIndices", arr)

DMSReqHdlr

saveDMSEditorDataFromForm(
req, supporter)

This will commit the parameters
representing the user's current form
inputs into the DMSEditorData object.
This requires that the parameters in
the request be the same as those
submitted when the form is submitted.

getCharRows()
getMaxPages()

[MULTI rows, cols, or pages exceed geometry's max]
Add To Bad Geom Index List

[current index == selectedGeometryIndex]
Set Flags For Too Many Rows, Columns, and\or Pages

User

getDMSEditorImageJSON(
req, resp, ctx, supporter)

DMSEditorData

getParameter("selectedGeometryIdx")

getFormattedMulti()

Figure 5-371. chartlite.servlet.dms:getDMSEditorImageJSON (Sequence Diagram)

CHART R3B3 Detailed Design 5-664 12/23/2008

5.47.2.5 chartlite.servlet.dms:getDMSTravInfoMsgImageJSON (Sequence Diagram)

This diagram shows how the true display image is generated for the Add / Edit DMS

Traveler Info Message Form. The parameters are parsed and a new DMSTravInfoMsg

structure is created, as shown in the parseDMSTravInfoMsg sequence diagram. The DMS

ID is used to retrieve the WebDMS object from the cache. The specified true display

manager ID is used to look up the DMSTravInfoMsgTrueDisplayMgr from the

TempObjectStore, which may have been put there by a previous invocation of this method

for the same editor session. If it is found, the DMSTravInfoMsg is updated within the true

display manager. If not found, new WebDMSTravInfoMsg and

DMSTravInfoMsgTrueDisplayMgr objects are created, and the latter is added to the

TempObjectStore for future use. The manager is called to update its current GIF image, as

shown in the DMSTravInfoMsgTrueDisplayMgr:updateGIF sequence diagram. The GIF

filename and image dimensions (or error conditions) are then put into a new JSON object,

which is sent back to the browser in the response. The JSON object will be interpreted by a

Javascript Ajax response handler that will update the image on the page.

CHART R3B3 Detailed Design 5-665 12/23/2008

NOTE: Need to make sure the DynImageCleanupTask
looks in the TempObjectStore for the
DMSTravInfoMsgTrueDisplayMgr objects and asks
them for their image filenames to keep, to make
sure their image files are not deleted prematurely during
the periodic c leanup. It also needs to ask the DMS
for its DMSTravInfoMsg images.

See the DMSTravInfoMsgTrueDisplayMgr:updateGIF
sequence diagram for details .

add(trueDisplayMgrID, trueDisplayMgr)

[true display
mgr not found

in TempObjectStore]

updateGIF()

User
DMSReqHdlr

RequestHandler
SupporterServletUtil

See the parseDMSTravInfoMsg
sequence diagram for details .

WebDMSTravInfoMsg ObjectCacheTempObjectStore
DMSTravInfoMsg
TrueDisplayMgr

getDMSTravInfoMsgImageJSON(
req, resp, c tx, supporter)

getIdentifierParam(req, "dmsID", null)

parseDMSTravInfoMsg(req, supporter)

DMSTravInfoMsg

[params not specified]
error

getCachedObject(dmsID)
WebChart2DMS or null[DMS not found]

error

getObjectCache()

getTempObjectStore()

getObject(trueDisplayMgrID)
DMSTravInfoMsgTrueDisplayMgr or null

getDMSTravInfoMsg()

update(msg)

create(msg, dataModel)

create(tempDir, webDMS, msg, true)

getDataModel()

getTempDir()

getParameter("trueDisplayMgrID")

JSONObject

getGIFFilename()
getImageHeightPixels()
getImageWidthPixels()

getLastErrorMsg()

Attempt To Create New GIF Image

create

[success]
put("gifFilename", filename)

[success]
put("imageHeightPixels", imageHeight)

[success]
put("imageWidthPixels", imageWidth)

[failure]
put("errorMsg", lastErrorMsg)

put("success", filename!=null && filename.length() > 0)

sendJSONObject(resp, jsonObject)
null

Figure 5-372. chartlite.servlet.dms:getDMSTravInfoMsgImageJSON (Sequence Diagram)

CHART R3B3 Detailed Design 5-666 12/23/2008

5.47.2.6 chartlite.servlet.dms:getDMSTravInfoMsgTemplateDataJSON (Sequence

Diagram)

This diagram shows the processing when a user selects a template in the Add/Edit DMS

Traveler Info Message form. The DMS and template IDs are used to retrieve the cached

wrapper objects, and the route IDs associated with the DMS are used to retrieve the cached

WebTravelRoute objects. This is a superset of the routes that can be applicable for each

route index used in the template. Next the template is parsed to build a model, to

determine which data elements are required for each route index used in the template. For

each route index used, any routes that support the required travel time / toll rate data are

added to the list. Finally a JSON response object is built containing the applicable routes

for each route in the template, the template message text, and the template ID. The JSON

response object is then sent back to the browser, which will parse the response into a

Javascript object to be used by the Ajax response handler.

add(routeJSONObj)

[* for each
route in
route list]

create

add(routeList)

[* for
each
route
list]

create

put("routeLists", routeLists)

put("templateMsg", templateMsg)

WebTravelRoute

WebTravel
RouteConfig

Create a list of WebTravelRoutes
associated with the DMS.

getNumRoutesUsed()

getTags(routeIdx, TemplateTravelTimeTag.class)

getTags(routeIdx, TemplateTravelTimeRangeTag.class)
getTags(routeIdx, TemplateTollRateTag.class)

getConfig()
supportsTollRates()

supportsTravelTimes()

[route supports travel times and\or
toll rates if used in template]

Add Route To List

Save Route List In
List Of Applicable Route Lists

[* for each
WebTravelRoute

associated
with DMS]

[* for each
route index

used in
template]

[template not found]
error

DMSTravInfoMsg
TemplateModel

WebDMSTravInfo
MsgTemplate

create(templateConfig, null, true)

getConfig().getRawConfig()

DMSTravInfoMsgTemplateConfig

WebTravelRoute or null

WebChart2DMS

WebDMSTravInfo
MsgConfig

getDMSTravInfoMsgConfig()

getAssociatedTravelRouteIDs()

getCachedObject(routeID)

[WebTravelRoute found]
Add Route To List

[* for each route ID]

User

DMSReqHdlrSupporter HttpServletRequest

RequestHandler
Supporter

WebMessage
TemplateFactory

Wrapper

getDMSTravInfoMsg
TemplateDataJSON(

req, resp, ctx, supporter) getParameter("dmsID")

getParameter(
"templateID")[param not specified]

error

getCachedObject(dmsID)

WebChart2DMS or null
[DMS not found]

error
get()

getCachedDMSTravInfoMsgTemplate(templateID)

WebDMSTravInfoMsgTemplate or null

ServletUtil

The template ID is included to allow the browser to
verify that the response matches the selected
template.

getConfig().getMessage()

put("templateID", templateID)

sendJSONObject(resp, templateData)
null

route :
JSONObject

routeList :
JSONArray

routeLists :
JSONArray

templateData :
JSONObject

create

put("routeID", route.getID().toString())

put("routeName", route.getName())

create

Figure 5-373. chartlite.servlet.dms:getDMSTravInfoMsgTemplateDataJSON (Sequence

Diagram)

CHART R3B3 Detailed Design 5-667 12/23/2008

5.47.2.7 chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)

This diagram shows the processing done by the DMSReqHdlr to parse the parameters

passed from the DMS basic configuration data form. This existing method is being

modified for R3B1 to allow the responsible operations center to be set. This optional field

will be used to specify which operations center should receive a device failure alert for a

DMS. When not set, device failure alerts for the DMS are disabled. This method is

modified for R3B3 to include NTCIP font selection and spacing. Other new fields for

R3B3 include device and comm failure notification groups in addition to travel time and

toll rate arb queue buckets.

getParameter("commFailureAlertOpCtrID")

getParameter("commFailureNotificationGroupID")

getParameter("travelTimeArbQueueBucketID")

getParameter("tollRateArbQueueBucketID")

NTCIP font number/spacing, alert/notification settings, and arb queue buckets
are new for R3B3 and not required.
If sign model is NTCIP, retrieve font number and spacing parameters.

The alertOpCenterID parameter is new for R3B1, and is not required.

getParameter("hasBeacons")
getParameter("deviceLoggingEnabled")

getParameter("alertOpCenterID")

return Error Message For
Values That Can Be Corrected

by the User

[required params missing]
throw CHARTLiteException

Set Chart2DMSConfiguration Fields
For Parameters With Valid Values

[any invalid values that
are not correctable by the user]

throw CHARTLiteException

DMSReqHdlr

DMSReqHdlr HttpServletRequest

parseBasicConfigSettings
getParameter("dmsName")

getParameter("locationDesc")
getParameter("direction")
getParameter("signType")

getParameter("signModel")

getParameter("dmsCharRows")

getParameter("maxPages")

getParameter("defaultLineJustification")

getParameter("defaultPageOffTimeTenths")

getParameter("ntcipFontNumber")
getParameter("ntcipFontSpacing")

getParameter("owningOrgID")

getParameter("defaultPageOnTimeTenths")

getParameter("communityString")

getParameter("dmsCharCols")

getParameter("charSizePixels")

getParameter("deviceFailureNotficationGroupID")

Figure 5-374. chartlite.servlet.dms:parseBasicConfigSettings (Sequence Diagram)

CHART R3B3 Detailed Design 5-668 12/23/2008

5.47.2.8 chartlite.servlet.dms:parseDMSTravInfoMsg (Sequence Diagram)

This diagram shows how a DMSTravInfoMsg structure is parsed from the form parameters

when editing a DMS Traveler Info Message. This will be used when submitting the form

and when updating the true display image for the editor.

Populate DMSTravInfoMsg values

DMSTravInfoMsg

DMSReqHdlr
DMSReqHdlr

DMSTravInfoMsg

ServletUtil IdentifierGenerator

parseDMSTravInfoMsg(
req, supporter)

getIdentifierParam(req, "travInfoMsgID", null)
Identifier

getIdentifierParam(req, "templateID", null)

getIdentifierParam(req, "routeIdx" + i, null)

getIntParam(req, "numRoutes", 0)

Identifier or null

Create Identifier[] For Route IDs

[null route ID]
createNullIdentifier()

Store Route ID or null ID in array

[* for i=1;
i <= numRoutes;

i++]

isCheckboxChecked(req, "autoRowPositioning")

create

Figure 5-375. chartlite.servlet.dms:parseDMSTravInfoMsg (Sequence Diagram)

CHART R3B3 Detailed Design 5-669 12/23/2008

5.47.2.9 chartlite.servlet.dms:removeDMSTravInfoMsg (Sequence Diagram)

This diagram shows how a DMS traveler information message is removed from a DMS.

The dmsID parameter is used to retrieve the WebChart2DMS from the cache. After

checking the user rights, a copy of the latest configuration is queried from the Chart2DMS

CORBA object in the server. The request handler builds a list, adding any

DMSTravInfoMsg objects except for the one that matches the message ID. The messages

are put back into the copy of the configuration, and the Chart2DMS is called again to set

the configuration. If succesful, the message is removed from the cached configuration and

the WebDMSTravInfoMsg is removed. The response is redirected to display the DMS

Details page to show the updated DMS configuration.

WebDMSTravInfo
MsgConfig HttpServletResponse

This URL will be:
req.getRequestURI() +
"?action=viewDMSProps&dmsID=" + dmsID

getDMSTravInfoMsgConfig()
dmsTravInfoMsgRemoved(msgID)

Remove From Array
In Config

Remove
WebDMSTravInfoMsg

encodeRedirectURL(url)
sendRedirect(encodedURL)

null

Check User's Rights
For This DMS's Organization

[insufficient rights]
error

User

DMSReqHdlr

removeDMSTravInfoMsg(
req, resp, ctx, supporter)

RequestHandler
Supporter WebChart2DMS Chart2DMS

[not specified]
error

getCachedObject(dmsID)
WebChart2DMS or null

[dms not found]
error

getChart2DMSRef()

getConfiguration(token)
Chart2DMSConfiguration

Create List For DMSTravInfoMsgs

[* for each DMSTravInfoMsg in config]
Add To List If ID

Set List Into Config

ServletUtil

getIdentifierParm(
req, "dmsID", null)

getIdentifierParm(
req, "msgID", null)

setTravInfoMsgConfig(token, config)

Figure 5-376. chartlite.servlet.dms:removeDMSTravInfoMsg (Sequence Diagram)

CHART R3B3 Detailed Design 5-670 12/23/2008

5.47.2.10 chartlite.servlet.dms:saveDMSEditorDataFromForm (Sequence Diagram)

This diagram shows how data is saved from the DMS message editor form into the

DMSEditorData object corresponding to the editor type. The editor data ID is used to look

up the DMSEditorData object that was previously stored in the TempObjectStore. If found,

and the formDataSaved parameter is specified, it will just return the editor data without

further processing. Otherwise, the parameters are read from the request and set into the

editor data including the beacon state, message edited flag, advanced editor flag, the

MULTI message (for the manual editor) or plain text message (for the auto editor). If the

editor data type indicates the template editor, the type-specific parameters are parsed and

stored in the editor data including the template description, template field formats,

destination tag alignment, and policy to follow if the route data is missing. For the RPI or

Stored Message editors, the description and/or category are parsed and stored in the editor

data.

In the advanced editor,
the line jus tification and
page on/off time field values
will be encoded in the MULTI.

getParameter("description")

getParameter("travelTimeFormatIdx")

getParameter("tollRateFormatIdx")

getParameter("distanceFormatIdx")

getParameter("routeDataMissingPolicy")

getParameter("travelTimeRangeFormatIdx")

getParameter("tollRateTimeFormatIdx")

getParameter("destTagAlignment")

DMSRPIMsg
EditorData

DMSStoredMsg
EditorData

DMSTravInfoMsgTemplate
EditorData

getParameter("newMultiMsg") [newMultiMsg not null]
setMulti(newMultiMsg)

getParameter("plainMsgText")[newMultiMsg null and plainMsgText not null]
setPlainTextMsg(plainMsgText)

[neither multi nor plain text
spec ified]

throw exception
[editor data instanceof DMSTravInfoMsgTemplateEditorData]

parseDataFromRequest(req, supporter)

DMSReqHdlr
DMSReqHdlr HttpServletRequestRequestHandlerSupporter TempObjectStore DMSEditorData

If the form data was already saved (as indicated by
the formDataSaved parameter), return the form data "as is".

saveDMSEditorDataFromForm(
req, supporter) getParameter("editorDataID")

[not spec ified]
throw exception

getTempObjectStore()

getObject(editorDataID)
DMSEditorData or null[editor data is null]

null getParameter("formDataSaved")
[form data saved is true]

editor data

The format index
values reference the
arrays of formats stored
in the editor data, so there
is no danger of the the
index values becoming
invalid due to changing
format arrays.

Save Parameter Values

getParameter("beaconState")
setBeaconsEnabled(beaconState)

setMessageEdited(msgEdited)

setShowAdvancedEditor(showAdvForm)

[editorData ins tanceof DMSRPIMsgEditorData]
setDescription(desc)

[editorData ins tanceof
DMSStoredMsgMsgEditorData]

getParameter("category")

setCategory(category)

DMSEditorData

getParameter("msgEdited")

getParameter("showAdvForm")

[editorData ins tanceof
DMSRPIMsgEditorData]

getParameter("description")

[editorData instanceof DMSStoredMsgEditorData]
setDescription(desc)

[editorData ins tanceof
DMSStoredMsgMsgEditorData]

getParameter("description")

[required parameter not specified]
throw exception

[param not specified, index invalid, or invalid value]
throw exception

Figure 5-377. chartlite.servlet.dms:saveDMSEditorDataFromForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-671 12/23/2008

5.47.2.11 chartlite.servlet.dms:setDMSConfigBasicSettings (Sequence Diagram)

This diagram shows the processing that occurs when the user submits the basic settings

form for a DMS. The "action" parameter of "setDMSConfigBasicSettings" is mapped to

the DMSReqHdlr class via a request action mapping, so its processRequest() is called. It

calls setDMSConfigBasicSettings(), which uses the "dmsID" request parameter to look up

the WebDMS wrapper object from the cache. The user's login session object is checked to

make sure the user has configuration rights. Then a call is made to the DMS CORBA

object in the DMS Service to get a snapshot/copy of its current configuration. The request

parameters are parsed and used to update the copy of the configuration data, and the DMS

object is called again to set the modified configuration data. The PopupSumissionCloser

template is used to close the popup window and display the single command status page,

with a "backURL" to allow the user to return to the DMS Details page if they click the

Back button from the command status page.

This functionality existed prior to R3B1, but is shown to give context for the

parseBasicConfigSettings() diagram, which does contain changes.

Updates the Chart2DMSConfiguration
using parameters parsed from the request.
See the parseBasicConfigSettings sequence
diagram for more details.

WebDMS DMS

Makes a call to the remote DMS
object in the DMS Service to get
a snapshot of the latest configuration.

getDMSRef()

DMS

getConfiguration(token)

getParameter("action") The logic for this diagram is unchanged for R3B1,
and is only shown here to provide context for
the parseBasicConfigSettings diagram, which will be
changing for R3B1.

RequestHandlerSupporter CommandStatusMgr

CommandStatusImpl

Context

The URL will be:

app&action=viewOneCommandStatus&cmdStatusID=<csID>
&backAction=viewDMSProps&dmsID=<dmsID>

getCommandStatusMgr()

createCommandStatusImpl()

create

setConfiguration(token, config, cmdStatusImpl.getRef())

put("targetURL", resp.encodeURL(url))

return "PopupSubmissionCloser.vm"

canConfigureDMS(webDMS)

Chart2DMSConfiguration

ServletUtil UserLoginSessionImpl

getObjectFromIDString(dataModel, dmsIDStr)

parseBasicConfigSettings(req, config, false, supporter, dms.getID())

HttpSession NavLinkRights

WebDMS or null

getSession()

getAttribute(MainServlet.SESSION_ATTR_LOGIN_SESSION)

NavLinkRights

DMSReqHdlr

processRequest

[dmsID not specified]
Return Error Page

[not found]
Return Error Page

HttpSession

[parseBasicConfigSettings() returned error message]
Redisplay Edit Basic Settings Form

[parseBasicConfigSettings
threw Exception]
Return Error Page

[user-correctable error]
return "PopupTemplate.vm"

UserLoginSessionImpl

getNavLinkRights()

User

HttpServletRequest

getParameter("dmsID")

[action.equalsIgnoreCase("setDMSConfigBasicSettings")]
setDMSConfigBasicSettings

[no rights]
Return Error Page

Figure 5-378. chartlite.servlet.dms:setDMSConfigBasicSettings (Sequence Diagram)

CHART R3B3 Detailed Design 5-672 12/23/2008

5.47.2.12 chartlite.servlet.dms:setDMSTravelRoutes (Sequence Diagram)

This diagram shows the processing to set the travel routes within the DMS configuration.

The WebDMS object is retrieved from the cache using the "dmsID" parameter, and the

organization-specific user rights are checked. The configuration is queried from the DMS

CORBA object. Each route ID specified in the request parameters is added to a list, the

route IDs are set back into the configuration, and the DMS is called to set the configuration.

The popup submission closer page is returned, telling the browser to close the popup

window and redirect the working window to view the View One Command Status page

(with the Back button leading to the DMS details page).

CommandStatusMgr

setDMSTravelRoutes(
req, resp, ctx, supporter)

idFromString(dmsIDStr)

getParameter("dmsID")

getCachedObject(dmsID)

[not specified]
error

WebDMS or null[not found]
error

Check Configure DMS
Rights For This DMS

[no rights]
error

getDMSRef()

getConfiguration(token)

Chart2DMSConfiguration

create()

getParameterValues("routeID")
String[]

idFromString(routeID)

add(routeID)

[* for each
route ID specified]

toArray(new Identifier[0])

Identifier[]

Set Route IDs Into
Chart2DMSConfiguration CommandStatusImpl

HttpServlet
Response Context

createCommandStatusImpl(loginSessionID, "Setting travel routes associated with DMS")
getCommandStatusMgr()

setConfiguration(token, config, cmdStatusImpl.getRef())

create

[exception that is not a UserException]
completed(false, "Error calling DMS")

encodeURL(viewOneCommandStatusURL)
put("targetURL", viewOneCommandStatusURL)

"PopupSubmissionCloser.vm"

User

DMSReqHdlr ServletUtilHttpServletRequest

RequestHandler
Supporter WebDMS DMS

ArrayList
<Identifier>

Figure 5-379. chartlite.servlet.dms:setDMSTravelRoutes (Sequence Diagram)

5.47.2.13 chartlite.servlet.dms:setDMSTravelTimeDisplaySchedule (Sequence

Diagram)

This diagram shows the processing when the user sets the DMS travel time display

schedule. The DMS ID is used to retrieve the WebChart2DMS object from the cache,

which is used to check the user's rights for the DMS's organization. The relevant

parameters are parsed from the request including the "override" and "useSpecificTimes"

flags, and the time ranges if applicable. The Chart2DMS CORBA reference is called to set

CHART R3B3 Detailed Design 5-673 12/23/2008

the travel time schedule. If successful, the cached Chart2DMSConfiguration is updated to

reflect the changed values. Finally the PopupSubmissionCloser template is returned, which

will redirect the working window to show the updated DMS Details page before closing the

popup window.

User
DMSReqHdlr Serv letUtil

RequestHandler
Supporter

HHMMRange

WebChart2DMS Chart2DMS Context
HttpServlet
Response

setDMSTravelTimeDisplaySchedule(
req, resp, c tx, supporter)

getIdentifierParam(req, "dmsID", null)
Identifier or null

[not specified]
error

getCachedObjec t(dmsID)
WebChart2DMS or null

[DMS not found]
error

Check User's Rights For
DMS's Organization

[no rights]
error

getBooleanParam(req, "override", false)

getBooleanParam(req, "useSpecificTimes", true)

getIntParam(req, "startHour-" + i, -1)
getIntParam(req, "startMin-" + i, -1)
getIntParam(req, "endHour-" + i, -1)
getIntParam(req, "endMin-" + i, -1)[override == false or

useSpecificTimes==false]
[* while

s tart and end
time params

not -1]

[range created]
Add HHMMRange To List

[start and end time params not -1]
c reate

getChart2DMSRef()
Chart2DMS

setTravelTimeSchedule(token, override, useSpecificTimes, hhmmRangeArr)

Convert List To Array

getChart2DMSConfig().getChart2DMSConfig()
Chart2DMSConfiguration

put("targetURL", url)
encodeURL(req.getURI() + "?action=viewDMSProps&dmsID=" + dmsID)

Update Travel Time Fields
In Chart2DMSConfiguration

"PopupSubmissionCloser.vm"

Figure 5-380. chartlite.servlet.dms:setDMSTravelTimeDisplaySchedule (Sequence

Diagram)

CHART R3B3 Detailed Design 5-674 12/23/2008

5.47.2.14 chartlite.servlet.dms:setDMSTravInfoMsgEnabledFlag (Sequence Diagram)

This diagram shows the processing when the user enables or disables a DMS traveler info

message. The DMS ID is used to retrieve the WebChart2DMS object from the cache,

which is used to check the user's rights for the DMS's organization. The enable/disable flag

is parsed from the request and the Chart2DMS CORBA reference is called to set the

enable/disable flag. The status is queried from the Chart2DMS to obtain the official

enabled message ID, and this status is used to update the cached status in the

WebChart2DMS. Finally the response is redirected to show the DMS details page again to

show the updated status.

null

User
DMSReqHdlr ServletUtil

RequestHandler
Supporter WebChart2DMS Chart2DMS

HttpServlet
Response

setDMSTravInfoMsgEnabledFlag(
req, resp, ctx, supporter) getIdentifierParam(req, "dmsID", null)

Identifier or null

[not specified]
error getCachedObject(dmsID)

WebChart2DMS or null
[DMS not found]

error

Check User's Rights For
DMS's Organization

[no rights]
error

getBooleanParam(req, "enabled", false)

getChart2DMSRef()
Chart2DMS

setTravInfoMsgEnabledFlag(token, msgID, enabled)
The status contains the
ID of the currently enabled
message, which should be
the one just enabled.

getStatus()
DMSStatus

updateStatus(status)

encodeRedirectURL(req.getURI() + "?action=viewDMSProps&dmsID=" + dmsID)
sendRedirect(url)

getIdentifierParam(req, "msgID", null)
Identifier or null

Figure 5-381. chartlite.servlet.dms:setDMSTravInfoMsgEnabledFlag (Sequence Diagram)

CHART R3B3 Detailed Design 5-675 12/23/2008

5.47.2.15 chartlite.servlet.dms:submitDMSTravInfoMsgForm (Sequence Diagram)

This diagram shows the processing when the form for adding or editing a

TravelerInfoMessage is submitted. The parameters for the new TravelerInfoMsg data are

parsed from the request, as is the DMS ID and a flag indicating whether it is an edit or add

operation. The WebChart2DMS object is obtained from the cache and the user's rights are

checked. The DMSTravInfoMsgConfig is queried from the Chart2DMS CORBA object to

get a copy of the latest configuration. Depending on whether a message is being edited or

added, the message within the copy of the configuration is replaced or the message is

appended to the list. The Chart2DMS is called again to set the configuration, and the

cached configuration is updated. Finally the Velocity context is populated such that the

popup window will cause the DMS Details page to be redisplayed just before the popup

closes itself.

getIdentifierParam(req, "dmsID", null)

WebDMSTravInfo
MsgConfig HttpServ letResponse

getConfiguration(token)
Chart2DMSConfiguration

WebChart2DMS Chart2DMS

getChart2DMSRef()

RequestHandler
Supporter

[params not specified]
error

getCachedObject(dmsID)
WebChart2DMS or null

[not found]
error

Check User's Rights
For The DMS's organization

[no rights]
error

User

DMSReqHdlr Serv letUtility

submitDMSTravInfoMsgForm(
req, resp, c tx, supporter)

parseDMSTravInfoMsg(req, supporter)

DMSTravInfoMsg

This URL will be:
req.getRequestURI() + "?action=viewDMSProps&dmsID=" + dmsID

put("targetURL", encodedURL)

updateConfig(config)

encodeURL(targetURL)

Context

This will add, update, or delete WebDMSTravInfoMsg objects
from the WebDMSTravInfoMsgConfig. All added/updated
messages will cause the true display GIF to be updated.

getBooleanParam(req, "isEdit", true)

[isEdit]
Replace DMSTravInfoMsg In Config

Having Same ID With New Msg

[not isEdit]
Create New DMSTravInfoMsg[],

Appending New Msg, And
Replace Array In Config

[isEdit and matching ID not found]
error

setTravInfoMsgConfig(token, config)

getTravelerInfoMsgConfig()

"PopupSubmissionCloser.vm"

Figure 5-382. chartlite.servlet.dms:submitDMSTravInfoMsgForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-676 12/23/2008

5.47.2.16 chartlite.servlet.dms:submitDMSTravInfoMsgTemplateForm (Sequence

Diagram)

This diagram shows the processing that occurs when the DMS template editor form is

submitted to create a new template or to commit changes to an existing template. The

user's form field values are saved into the editor data. The editor data is then checked for

banned words using an existing method (which should not be affected by the presence of

the template tags). The message is then checked to see if it fits within the given sign

dimensions, by calling checkDMSEditorDataForFit(). This method will be changed to call

the new method getFormattedMulti() which will extract the template data and convert the

template data into MULTI (replacing any tags with dummy data). The resulting MULTI is

then checked for fit, just as it is already done for the other manual editor types. The

message is then checked for spelling (without substituting the template tags). (Most of the

tags contain numbers and will be ignored, with the exception being the toll rate time tag,

which can be handled by making it an approved word.) If the spell check fails, the spell

check page is displayed. Otherwise an attempt is made to create or update the template (see

the createOrUpdateDMSTravInfoMsgTemplate diagram). If successful, the editor data is

removed from the TempObjectStore and the PopupSubmissionCloser template is displayed,

which will refresh the Template List page and close the editor popup. If an error occurred

in the message content (i.e., banned words, message didn't fit, or a duplicate template name

was used), the editor will be redisplayed showing the error message, which allows the user

to fix the problem. If another error occurs, a plain error message page will be displayed.

CHART R3B3 Detailed Design 5-677 12/23/2008

getFormattedMulti()

encodeURL("app?action=getDMSTravInfoMsgTemplateLis t")

put("targetURL", url)

"PopupSubmissionCloser.vm"

[banned words, message fit, duplicate name error]
put("pageContent", "dmsmgmt\DMSManualEditor.vm")

[other error]
put("errMsg", errMsg)

[other error]
put("pageContent", "Error.vm")[error]

"PopupTemplate.vm"

Only the relevant part of the ex isting method: checkDMSEditorDataForFit()
is shown here. The getFormattedMulti() will replace the call to
getMulti() that is used for the other (manual) editor types. It will
be the same as getMulti() for other editor types, but will be overridden for
the template editor.

This will format the MULTI message
using the given template, substituting
dummy data for any data tags.

DMSTravInfoMsgTemplate
EditorData

DMSTravInfoMsg
TemplateFormatter

This existing functionality will be used for
message templates without substituting tags because
most tags contain a route index (a number currently
excludes words from being spell checked) and those that
do not contain a number such as the toll rate time can
be added to the approved words lis t.

See the c reateOrUpdateDMSTravInfoMsgTemplate
sequence diagram for details .

ReqHdlrSupporter TempObjectStore Contex t

formatMulti(templateConfig,
null, true, false)

MULTI message string

Check MULTI For Fit

checkDMSEditorDataForFit() returns
error message, empty if no error

checkDMSEditorDataForSpelling(editorData, req, ctx, resp, false)

createOrUpdateDMSTravInfoMsgTemplate(token, editorData)

true if spell check passed, false if failed

This ex isting functionality will be used for
message templates without substituting tags because
the addition of the template data tags will not affect
the detection of banned words .

checkDMSEditorDataForFit(editorData)

HttpServletResponse

User

DMSReqHdlr

Commits the form field values to the editor data.
See the saveDMSEditorDataFromForm sequence
diagram for details.

[spell check failed]
"PopupTemplate.vm"

Error message, null if successful

getTempObjectStore()

removeObject(editorData.getID())

[error msg]

[error msg]

[error msg]

[banned words, message fit, duplicate name error]
put("contentErrorMsg", errMsg)

[banned words, message fit, duplicate name error]
put("editorData", editorData)

submitDMSTravInfo
MsgTemplateForm(

req, resp, ctx, supporter)

Check User Rights

[no rights]
error

saveDMSEditorDataFromForm(
req, supporter)

checkDMSEditorDataForBannedWords(editorData)

Banned words error message,
empty if no error

getTemplateConfig()

Figure 5-383. chartlite.servlet.dms:submitDMSTravInfoMsgTemplateForm (Sequence

Diagram)

5.47.2.17 chartlite.servlet.dms:viewDMSMessageEditorForm (Sequence Diagram)

This diagram shows the processing to display a DMS editor form, including the Traveler

CHART R3B3 Detailed Design 5-678 12/23/2008

Information Message Template Editor. If the form is being redisplayed and the editor data

ID is specified, the DMSEditorData object is retrieved from the temporary object store. If

the for is being redisplayed because the message contains a content error such as banned

words or a message that doesn't fit on the sign, the content error message is put into the

Velocity context to display. If no content error exists, the presence of the

"spellCheckResults" parameter indicates that the form is being redisplayed after the

resolution of a spell check, and in this case the DMSSpellCheck object will be retrieved

from the HTTP session attribute and the message text from the spell check is set into the

editor data. If there is no content error or spell check results, the usual processing occurs:

if the editor data was not specified then the initial form is being displayed, so the correct

type of DMSEditorData is created and added to the temp object store. If the editor data was

already found the form is being redisplayed, and in this case any user input parameters

specified in the request are set into the editor data before redisplaying the form. Finally the

editor data object and the form template name (for either the manual or auto editor) are put

into the Velocity context.

Note that in the case of a spell check, the
editor data ID is stored in the DMSSpellCheck objec t.

If the form is being redisplayed after a spell check,
the spellCheckResults parameter will be specified.

If the editor data is null, the initial form is being displayed.
See the createDMSEditorData sequence diagram for details.

If the editor data is not null, we are about to redisplay the
form, so save the user's current inputs submitted in the request.
See the saveDMSEditorDataFromForm sequence diagram for details .

getEditorDataID()
getObject(editorDataID)

DMSEditorData or null[editor data
not found]

error setNeedsSpellCheck(false)
getMulti()

[MULTI not null]
setMulti(multi)

[MULTI is null]
setPlainTextMsg(plainTextMsg)

[MULTI is null]
getPlainText()

[editorData is null]
createDMSEditorData(req, supporter)

add(editorData.getID(), editorData)

[editorData not null]
saveDMSEditorDataFromForm(req, supporter)

hasEditRights(loginSessionImpl)

[no rights]
removeObject()[no rights]

error
put("editorData", editorData)

put("pageContent", manualOrAutoEditorTemplateName)
"PopupTemplate.vm"

[content
error msg]

[no spell check
results]

getObject(editorDataID)

[editor data not found]
display error

DMSEditorData or null

DMSSpellCheck or null[DMSSpellCheck
not found]

error

The error message will be set
if there are banned words or the message
does not fit on the sign.

HttpSession DMSSpellCheck

getParameter("spellCheckResults ")

getAttribute("spellCheck")

Context

getParameter("contentErrorMsg")

[has error message]
put("contentErrorMsg", errMsg)

DMSEditorData

[editorDataID not
specified]

setNeedSpellCheck(true)

User
DMSReqHdlr HttpServletReques t

RequestHandler
Supporter TempObjectStore

The editorID parameter will be specified if the
 form is being redisplayed

viewDMSMessageEditorForm()

prepareDMSEditorFormData()

getParameter("editorDataID")

getTempObjectStore()

Figure 5-384. chartlite.servlet.dms:viewDMSMessageEditorForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-679 12/23/2008

5.47.2.18 chartlite.servlet.dms:viewEditDMSTravelRoutesForm (Sequence Diagram)

This diagram shows the processing to display the Edit DMS Travel Routes Form, which

allows the user to specify the travel routes available for use by a DMS. The WebDMS

object is retrieved from the object cache and the user's rights are checked. If successful the

WebTravelRoute objects are retrieved from the cache and sorted, and put into the Velocity

context along with the WebDMS. (The DMS's currently selected travel routes can be

obtained from the WebDMS's configuration.) The popup template is returned.

[not found]
error

Check Configure DMS
Rights For This DMS

[no rights]
error

WebDMSConfiguration

getCachedObjectsOfType(
WebTravelRoute.class)

WebTravelRoute[]

Sort Travel Routes

put("dms", webDMS)

put("travelRoutes", travelRoutes)

put("pageContent", "dmsMgmt\EditDMSTravelRoutes.vm")
"PopupTemplate.vm"

User

DMSReqHdlr HttpServletRequest
RequestHandler

Supporter ServletUtil WebDMS Context

viewEditDMSTravelRoutesForm(
req, resp, ctx, supporter)

idFromString(dmsIDStr)

getParameter("dmsID")

getCachedObject(dmsID)

[not specified]
error

WebDMS or null

Figure 5-385. chartlite.servlet.dms:viewEditDMSTravelRoutesForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-680 12/23/2008

5.47.2.19 DMSListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing that occurs when creating a dms dynlist. In R3B3,

displayed columns are configurable with defaults and new columns have been added.

add(col)

DMSDynList

DefaultDynListCol

Columns with no filter use
a text filter

new(DMSDynListSubject.PROP_OWNING_ORG)

new("Current Message")

add(col)

new(DMSDynListSubject.PROP_CURR_MSG, false)

add(col)

DynListReqHdlrDelegate

createDynList(req, supporter, dynListID)

new(DMSDynListSubject.PROP_NAME, false)

setDisplayedByDefault(true)

DefaultDynListCol

setDisplayedByDefault(true)

DMSListSupporter

DefaultDynListCol

create

DefaultDynListColnew(DMSDynListSubject.PROP_BEACONS, false)

DMSMessageFilter

setFilter(messageFilter)

DefaultDynListCol

setDisplayedByDefault(false)

add(col)

DefaultDynListcol

add(col)
new(DMSDynListSubject.PROP_STATE_MILEPOST)

setDisplayedByDefault(false)

DefaultDynListCol

setDisplayedByDefault(false)

DefaultDynListCol

setDisplayedByDefault(true)

DefaultDynListCol

setDisplayedByDefault(false)

DefaultDynListCol

new(DMSDynListSubject.PROP_PORT_MANAGER)

new(DMSDynListSubject.PROP_DIRECTION)

add(col)

add(col)

ArrayList<DynListCol>

add(col)

setDisplayedByDefault(true)

setDisplayedByDefault(true)

DefaultDynListCol
add(col)

DMSStatusFilternew(col,"Status")

add(col)

setFilter(statusFilter)

add(col)

setDisplayedByDefault(true)

new(DMSDynListSubject.PROP_COUNTY)

new(DMSDynListSubject(DMSDynListSubject.PROP_TT_SCHEDULE_OVERRIDDEN)

setDisplayedByDefault(true)

new(DMSDynListSubject.PROP_ROUTE,false)

DefaultDynListCol

add(col)

setDisplayedByDefault(true)

new(DMSDynListSubject.PROP_LOCATION, false)

Handle global filters if set

create

[no rights to view external dms]
setShowExternalDMS(false:boolean)

setDisplayedByDefault(true)

new(DMSDynListSubject.PROP_STATUS,false)

DMSDynList

add(col)

new(DMSDynListSubject(DMSDynListSubject.PROP_CONNECTION_SITE)

DefaultDynListCol

setDisplayedByDefault(false)

Figure 5-386. DMSListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-681 12/23/2008

5.47.2.20 DMSReqHdlr:getEditDMSLocationForm (Sequence Diagram)

This diagram shows how the Edit DMS Location form is displayed. The formDataID and

dmsID parameters are parsed from the request, and one of these should be present (the

formDataID if a DMS is being added/copied or the dmsID if editing the location of an

existing DMS). If the formDataID is specified, the AddDMSFormData object is retrieved

from the TempObjectStore, the form fields are saved into the form data, and a new

EditDMSLocationSupporter object is created. If the dms ID is specified, the WebDMS is

retrieved from the cache, the user's rights are checked for the given DMS's organization,

and the EditDMSLocationSupporter object is created. This object is added to the

TempObjectStore and the response is redirected so that the

displayEditObjectLocationDataForm request is invoked.

[instanceof WebExternalDMS]
error

create(formData)

getCachedObject(dmsID)
WebDMS or null

[not found]
error

Check User's Configuration Rights
For The DMS's Organization

[no rights]
error

create(webDMS)

HttpServletResponse

This URL will be:
req.getRequestURI() +
"?action=displayEditObjectLocationDataForm" +
"&editLocationSupporterID=" + supporterID

createTempObjectID()

add(supporterID, supporter)

encodeRedirectURL(url)
sendRedirect(encodedURL)

null

User
DMSReqHdlr HttpServletRequest

RequestHandler
Supporter TempObjectStore

This commits any user input for when
the form is displayed again after editing the
location.

EditDMSLocation
Supporter

This is executed if the formDataID is specified.
This is used when adding / copying a DMS.
The presence of the AddDMSFormData implies
that user rights were checked already.

getEditDMSLocationForm(
req, resp, ctx, supporter)

getParameter("formDataID")

getParameter("dmsID")
[neither specified]

error

getTempObjectStore()

getObject(formDataID)

[dmsID specified]

AddDMSFormData or null
[not found]

error

saveAddDMSFormData(
req, formData, supporter)

Figure 5-387. DMSReqHdlr:getEditDMSLocationForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-682 12/23/2008

5.47.2.21 EditDMSLocationSupporter:setObjectLocation (Sequence Diagram)

This diagram shows the processing to save the DMS location when the user submits the

Edit Location form. The SpecifyLocationReqHdlr calls the EditDMSLocationSupporter

with the location parsed from the request. If the location is being edited while adding /

copying a DMS, the configuration is retrieved and altered within the AddDMSFormData

object. If it is for an existing DMS, the WebDMS is called to get the DMS reference, the

configuration is queried from the DMS, modified within the configuration, and the DMS is

called to set the configuration. Since this is an asynchronous command, the URL to view

the command status is saved in the EditDMSLocationSupporter and will be passed back in

the XML response so that the parent window's URL can be set.

[supporter contains
AddDMSFormData]

getConfig()

WebDMSConfiguration

getConfig()
DMSConfiguration

Set Location Field
In Config

null

[WebDMS]

getDMSRef()

getConfiguration(token)

getUserLoginSession(req)

getAccessToken()

DMSConfiguration

Set Location Field
In Config

[exception]
error message

Store "View One
Command Status" URL

null

CommandStatusMgr

setConfiguration(token, config, cmdStatus.getRef())

getCommandStatusMgr()

createCommandStatusImpl(loginSession.getID, "setting DMS location")

SpecifyLocation
ReqHdlr

EditDMSLocation
Supporter AddDMSFormData

WebDMS
Configuration WebDMS DMS

RequestHandler
Supporter

UserLogin
SessionImpl

setObjectLocation(
objectLocation, req,
reqHdlrSupporter)

Due to the asynchronous command,
we can't know at this point whether the
operation succeeded, so we can't update
the cached configuration. It is assumed
that the "configuration changed" CORBA
event will update the cached configuration.

Figure 5-388. EditDMSLocationSupporter:setObjectLocation (Sequence Diagram)

CHART R3B3 Detailed Design 5-683 12/23/2008

5.48 Chartlite.servlet.alerts

5.48.1 Sequence Diagrams

5.48.1.1 chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

This diagram shows the processing that is done when the servlet receives a request to

resolve an alert. This request is issued when the user clicks the resolve button for an alert

on the home page, or the user clicks the resolve link on an alert details page. The user's

rights are checked, and if they don't have the right required to manage alerts, an error page

is returned. The alertID parameter is retrieved from the request, and this is used to find the

WebAlert in the servlet's object cache. If the parameter is missing or the alert cannot be

found in the object cache, an error page is returned. The getResolutionAction() method is

called on the WebAlert. Alert type specific subclasses of WebAlert override this method to

provide the query portion of a url used to point the user to right page where they can resolve

the alert. After the resolution url is constructed using the query string retrieved from the

WebAlert subclass, a redirect to that URL is performed. Following are the resolve actions

that each subclass will use:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events in the

alert as the event1 and event2 parameters of the request.

WebManualAlert: viewAlertDetails

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert as the

eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

WebExecuteScheduledActionsAlert: The redirect depends on the number of actions in the

schedule that fired the alert. If zero actions to execute, viewAlertDetails is the redirect

action. If there are more than 1 action, getExecuteScheduledActionsForm is the redirect

action. If there is a single Open Event action, viewEventDetails is the redirect action (pass

the pending event ID specified in the Open Event action).

WebExternalConnectionAlert: show the connection status page

WebExternalEventAlert: show the details page for the external event WebTollRateAlert:

show the details page for the travel route that contains the toll rate source that caused the

alert to be generated.

WebTravelTimeAlert: show the details page of the travel route whose travel time exceeded

the specified alert travel time.

CHART R3B3 Detailed Design 5-684 12/23/2008

WebAlert or null

getResolveAction()

User

WebAlertNavLinkRights

boolean

getParameter("alertID")

Classes derived from WebAlert override this method to provide the query
portion of a URL that is specific to the alert type. Following are the resolve actions
for each alert type:

WebDeviceFailureAlert: viewDMSProps (DMS device), viewTSSProps (TSS device)

WebDuplicateEventAlert: displayMergeEventSelectTargetForm - pass the events
in the alert as the event1 and event2 parameters of the request.

WebManualAlert: use default (close alert)

WebOpenEventReminderAlert: viewEventDetails - pass the event ID in the alert
as the eventID parameter of the request.

WebUnhandledResourcesAlert: getUncontrolledResources

WebExecuteScheduledActionsAlert: if more than 1 scheduled action, display
Execute Schedule Actions form. If only 1 action, and the action is an
Open Event Action, show the pending alert details page for that event. If
zero actions in the schedule, show the alert details page.

WebExternalConnectionAlert: show the connection status page

WebExternalEventAlert: show the details page for the external event

WebTollRateAlert: show the details page for the travel route that contains the
toll rate source that caused the alert to be generated.

WebTravelT imeAlert: show the details page of the travel route whose travel time
exceeded the specified alert travel time.

AlertReqHdlr

resolveAlert request
received by servlet due
to user clicking resolve
button for alert on home
page, or user clicking
resolve link on alert
details page.

RequestHandlerSupporter

new

HttpServletRequest

redirect to URL created with query
string provided by getResolutionAction()

Identifier

[alert not found in cache]
Error.vm

resolveAlert()

canManageAlerts()

getCachedObject()

[missing parameter]
Error.vm

[no rights]
Error.vm

Figure 5-389. chartlite.servlet.alerts:resolveAlert (Sequence Diagram)

CHART R3B3 Detailed Design 5-685 12/23/2008

5.49 Chartlite.servlet.geoareamgmt

5.49.1 Class Diagrams

5.49.1.1 GUIGeographicAreasServletClasses (Class Diagram)

This class diagram contains classes (servlet) related to geographic areas.

RequestHandler

«interface»

GeographicAreasReqHdlr

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

viewGeoAreas(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
submitAddEditGeoAreaForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
displayGeoAreaForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
removeGeoArea(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
viewGeoAreaProfileSettings(req:HttpServlet, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
updateGeoAreaProfileSettings(req:HttpServlet, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
importKMLFileJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):void

m_factoryWrapper:FirstAvailableOfferWrapper

Figure 5-390. GUIGeographicAreasServletClasses (Class Diagram)

5.49.1.1.1 GeographicAreasReqHdlr (Class)

This class handles servlet requests related to geographic areas.

5.49.1.1.2 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

CHART R3B3 Detailed Design 5-686 12/23/2008

5.49.2 Sequence Diagrams

5.49.2.1 GeographicAreasReqHdlr:displayAddEditGeoAreaForm (Sequence Diagram)

This diagram shows the processing that occurs when an administrator has chosen to add or

edit a geographic area. A form is displayed with fields for adding a new area. If the

administrator is editing an existing area, it is retrieved from the object cache and placed in

the context. If this request is reached via a redirect from the importKML action, points are

retrieved from the temp object store and placed in the context.

[point set not null]
getObject(pointSetID)

[point set not null]
add("polygonPointSet", points)

id or null

Temp Object Store

TempObjectStore

getIdentifierParam(req,"polygonPointSetID",null)

[point set id not null]
getTempObjectStore()

SystemProfileGeoAreaProperties

WebGeoPolygonPoint[]

Place latitude & longitude
properties in context for
 data validation

getSysProfileProps()

getGeoAreaProperties()

put("geoAreaProperties"), properties

NavLinkRights ServletUtil Context RequestHandlerSupporter

put("geoArea", area)

show add area form

getCachedObject(id)

WebGeoArea

put("geoAreaID", id)
[id is null]

show add area form

put("pageContent","geomgmt\AddEditGeoArea.vm")

boolean[no rights]
Error.vm

getStringParam("geoAreaID", null)
geo area ID or null

getAddEditGeoAreaForm()
canManageGeoAreas()

SystemProfileProperties

Administrator

GeographicAreasReqHdlr

SystemProfileGeoAreaProperties

Figure 5-391. GeographicAreasReqHdlr:displayAddEditGeoAreaForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-687 12/23/2008

5.49.2.2 GeographicAreasReqHdlr:importKMLFileJSON (Sequence Diagram)

This diagram shows the processing that occurs when an administrator has chosen to import

points from a KML file. The file is submitted via an ajax request from the add area form.

The xml file is read and all coordinate pairs are placed in JSON objects. An array of JSON

objects is sent to the user for population of the coordinate pairs on the form using

javascript.

redirect url in the form of

?action=displayAddEDitGeoAreaForm&polygonPointSetID=pointSetID

add(pointSetID, points[])

TempObjectStore

redirect to displayAddEditGeoAreaForml

put("latitude", point)

add(WebGeoPolygonPoint)

String

coordinates are seperated
by whitespace

split("\s")

String[]

Retrieve the coordinates from
the kml file by traversing the xml
tree

getRootElement().getChild("Placemark").getChild("Polygon")...

new()

New Document

build(inputstream)

Document

new()

FileInputStreamnew(kmlFile)

Administrator

GeographicAreaReqHdlr

MultiPartRequest

importKMLFile()

new(req,tempDir)

getFile()

kml file

WebGeoPolygonPoint

[for each coordinate pair]

ArrayListnew()

XML Document

put("longitude", point)

new(latitude,longitude)

SAXBuilder

Figure 5-392. GeographicAreasReqHdlr:importKMLFileJSON (Sequence Diagram)

CHART R3B3 Detailed Design 5-688 12/23/2008

5.49.2.3 GeographicAreasReqHdlr:removeGeoArea (Sequence Diagram)

This diagram shows the processing tha occurs when an administrator removes a geographic

area. Geographic areas cannot be removed unless unreferenced in the system.

[rule not using geo area]
removeGeoArea(token AccessToken, id : Identifier)

GeoAreaFactory

WebGeoArea

[area selected for removal
matched a rule's geographical area]

Error.vmredirect to view geographical areas

Administrator
GeographicAreasReqHdlr

NavLinkRights

ServletUtil WebExternalRuleRequestHandlerSupporter

DataModelremoveGeoArea()

canManageGeoAreas()
boolean[no rights]

Error.vm getIdentifierParam(req, "geoAreaID", null)

Identifier
[No ID parameter]

Error.vm
getCachedObject(id)

findObjectsOfType(WebExternalRule.class)

WebExternalRule[]

getGeographicalAreaIDs()

Identifier[][while more rules && no rule area identifier
matches the area being removed]

Figure 5-393. GeographicAreasReqHdlr:removeGeoArea (Sequence Diagram)

CHART R3B3 Detailed Design 5-689 12/23/2008

5.49.2.4 GeographicAreasReqHdlr:submitAddEditGeoAreaForm (Sequence Diagram)

This diagram show the processing that occurs when an administrator has submitted a

request to add/edit a geographic area.

Check each point vs. the system defined
min/max lat/long values.

For Add

redirect to v iew geo areas lis t

WebGeoArea

update(GeoAreaData)

getObject(geoAreaID)
getRef()

GeoArea

objectUpdated(id, WebGeoArea)

DataModel

WebGeoAreanew(GeoArea)

objectAdded(id, WebGeoArea)

GeoAreaFactory

GeoAreaData

Read each point from the request
and populate a GeoAreaData
struct

submitAddEditGeoAreaForm
canManageGeographicAreas()

boolean[no rights]
Error.vm

getStringParam(req,"geoAreaID", null)

[geoAreaID is null]
addGeoArea(token, geoAreaData)

[for each
polygon point

set]

getStringParam(req,"longPoint", null)

getStringParam(req,"latPoint", null)

create

GeoArea
[problem adding geo area]

Error.vm

updateGeoArea(token,GeoArea)

redirect to v iew geo areas lis t

[problem editing geo area]
Error.vm

Administrator

For Edit

GeographicAreasReqHdlr

NavLinkRights

Serv letUtil TempObjectStore

getIntegerParam(req,"polygonPointSetID"

If a point set loaded in the temp store was used to populate the submitted
form due to a kml file upload, remove the temporary
object

[polygonPointSetID not null]
remove(polygonPointSetID)

Figure 5-394. GeographicAreasReqHdlr:submitAddEditGeoAreaForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-690 12/23/2008

5.50 Chartlite.servlet.travelroutes

5.50.1 Class Diagrams

5.50.1.1 GUITravelRouteServletClasses (Class Diagram)

This diagram shows classes used by the servlet to handle requests related to travel routes.

CHART R3B3 Detailed Design 5-691 12/23/2008

WebTollRateRoute WebTravelRouteLink

0..1
1

*
1

AddEditTravelRouteFormData

SpeedFilter

SubjectTextPropertyComparator

SubjectIntegerPropertyComparator

TollRateFilter

TollRateComparator

TravelTimeFilter
TravelTimeTrendComparator

TravelTimeTrendFilter WebTravelRoute

1

1

BaseDynListFilter

TravelRouteDynListSubject

DynListSubject
«interface»

1 1
uses

UserFormData

The ID, name, and ref are
only present when us ing
this class for Edit - they will
be null when doing an Add.

DynListComparator
«interface»

TravelRouteDynListSupporter

DynListDelegateSupporter
«interface»

TravelRouteReqHdlr creates instance
of TravelRouteDynLis tSupporter and
passes it to the DynListReqHdlrDelegate
as it's DynLis tDelegateSupporter.

org.apache.velocity.context.Context

DynListReqHdlrDelegate

javax.servlet.http.HttpServletResponse
«interface»

javax.servlet.http.HttpServletRequest
«interface»

TravelRouteReqHdlr

RequestHandlerSupporter
«interface»

11
creates

11
1

1

1

1

uses
1

1

uses

1

1

1
uses

uses

1

AddEditTravelRouteFormData()
AddEditTravelRouteFormData(Identifier, TravelRoute, WebTravelRouteConfig)
setTempID(tempID:String):void
isEdit():boolean
getTravelRouteConfig():TravelRouteConfig
getEditedTravelRouteID():Identifier
getEditedTravelRouteName():String
getLinks():WebTravelRouteLink[]
getLink(linkID:Identifier):WebTravelRouteLink
addLink(WebRoadwayLink):void
removeLink(linkID:Identifier):void
moveLink(linkID:Identifier, direction:String):void
getTollRateRoute():WebTollRateRoute
setTollRateRoute(tollRateRoute:ExtTollSpec):void
removeTollRateSource(beginID:String, endID:String):void
-populateFromConfig(WebTravelRouteConfig):void

-m_tempID:String
-m_travelRouteID:Identifier
-m_travelRouteName:String
-m_travelRouteRef:TravelRoute
-m_links:ArrayLis t<WebTravelRouteLink>

getActions():ArrayLis t<RequestAction>
processRequest():String
-viewTravelRoutes():String
-viewTravelRouteDetails():String
-viewTravelRouteLinkDetails():String
-addEditTravelRouteForm():String
-addEditTravelRoute():String
-addTravelRouteLinkForm():String
-addTravelRouteLink():String
-findTravelRouteLinksJSON():String
-setTravelRouteLinkSettingsForm():String
-setTravelRouteLinkSettings():String
-setTollRateSourceForm():String
-setTollRateSource():String
-removeTollRateSource():String
-removeTravelRouteLink():String
-moveTravelRouteLink():String
-removeTravelRoute():String
-getHis toryBucketTimes():long[]

FILTER_VAL_NONE
FILTER_VAL_NA
FILTER_VAL_GT_10
FILTER_VAL_GT_15
FILTER_VAL_GT_20
FILTER_VAL_GT_25
FILTER_VAL_GT_30
FILTER_VAL_GT_35
FILTER_VAL_GT_40
FILTER_VAL_GT_45
FILTER_VAL_GT_50
FILTER_VAL_GT_55
FILTER_VAL_GT_60
FILTER_VAL_GT_90
FILTER_VAL_GT_120

FILTER_VAL_NONE
FILTER_VAL_NA
FILTER_VAL_UP
FILTER_VAL_DOWN
FILTER_VAL_FLAT

FILTER_VAL_NONE
FILTER_VAL_NA
FILTER_VAL_0_TO_30
FILTER_VAL_30_TO_50
FILTER_VAL_GT_50

FILTER_VAL_NONE
FILTER_VAL_NA
FILTER_VAL_LT_1
FILTER_VAL_GT_1
FILTER_VAL_GT_2
FILTER_VAL_GT_3
FILTER_VAL_GT_4
FILTER_VAL_GT_5
FILTER_VAL_GT_6
FILTER_VAL_GT_7
FILTER_VAL_GT_8
FILTER_VAL_GT_9
FILTER_VAL_GT_10

getTravelRoute():WebTravelRoute

PROP_NAME:String
PROP_LENGTH:String
PROP_TRAV_TIME:String
PROP_TREND:String
PROP_SPEED:String
PROP_TOLL_RATE:String
PROP_USED_BY:String
PROP_ROUTE:String
PROP_DIR:String
PROP_COUNTY:String
-m_route:WebTravelRoute

Figure 5-395. GUITravelRouteServletClasses (Class Diagram)

5.50.1.1.1 AddEditTravelRouteFormData (Class)

This class holds data that appears on the add/edit travel route form so the data can be

temporarily persisted while the user accesses auxillary forms that may be used.

CHART R3B3 Detailed Design 5-692 12/23/2008

5.50.1.1.2 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

5.50.1.1.3 DynListComparator (Class)

This interface is implemented by classes that are used to sort dynamic lists.

5.50.1.1.4 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.50.1.1.5 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter

dynamic lists can be passed from a request handler to this class, provided the URL used for

the requests contain parameters required by this class, such as the id of the list, the property

name, and/or the filter value.

5.50.1.1.6 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.50.1.1.7 javax.servlet.http.HttpServletRequest (Class)

Provides information about a request made to an HTTP servlet.

5.50.1.1.8 javax.servlet.http.HttpServletResponse (Class)

Provides a way for an HTTP servlet to send a response.

5.50.1.1.9 org.apache.velocity.context.Context (Class)

This class is used to allow an application to provide "named" data to a template so the data

can be used when rendering the template.

5.50.1.1.10 RequestHandlerSupporter (Class)

This interface is implemented by any class that can provide access to objects or methods

that are helpful to request handlers.

5.50.1.1.11 SpeedFilter (Class)

This class is a filter for columns that contain Speed within a dynamic list.

5.50.1.1.12 SubjectIntegerPropertyComparator (Class)

This class is a dyn list comparator that can be used to sort columns that contain integer

values.

CHART R3B3 Detailed Design 5-693 12/23/2008

5.50.1.1.13 SubjectTextPropertyComparator (Class)

This class provides an implementation of the DynListComparator interface which compares

subjects based on the values they supply for the property supplied to this class during

construction. A case insensitive text comparison is done on the values, and multiple value

columns are supported.

5.50.1.1.14 TollRateComparator (Class)

This class is a comparator used to compare toll rate values that appear in a dyn list.

5.50.1.1.15 TollRateFilter (Class)

This class is a filter used to filter items in a dyn list based on toll rate values.

5.50.1.1.16 TravelRouteDynListSubject (Class)

This class is a wrapper that allows a WebTravelRoute to be displayed in a dynamic list.

5.50.1.1.17 TravelRouteDynListSupporter (Class)

This class provides methods used by the DynListReqHdlrDelegate to customize the

dynamic list to display travel routes.

5.50.1.1.18 TravelRouteReqHdlr (Class)

This class processes requests related to travel routes.

5.50.1.1.19 TravelTimeFilter (Class)

This class is used to filter a dynamic list based on travel time values.

5.50.1.1.20 TravelTimeTrendComparator (Class)

This class is a comparator used to sort a dynamic list based on travel time trend.

5.50.1.1.21 TravelTimeTrendFilter (Class)

This class is used to filter a dynamic list based on travel time trend values.

5.50.1.1.22 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex

form, and provides convenience methods for parsing the values from the request.

5.50.1.1.23 WebTollRateRoute (Class)

This class is a wrapper for data from a TollRateRouteInfo object obtained from the travel

route factory. It is used to cache data pertaining to a toll rate route in the GUI's data model.

(A Toll Rate Route can be used as the toll rate source for a travel route).

CHART R3B3 Detailed Design 5-694 12/23/2008

5.50.1.1.24 WebTravelRoute (Class)

This class is a wrapper for a CORBA TravelRoute object and is used to cache data

pertaining to a travel route in the GUI's data model.

5.50.1.1.25 WebTravelRouteLink (Class)

This class holds data pertaining to a link that is included in a travel route.

CHART R3B3 Detailed Design 5-695 12/23/2008

5.50.2 Sequence Diagrams

5.50.2.1 TravelRouteDynListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing used to create a travel route dynamic list. Each column

of the list is created, along with comparators and filters used for each column. Those

shown that do not create a filter are not filterable. Those columns that do not show

construction of a comparator use the default text comparator that will be created by the

DefaultDynListCol class. After creating the columns, they are passed to the constructor of

a DefaultDynList, and the DefaultDynList is returned.

CHART R3B3 Detailed Design 5-696 12/23/2008

TravelTimeTrendComparator

TravelTimeFilter

create

create

create

DynListReqHdlrDelegate

TravelRouteDynListSupporter

DefaultDynListCol

createDynList()

DefaultDynListCol

DefaultDynListCol

DefaultDynListCol

DefaultDynListCol

DefaultDynListCol

DefaultDynListCol

DefaultDynListCol

DefaultDynListCol

DefaultDynListCol

Name column

create

DefaultDynList

DefaultDynList

TollRateComparator

TollRateFilter Toll Rate Column

Used By Column, multi-value

Route Column, multi-value

Dir Column, multi-value

County Column, multi-value

DefaultDynListCol Net Connection Site column, hidden by default

create

create

create

setFilter()

create

create

TravelTimeTrendFilter

Travel Time Trend Column

setFilter()

create

create

create

setFilter()

SubjectIntegerPropertyComparator

Length column

SubjectIntegerPropertyComparator

Travel Time Column

create

create

create

create

SubjectIntegerPropertyComparator

SpeedFilter

Speed Column

create

create

create

setFilter()

Construct with previously created columns

create

Figure 5-396. TravelRouteDynListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-697 12/23/2008

5.50.2.2 TravelRouteDynListSupporter:getDynListSubjects (Sequence Diagram)

This diagram shows the processing performed when the TravelRouteDynListSupporter is

called to get the dyn list subjects. It retrieves all WebTravelRoute objects from the object

cache and wraps each with a TravelRouteDynListSubject, then returns this list of subjects.

getDy nListSubjects()

ObjectCache

WebTrav elRoute[]

[f or each WebTrav elRoute]

DynListReqHdlrDelegate

RequestHandlerSupporter

Trav elRouteDy nListSubject

Trav elRouteDy nListSupporter ObjectCache

create

getObjectCache()

getObjectsOf Ty pe(WebTrav elRoute.class)

Trav elRouteDy nListSubject[]

Figure 5-397. TravelRouteDynListSupporter:getDynListSubjects (Sequence Diagram)

CHART R3B3 Detailed Design 5-698 12/23/2008

5.50.2.3 TravelRouteReqHdlr:addEditTravelRoute (Sequence Diagram)

This diagram shows the processing that takes place when the AddEditTravelRoute form is

submitted. The user's rights are checked to make sure they are permitted to manage travel

routes. If not, an error is placed in the form data object and the form is redisplayed with the

error message. The form data object is then populated with the data included in the request

parameters, and the form data object is called to construct a TravelRouteConfig object from

the data. If any required data is missing or data is invalid, the config object will not be

created and an error message will be set in the form data object. If the operation is an

"Add", the travel route factory is retrieved from the GUI cache. If any error has occurred at

this point, the add/edit form will be redisplayed and show an error message.

If performing an edit, the travel route factory being edited is retrieved from the GUI cache,

its corba object reference is obtained, and the corba object is called to set the configuration.

If performing an edit, the factory's corba object reference is obtained, the factory is called to

add the travel route, and the travel route is stored in the GUI cache.

After the processing is complete, the user is shown the travel route list where the new travel

route will appear (or the edited values will appear if editing an existing travel route).

setConfig(TravelRouteConfig)

updateConfig(TravelRouteConfig)

objectUpdated(routeID)

User
TravelRouteReqHdlr

Request Parameters:
tempID - id of form data object
form fields - data for each form field

NavLinkRights TempObjectStore AddEditTravelRouteFormData

Gets data from the request parameters
and loads into formdata object. Does not
include roadway links because they are
set via a secondary form, and if added
will already exist in the form data.

Uses the form data to construct a travel
route config. Checks for missing required
fields and validates data. If any errors detected
the form data's error field will be set and
method returns null.

RequestHandlerSupporter

addEditTravelRoute()

canManageTravelRoutes()

boolean
[no rights]
Error.vm

getObject(tempID)

AddEditTravelRouteFormData

TravelRouteFactoryWebTravelRouteFactory

The following is performed if this is an ADD

getRef()

TravelRouteFactory
addRoute(TravelRouteConfig)

TravelRouteInfo

create

objectAdded(routeID, WebTravelRoute)

TravelRouteList.vm

[error]
AddEditTravelRoute.vm

WebTravelRoute

The following is performed if this is an EDIT to an existing travel route

TravelRoute DataModel

getCachedObject(formData.getEditedTravelRouteID())
WebTravelRoute

getRef()

TravelRoute

[tempID null OR
form data not found]

Error.vm

populateFromRequest(req)

getTravelRouteConfig()

TravelRouteConfig or null

getIdentifierParm("factoryID","Site", !formData.isEdit())

Identifier or null

[factoryID not null]
getCachedObject(factoryID)

WebTravelRouteFactory or null[config is null OR Add
operation and factory

is null]
redisplay form with

error msg

Figure 5-398. TravelRouteReqHdlr:addEditTravelRoute (Sequence Diagram)

CHART R3B3 Detailed Design 5-699 12/23/2008

5.50.2.4 TravelRouteReqHdlr:addEditTravelRouteForm (Sequence Diagram)

This diagram shows the processing that is performed if a user requests to add or edit a

travel route. Their user rights are checked to make sure they are permitted to manage travel

routes. If not an error is returned. If a tempID parameter is present in the request, this

indicates the add/edit is already in progress and the add/edit form is being redisplayed. This

will be the case if the user needs to navigate to a secondary form as part of the add/edit.

The AddEditTravelRouteFormData object will be retrieved from the TempObjectStore in

this case. If it's not found, an error will be shown.

If a tempID is not present in the request, the routeID will be retreived from the request. If

the route ID is present, this indicates an edit operation is requested. Otherwise an add

operation is being requested. When an edit operation is requested, the WebTravelRoute

being edited it retreived from the object cache and its data is used to construct a new

AddEditTravelRouteFormData object (which is eventually used to populate the form). If

an add operation is being performed, the default AddEditTravelRouteFormData constructor

is used (which will result in an initially empty form). In either case, the

AddEditTravelRouteData object is stored in the TempObjectStore so it can be accessed

during interim submits of the form data as well as when the final submit is done.

Various objects are obtained from the object cache that are used on the form to provide user

selections. This includes travel route factories, operations centers, notification groups,

states, and counties. Each list of objects is placed in the velocity context so they can be

accessed from within the form. The AddEditTravelRoute.vm form is returned and

displayed to the user, infused with data it obtains from the velocity context.

CHART R3B3 Detailed Design 5-700 12/23/2008

put("counties", WebCountyInfo[])

AddEditTravelRoute.vm

WebRoadwayLocationLookup

get()
WebRoadwayLocationLookup

getCounties ("MD")
WebCountyInfo[]

getStates()
WebStateInfo[]

put("factories", WebTravelRouteFactory[])

put("opCenters", WebOpCenter[])

put("notificationGroups", WebNotificationGroup)

put("states", WebStateInfo[])

The following is only done if tempID param is passed in the request

The following is only done if tempID param is NOT passed in the reques t

AddEditTravelRouteFormData
[routeID present in request]

create(Identifier, TravelRoute, WebTravelRoute)

User

TravelRouteReqHdlr NavLinkRights TempObjectStore

canManageTravelRoutes()

[tempID present]
getObject()

[tempID present AND
form data not found]

Error.vm

setTempID(String)

add(AddEditTravelRouteFormData)

[ADD operation]
getObjectsOfType(WebTravelRouteFactory.class)

WebTravelRouteFactory[]
[ADD operation AND

no factories]
Error.vm getObjectsOfType(WebOpCenter.c lass)

WebOpCenter[]

AddEditTravelRouteFormData

If routeID present in reques t,
then EDIT operation, otherwise
it's an ADD. A different cons tructor
is called in each case.

store id, ref, and current name

[routeID NOT present in reqest]
create

populateFromConfig()

getNotificationGroups()

WebNotificationCache

get()
WebNotificationCache

WebNotificationGroup[]

RequestHandlerSupporter

Context

createTempObjectID()
String

Request Parameters:
tempID - present if an add/edit is already in progress
routeID - present if initiating an edit

addEditTravelRouteForm()

put("formData",AddEditTravelRouteFormData)

[no rights]
Error.vm

AddEditTravelRouteFormData

[routeID present in request]
getTravelRoute()

Figure 5-399. TravelRouteReqHdlr:addEditTravelRouteForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-701 12/23/2008

5.50.2.5 TravelRouteReqHdlr:addTravelRouteLink (Sequence Diagram)

This diagram shows the processing that is performed when the user submits the add link

form. This form can be used as part of adding/editing a travel route, or from the details

page as a single operation to add links to a travel route. When used as part of the add/edit

travel route operation, a tempID will be present in the request parameters. It will be used to

find the form data object in the temp object store. A WebRoadwayLink object for each

linkID contained in the request parameters will be obtained from the RoadwayLinkManager

and will be added to the form data. The user will be redirected to the add/edit travel route

form where the newly added links will appear.

If the form was invoked from the travel route details page, the WebTravelRoute object is

obtained from the GUI cache and the Travel Route object ref is used to obtain the current

configuration data from the server. A RouteLink object is created for each of the links

being added, and the TravelRouteConfig object is updated. The TravelRoute's

setTravelTimeConfig method is called, and the WebTravelRoute is called to update the

configuration data in the cached object. The user is then redirected to the travel route

details page.

toArray()
RouteLink[]

set travelTimeCfg.routeLinkList

setTravelTimeConfig(TravelTimeConfig)

updateConfig(TravelTimeConfig)

redirect to travel route details

User

TravelRouteReqHdlr NavLinkRights

Request Parameters:
tempID OR routeID,
linkID[]

TempObjectStore

addTravelRouteLink()
canManageTravelRoutes()

boolean[no r ights]
Error.vm

AddEditTravelRouteFormData

The following processing is done if a tempID is passed in the request

HttpServ letRequest RoadwayLinkManager

The following processing takes place if a routeID is passed in the request.

RequestHandlerSupporterWebTravelRoute

TravelRoute TravelRouteConfig

ArrayList

RouteLink

getObject(tempID)

getParameterValues("linkID")
String[]

[no linkIDs passed]
Error.vm

AddEditTravelRouteFormDatal
[form data is null]

Error.vm

addLink(WebRoadwayLink)

get().getLink(linkID)
WebRoadwayLink

[for each
link ID]

getCachedObject(routeID)
WebTravelRoute

redirect to addEditTravelRouteForm

getRef()
TravelRoute

getRouteConfig()
TravelRouteConfig

create

add(RouteLink)[for each existing
link in the config]

getLink(linkID)
WebRoadwayLink

create(linkID, 100%, HIGH)

add(RouteLink)

[for each link ID
in request]

Figure 5-400. TravelRouteReqHdlr:addTravelRouteLink (Sequence Diagram)

CHART R3B3 Detailed Design 5-702 12/23/2008

5.50.2.6 TravelRouteReqHdlr:addTravelRouteLinkForm (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to select links

to add to a travel route. The form can be accessed while adding/editing a travel route, or

from the travel route details page. When accessed as part of an add/edit operation, the

tempID parameter will be present in the request and will be used to retrieve the associated

form data object and store the request parameters in it (so they can be redisplayed on the

add/edit form after the user finishes selecting links). Also, the list of links currently

contained in the travel route are obtained from the form data.

If the user accesses this form from the travel route details page, a routeID will be present in

the request parameters and the WebTravelRoute will be obtained from the object cache.

The links contained in the travel route will be obtained from the WebTravelRoute object.

If there are 1 or more links already added to the travel route (or the travel route being

added/edited), the roadway link manager is called to obtain suggested next links and they

are placed in the context, along with the last existing link (which will be displayed as the

prior link). The lists of states, counties, route types, and route numbers that exist in one or

more links are obtained from the roadway link manager and placed in the context to be used

to populate select lists. The SelectLink.vm template is returned and is used to dynamically

generate a web page using data in the context.

CHART R3B3 Detailed Design 5-703 12/23/2008

SelectLink.vm

use WebRoadwayLink from the last WebTravelRouteLink.
See suggesteLinks SD for details .

Context

use last WebRoadwayLink

[at least one exists ing link]
suggestLinks(WebRoadwayLink, n)

WebRoadwayLink[]l

[at least 1 existing link]
put("priorLink",WebRoadwayLink)

getStatesInUse()
WebStateInfo[]

WebCountyInfo[]
getCountiesInUse()

getRouteTypesInUse()
WebRouteType[]

getRouteNumbersInUse()
WebRouteNumber[]

put("states", WebStateInfo[])

put("counties", WebCountyInfo[])

put("routeTypes", WebRouteType[])

put("routeNumbers", WebRouteNumber[])

[tempID not null]
put("formData", AddEditTravelRouteFormData)

[routeID not null]
put("travelRoute",WebTravelRoute)

User

TravelRouteReqHdlr

Request Parameters:
tempID - present if called during add/edit travel route
routeID - present if called from details page
form fields - present if called during add/edit

NavLinkRights TempObjectStore AddEditTravelRouteFormDataRoadwayLinkManager

The following processing is performed if a tempID is present in the request parameters

RequestHandlerSupporterWebTravelRoute

addTravelRouteLinkForm()
canManageTravelRoutes()

boolean
[no rights]
Error.vm

getObject(tempID)
AddEditTravelRouteFormData or null

[form data is null]
Error.vm populateFromRequest()

getLinks()
WebTravelRouteLink[]

getCachedObject(routeID)
WebTravelRoute or null

The following processing is performed if a routeID is present in the request parameters

[WebTravelRoute is null]
Error.vm

getLinks()
WebTravelRouteLink[]

Figure 5-401. TravelRouteReqHdlr:addTravelRouteLinkForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-704 12/23/2008

5.50.2.7 TravelRouteReqHdlr:findTravelRouteLinksJSON (Sequence Diagram)

This diagram shows the processing that is performed if the user chooses to search for links

while selecting links to be added to a travel route. This request will be invoked via AJAX

and will return JSON rather than HTML so that the search results will be displayed without

requiring a page refresh. This will also save some bandwidth as JSON is very light weight

compared to html.

The user rights are checked to make sure the user can manage travel routes, and if not a

JSON response is returned to the browser so it can know the request failed and display an

appropriate error message. If the user has rights to perform the operation, the request

parameters that contain the search criteria are used to create a RoadwayLinkQuery. The

RoadwayLinkManager is called to perform the query, and the list of all links that meet the

query criteria are returned. The data from each link is loaded into a JSONArray and the

array is stored inside an enclosing object (to make it easy for the Javascript in the browser

to determine a valid result is returned). The object is then sent to the browser, and the

method returns null to prevent the request handler from attempting to return its own

response to the browser.

CHART R3B3 Detailed Design 5-705 12/23/2008

put("distanceToPrior")

sendJSONObject()

null

create

JSON

User
TravelRouteReqHdlr NavLinkRights ServletUtil RoadwayLinkManager

RoadwayLinkQuery

The query criteria request parameters are all optional, and
we only need their String values (no conversion needed):
stateCode, countyName, routeTypeAbbv, routeNumber, directionName, extLinkID

RoadwayLinkManager does a simple
traversal of the list of links applying
the search criteria specified to filter
the list. It computes the distance of each
link returned from the priorLink passed,
if any.

JSONArray

JSONObject

JSONObject

Return null from method so request handler
will not attempt to display a web page
(we already returned the data to the browser)

findTravelRouteLinksJSON()
canManageTravelRoutes()

boolean

[no rights]
sendJSONGeneralResult()

JSON

[no rights]
null

create

get request parameters

findLinks(priorLink, RoadwayLinkQuery)

WebRoadwayLinkListEntry[]

create

put("source")

put("extLinkID")

put("linkName")

put("routeName")

put("directionName")

put("length")

put("stateCode")

put("countyName")

add(JSONObject)

[*for each roadway
link from findLinks()]

create

put("objects", JSONArray)

Figure 5-402. TravelRouteReqHdlr:findTravelRouteLinksJSON (Sequence Diagram)

CHART R3B3 Detailed Design 5-706 12/23/2008

5.50.2.8 TravelRouteReqHdlr:getHistoryBucketTimes (Sequence Diagram)

This diagram shows the processing performed to get the times that define the buckets used

to display travel time and toll rate history in 5 minute increments. A Calendar is created

and its time is set to the next 5 minute increment that occurs on the clock (00, 05, 10, etc.).

The number of buckets is retrieved from the system profile, and then a loop is performed to

store the bucket times in an array. The first array element will contain the first time

computed (nearest 5 minute interval from now). Each successive bucket will contain a time

5 minutes earlier than the prior time.

RequestHandlerSupporter SystemProfileProperties

long[] Size of array is num hist buckets
retreived above.

Date

Buckets will be 5 minute
decreasing increments.

getSysProfileProps()
SystemProfileProperties

getNumTravelRouteHistBuckets()
int

create

getTime()

create

Date

getTiime()
long

store time div 1000 (seconds)

add(Calendar.MINUTE, -5)

[*repeat for num
of hist buckets]

long[]

System
TravelRouteReqHdlr

Use Calendar.getInstance()
getHistoryBucketTimes()

set(Calendar.SECOND,59)

Calendar

Set the calendar to the
very end of the current minute.

create()

set(Calendar.MILLISECOND,999)

Set the calendar to the next 5 minute
mark on the clock if not already at
a 5 minute increment.

amount to add is 5 - (5 mod current minutes)

get(Calendar.MINUTE)

add(Calendar.MINUTE, amount)

Figure 5-403. TravelRouteReqHdlr:getHistoryBucketTimes (Sequence Diagram)

CHART R3B3 Detailed Design 5-707 12/23/2008

5.50.2.9 TravelRouteReqHdlr:moveTravelRouteLink (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to move a link

up or down in the travel route's list of links. This can be done as part of the add/edit travel

route process, or done stand alone from the travel route details page. When done from the

add/edit process, a temp ID will be present in the request parameters and will be used to

retrieve the form data object from the temp object store. The form data will be populated

from the request to store the form field entries made by the user prior to invoking this

action so that they will not be lost. The link is moved within the list of links in the form

data, and the add/edit form is redisplayed to the user.

If the user has invoked this action from the travel route details page, a route ID will be

present in the request parameters. The routeID will be used to retrieve the WebTravelRoute

from the object cache, and the CORBA object reference for the travel route will be

retrieved. The travel route is called to obtain the current configuration data, and the current

configuration data is updated to move the specified link. This updated configuration data is

passed back to the travel route in a call to setConfig(), and the WebTravelRoute object is

updated with this new configuration data. The user is then redirected back to the travel

route details page.

Request Parameters:
tempID - if add/edit travel route in progress
routeID - if invoked from the travel route details page
linkID - ID of link to be moved
dir - direction to move link (up or down)

User
TravelRouteReqHdlr

The following processing is performed if tempID is present in the
request.

NavLinkRights TempObjectStore

The following processing is performed if a routeID is present in the request.

AddEditTravelRouteFormDataRequestHandlerSupporterWebTravelRoute TravelRoute TravelRouteConfig

AddEditTravelRouteForm

[has rights]
moveLink(link ID, dir)

updateConfig(TravelRouteConfig)

[no rights]
Error.vm

WebTravelRoute

TravelRoute

redirect to add
edit form

getCachedObjec t(routeID)

getRef()

redirect to travel route
details page

adjust link order in the routeLinkList

setConfig(TravelRouteConfig)

getRouteConfig()

moveTravelRouteLink()
canManageTravelRoutes()

TravelRouteConfig

boolean

getObject(tempID)

populateFromRequest()

[no rights]
setErrorMessage()

Figure 5-404. TravelRouteReqHdlr:moveTravelRouteLink (Sequence Diagram)

CHART R3B3 Detailed Design 5-708 12/23/2008

5.50.2.10 TravelRouteReqHdlr:removeTollRateSource (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to remove the

toll rate source for a travel route. This can be done as part of the add/edit travel route

process, or done stand alone from the travel route details page. When done from the

add/edit process, a temp ID will be present in the request parameters and will be used to

retrieve the form data object from the temp object store. The form data will be populated

from the request to store the form field entries made by the user prior to invoking this

action so that they will not be lost. The toll rate route is removed from the form data, and

the add/edit form is redisplayed to the user.

If the user has invoked this action from the travel route details page, a route ID will be

present in the request parameters. The routeID will be used to retrieve the WebTravelRoute

from the object cache, and the CORBA object reference for the travel route will be

retrieved. The travel route is called to obtain the current configuration data, and the current

configuration data is updated to remove the toll rate configuration. This updated

configuration data is passed back to the travel route in a call to setConfig(), and the

WebTravelRoute object is updated with this new configuration data. The user is then

redirected back to the travel route details page.

updateConfig(TravelRouteConfig)

redirect to travel route
details page

TravelRouteConfig

set tollRateConfig to null

redirect to add
edit form

getCachedObject(routeID)

getRef()

setConfig(TravelRouteConfig)

getRouteConfig()
TravelRouteConfig

User
TravelRouteReqHdlr NavLinkRights

Request Parameters:
tempID - if add/edit travel route in progress
routeID - if invoked from the travel route details page
tollRouteBeginID - begin ID of toll route to be removed
tollRouteEndID - end ID of toll route to be removed

TempObjectStore AddEditTravelRouteFormData

The following processing is performed if tempID is present in the
request.

The following processing is performed if a routeID is present in the request.

RequestHandlerSupporterWebTravelRoute TravelRoute

removeTollRateSource()
canManageTravelRoutes()

boolean

getObject(tempID)
AddEditTravelRouteFormData

populateFromRequest()

[has rights]
removeTollRateSource(tollRouteBeginID, tollRouteEndID)

[no rights]
setErrorMessage()

[no rights]
Error.vm

WebTravelRoute

TravelRoute

Figure 5-405. TravelRouteReqHdlr:removeTollRateSource (Sequence Diagram)

CHART R3B3 Detailed Design 5-709 12/23/2008

5.50.2.11 TravelRouteReqHdlr:removeTravelRoute (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to remove a

travel route from the system. The user will have already confirmed their intent prior to this

processing being invoked. The user's rights are checked and an error is returned if they do

not have permission to manage travel routes. The cached travel route object is retrieved

from the object cache and its CORBA object reference is obtained and called to remove the

travel route from the system. The data model's objectRemoved method is called to remove

the object from the GUI cache.

Prior to calling this, the web page will have provided a warning to the
user, including a list of any CHART objects that are known to be
referencing the route that is to be removed.

removeTravelRoute()

canManageTravelRoutes()
boolean[no rights]

Error.vm

getTravelRoute(routeID)

getRef()
TravelRoute

remove()

objectRemoved(routeID)

redirect to
travel route list

User

TravelRouteReqHdlr

Request Parameters:
routeID - ID of route to be removed

NavLinkRights WebTravelRoute TravelRoute DataModel

Figure 5-406. TravelRouteReqHdlr:removeTravelRoute (Sequence Diagram)

CHART R3B3 Detailed Design 5-710 12/23/2008

5.50.2.12 TravelRouteReqHdlr:removeTravelRouteLink (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to remove a

link from a travel route. This can be done as part of the add/edit travel route process, or

done stand alone from the travel route details page. When done from the add/edit process, a

temp ID will be present in the request parameters and will be used to retrieve the form data

object from the temp object store. The form data will be populated from the request to store

the form field entries made by the user prior to invoking this action so that they will not be

lost. The link is removed from the form data, and the add/edit form is redisplayed to the

user.

If the user has invoked this action from the travel route details page, a route ID will be

present in the request parameters. The routeID will be used to retrieve the WebTravelRoute

from the object cache, and the CORBA object reference for the travel route will be

retrieved. The travel route is called to obtain the current configuration data, and the current

configuration data is updated to remove the specified link. This updated configuration data

is passed back to the travel route in a call to setConfig(), and the WebTravelRoute object is

updated with this new configuration data. The user is then redirected back to the travel

route details page.

TravelRouteConfig

canManageTravelRoutes()

getObject(tempID)

populateFromRequest()

[no rights]
setErrorMessage()

getCachedObject(routeID)

redirect to travel route
details page

setConfig(TravelRouteConfig)

TempObjectStore AddEditTravelRouteFormData WebTravelRoute TravelRouteConfig

WebTravelRoute

redirect to add
edit form

getRef()

remove the link from the routeLinkList

getRouteConfig()

removeTravelRouteLink()

boolean

AddEditTravelRouteForm

[has rights]
removeLink(link ID)

updateConfig(TravelRouteConfig)

Request Parameters :
tempID - if add/edit travel route in progress
routeID - if invoked from the travel route details page
linkID - ID of link to be removed

User
TravelRouteReqHdlr

The following processing is performed if tempID is present in the
request.

NavLinkRights

The following processing is performed if a routeID is present in the request.

RequestHandlerSupporter TravelRoute

[no rights]
Error.vm

TravelRoute

Figure 5-407. TravelRouteReqHdlr:removeTravelRouteLink (Sequence Diagram)

CHART R3B3 Detailed Design 5-711 12/23/2008

5.50.2.13 TravelRouteReqHdlr:setTollRateSource (Sequence Diagram)

This diagram shows the processing that takes place when the select toll rate source form is

submitted. The user's rights are checked and an error message is shown if they don't have

the mange travel routes right. The request parameters are read and a TollRateRouteSpec is

created using the start ID, end ID, external system id, and description passed in the request

parameters.

If a tempID is in the request parameters, this operation is being done as part of the add/edit

travel route operation and the tempID is used to obtain the AddEditTravelRouteFormData

object from the temp object store. The TollRateRouteSpec is stored in the form data object,

and the request is redirected to the add/edit travel route form where the newly added toll

rate source will appear.

If a routeID is in the request parameters, this operation is being done stand alone from the

travel route details page. The WebTravelRoute is found in the GUI cache using the routeID

and the TravelRoute CORBA object reference is obtained. The TravelRoute is called to get

its current configuration, and the TollRateRouteSpec is used to replace the existing

TollRateRouteSpec in the TravelRouteConfig. This may require a TollRateConfig to be

created, as it is an optional element of the TravelRouteConfig. The TravelRouteConfig is

then used in the call to the TravelRoute's setTollRateConfig method, and the cached

WebTravelRoute's TravelRouteConfig is also updated. The request is then redirected to the

travel route details page.

CHART R3B3 Detailed Design 5-712 12/23/2008

updateConfig()

[no r ights]
Error.vm

canManageTravelRoutes()
setTollRateSource()

get request parms

TollRateRouteSpec

Inc ludes constructing a toll rate config
if needed.

create

AddEditTravelRouteFormData

User

TravelRouteReqHdlr NavLinkRights

The following process ing is performed if a tempID is present, indicating Add/Edit Travel Route is in progress

Request params will have tempID if this is
part of an add/edit travel route operation,
or the routeID if the user is editing from the
details page. Other params are extSystemName,
startID, endID, and description.

TempObjec tStore AddEditTravelRouteFormData

The following process ing is performed if a routeID is present, indicating the operation is performed on
an existing link from the travel route details page.

RequestHandlerSupporter TravelRoute

getConfig()
TravelRouteConfig

 store TollRateRouteSpec
in TravelRouteConfig

setTollRateConfig(TollRateConfig)

redirect to travel route
details page

WebTravelRoute

redirect to view add
edit travel route form

TravelRoute

getCachedObjec t(routeID)

getRef()

getObject(tempID)

Create using request
params.

boolean

setTollRateSource(TollRateRouteSpec)

WebTravelRoute

Figure 5-408. TravelRouteReqHdlr:setTollRateSource (Sequence Diagram)

CHART R3B3 Detailed Design 5-713 12/23/2008

5.50.2.14 TravelRouteReqHdlr:setTollRateSourceForm (Sequence Diagram)

This diagram shows the processing that is performed when a user wishes to set the toll rate

source for a travel route. This action can be performed as part of the add/edit travel route

operation, or as a stand alone operation from the travel route details page. When done as

part add/edit travel route, a tempID will be present the request parameters and it will be

used to obtain the AddEditTravelRouteFormData from the temporary object store. The

form data is updated to save the data fields from the add/edit travel route form so the user's

current entries will not be lost. The temp ID and form data are put in the context.

If this action is performed from the travel route details page, a route ID will be present in

the request parameters and will be used to find the WebTravelRoute in the GUI cache. The

route ID and WebTravelRoute are placed in the context.

The TollRateRouteManager is called to obtain the list of known toll rate routes and this list

of toll rate routes is placed in the context. The SelectTollRateSource form is then shown to

the user.

WebTollRateRouteInfo[]

getObject(tempID)

canManageTravelRoutes()
boolean

get request parms

AddEditTravelRouteFormData

populateFromRequest()

getTollRateRoutes()

Selec tTollRateSource.vm

getCachedObject(routeID)
WebTravelRoute

put("formData",AddEditTravelRouteFormData)

put("routeID", routeID)

put("route", WebTravelRoute)

[no rights]
setErrorMessage()

[no rights]
redirect to add

edit form

[no rights]
Error.vm

put("tollRateRoutes", WebTollRateRouteInfo[])

put("tempID", tempID)

User

TravelRouteReqHdlr NavLinkRights

The following processing is performed if tempID is present in the request parameters, indicating
this ac tion is being done as part of add/edit.

TempObjectStore

The request parameters will include a tempID if this is part of add/edit
travel route, or a routeID if this is a direct edit v ia the details page.
If this is part of add/edit, then all form fields from the add/edit form will also be present.

AddEditTravelRouteFormData

The following processing is performed if routeID is present in the request parameters, indicating
this ac tion is being done "stand alone" from the travel route details page.

RequestHandlerSupporter Context TollRateRouteManager

setTollRateSourceForm()

Figure 5-409. TravelRouteReqHdlr:setTollRateSourceForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-714 12/23/2008

5.50.2.15 TravelRouteReqHdlr:setTravelRouteLinkSettings (Sequence Diagram)

This diagram shows the processing that takes place when the user submits the form used to

set the settings for a link that's included in a travel route. The form may be used during an

add/edit operation on a travel route, or directly from the travel route's details page. When

used as part of an add/edit operation, the tempID parameter will be present in the request

and is used to retrieve the form data from the temp object store. The WebTravelRouteLink

is obtained from the form data and its settings are changed using the request parameters

(percent and minimum quality). The request is then redirected to display the add/edit travel

route form.

When this form is used from the travel route details page, the route ID will be present in the

request and is used to find the WebTravelRoute in the GUI cache. The CORBA object

reference for the TravelRoute is obtained and called to get the latest configuration data for

the travel route. The settings for the link within the travel time config portion of the travel

route config are changed as specified in the request parameters, and the TravelRoute is

called to set its travel time settings. The WebTravelRouteLink is also updated so the GUI

cache will have this latest data without having to wait on a CORBA event. The request is

redirected to display the travel route details page.

CHART R3B3 Detailed Design 5-715 12/23/2008

WebTravelRoute

getConfig()
TravelRouteConfig

find the link within
travel route config

and update settings

setTravelTimeConfig()

setSettings(RouteLink)

redirect to travel route
details page

redirec t to view add
edit travel route form

TravelRouteReqHdlr TempObjectStore AddEditTravelRouteFormData

RouteLink

canManageTravelRoutes()

get request parms

AddEditTravelRouteFormData

WebTravelRouteLink

create

RequestHandlerSupporter

The following process ing is performed if a routeID is present, indicating the operation is performed on
an ex isting link from the travel route details page.

TravelRoute

WebTravelRoute

WebTravelRouteLink

TravelRoute

User

NavLinkRights

Request params will have tempID if this is
part of an add/edit travel route operation,
or the routeID if the user is editing from the
details page. Other params are linkID,
linkPercent, linkQuality .

The following process ing is performed if a tempID is present, indicating Add/Edit Travel Route is in progress

WebTravelRouteLink

setTravelRouteLinkSettings()

getCachedObject(routeID)

[no rights]
Error.vm

getLink(linkID)

setSettings(RouteLink)

getLink(linkID)

getRef()

getObject(tempID)

Figure 5-410. TravelRouteReqHdlr:setTravelRouteLinkSettings (Sequence Diagram)

CHART R3B3 Detailed Design 5-716 12/23/2008

5.50.2.16 TravelRouteReqHdlr:setTravelRouteLinkSettingsForm (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to set the

settings for a link included in a travel route (the percent of link included and minimum

quality). This form can be used as part of the add/edit travel route operation, or as a stand

alone operation invoked from the travel route details page. When used as part of the

add/edit travel route operation, the tempID parameter will be present in the request and will

be used to obtain the form data object from the temp object store. The form data's

populateFromRequest method will be called to save the field data from the add/edit travel

route form so the user doesn't lose their work while they work on this auxillary form. The

link whose settings are being edited is obtained from the form data object, and the tempID

and formData are placed in the context. The form data is put in the context to allow the

form show the name of the travel route, which may only exist in the form data if it is an add

operation (it hasn't been added to the system yet.

If this form was invoked from the travel route details page, the route ID will be present in

the form data and will be used to retrieve the WebTravelRoute from the GUI cache. The

WebTravelRouteLink is obtained from the WebTravelRoute, and the route ID and

WebTravelRoute are placed in the context. The WebTravelRoute is put in the context so its

name can be shown on the form.

Lastly, the WebTravelRouteLink whose settings are being changed is placed in the context,

and the form is returned.

CHART R3B3 Detailed Design 5-717 12/23/2008

put("link", WebTravelRouteLink)

EditLinkSettingsForTravelRoute.vm

The following processing is performed if routeID is present in the request parameters, indicating
this ac tion is being done "s tand alone" from the travel route details page.

WebTravelRoute

getCachedObject(routeID)
WebTravelRoute

getLink()
WebTravelRouteLink

put("formData",AddEditTravelRouteFormData)

put("routeID", routeID)

put("route", WebTravelRoute)

put("tempID", tempID)

User

TravelRouteReqHdlr NavLinkRights TempObjectStore AddEditTravelRouteFormData RequestHandlerSupporter

The request parameters will include a tempID if this is part of add/edit
travel route, or a routeID if this is a direc t edit v ia the details page.
The link ID will also be present. If this is part of add/edit, then all
form fields from the add/edit form will also be present.

The following processing is performed if tempID is present in the request parameters, indicating
this ac tion is being done as part of add/edit.

Context

setTravelRouteLinkSettingsForm()

getObjec t(tempID)

canManageTravelRoutes()
boolean

get request parms

AddEditTravelRouteFormData

populateFromRequest()

getLink(linkID)
WebTravelRouteLink

[no rights]
setErrorMessage()

[no rights]
redirect to add

edit form

[no rights]
Error.vm

Figure 5-411. TravelRouteReqHdlr:setTravelRouteLinkSettingsForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-718 12/23/2008

5.50.2.17 TravelRouteReqHdlr:viewTravelRouteDetails (Sequence Diagram)

This diagram shows the processing performed when the user requests to view the details

page for a travel route. The user's rights are checked and an error is returned if they do not

have the right to view travel routes. The travel route requested is retrieved from the object

cache and placed in the velocity context. The times used to specify the buckets used to

show travel time and toll rate history are computed (see getTravelRouteBucketTimes

diagram) and placed in the context. The WebTravelRoute is called to get the list of objects

using it, and the list is placed in the context.

The TravelRouteDetails.vm template is returned to display data from the travel route in the

details page. When the page displays history, it can use the bucket travel times included in

the context to pass to HistoryList.toBucketArray() to get the historical values in the proper

"buckets" that match the bucket times. By using the same bucket times for each link's

travel time history, the route's travel time history, and the route's toll rate history, the page

will display the data in consistent buckets.

When displaying travel times for the route (current or history), the details page will check

the status flag associated with each route travel time and display the travel time with an

indicator for travel times that are not valid due to expiration, link data quality, exceeded

max, etc. The same is true for the current toll rate and toll rate history. There is no such

status for link level travel time data aside from quality.

WebTravelRoute

getUsedBy()
WebTravelRouteUser[]

put("usedBy", WebTravelRouteUser[])

getTravelRouteBucketTimes()

see getTravelRouteBucketTimes
diagram for details.

put("bucketTimes", long[])

User

TravelRouteReqHdlr NavLinkRights

retrieves travel route from
object cache and handles
not found condition.

Context

viewTravelRouteDetails()
canViewTravelRoutes()

boolean
[no rights]

Error

getTravelRoute()

put("travelRoute", travelRoute)

TravelRouteDetails.vm

Figure 5-412. TravelRouteReqHdlr:viewTravelRouteDetails (Sequence Diagram)

CHART R3B3 Detailed Design 5-719 12/23/2008

5.50.2.18 TravelRouteReqHdlr:viewTravelRouteLinkDetails (Sequence Diagram)

This diagram shows the processing that is done when the user requests to view the details

page for a roadway link. The user's rights are checked to make sure they are permitted to

view travel routes, and if not an error is returned. The WebTravelRoute is retrieved from

the object cache and it's getLink() method is called to retrieve the WebTravelRouteLink.

The link is placed in the velocity Context and the LinkDetails template is returned to

display the details from the link on the link details page.

Note that unlike the processing for the travel route details page, bucket times are NOT

obtained and placed in the context. This is because on the link details page we will show

the actual time from each history record - we don't need to place the times in consistent

buckets because we are only showing the travel time history data for a single link.

TravelRouteReqHdlr

request parameters:
routeID, linkID

NavLinkRights WebTravelRoute Context

viewTravelRouteLinkDetails()

canViewTravelRoutes()
boolean

[no rights]
Error.vm

getTravelRoute()

getLink(linkID)
WebTravelRouteLink

put("link", WebTravelRouteLink)

LinkDetails.vm

User

Figure 5-413. TravelRouteReqHdlr:viewTravelRouteLinkDetails (Sequence Diagram)

CHART R3B3 Detailed Design 5-720 12/23/2008

5.50.2.19 TravelRouteReqHdlr:viewTravelRoutes (Sequence Diagram)

This diagram shows the processing performed when a user chooses to view the travel routes

defined in the system. Note that much of the processing is handled by the

DynListReqHdlrDelegate class, a mature existing class that is not being modified for use

with travel routes. For this reason, much of its processing is summarized with text rather

than showing the details. The points where it interacts with Travel Route specific classes

(namely the TravelRouteDynListSupporter) are shown in their proper context.

After receiving the request to view travel routes, the user's rights are checked to make sure

they have rights to view travel routes. If not, they will be shown an error page. If the user

has proper rights, the processing is passed to the DynListReqHdlrDelegate. It checks to see

if the list is already displayed, and if not it calls the TravelRouteDynListSupporter to create

a DynList (see the createDynList diagram for details). After creating the dynamic list, it

redirects the browser to the view list request, which will result in this exact same processing

being invoked again, except the list will now exist.

If the list exists, it is touched to make sure it doesn't expire from the temp object store. The

subjects for the list are then retrieved (see the getDynListSubjects diagram for details). The

subjects are placed into the dynamic list, and the delegate clears any filters that need to be

cleared (as specified via request parameters). The delegate then loads the context, and

returns to the TravelRouteReqHdlr. The request handler checks to see if the delegate

encountered an error, and if it did, it returns the error message supplied. Otherwise, the

request handler retrieves all WebTravelRouteUser objects from the GUI cache and calls

each one to find the travel routes it is currently using. This information is stored in a

hashtable so that the travel route list can easily retrieve a list of objects using it for the "used

by" column of the travel route list. After constructing this hashtable and placing it in the

context, the travel route list will be shown to the user.

Note that the travel time trend shown in the route list is available directly from the travel

route's status (computed by the server), and the list of recent travel time history shown

when the user hovers over the trend is available directly from the HistoryList in the

WebTravelRouteStatus.

CHART R3B3 Detailed Design 5-721 12/23/2008

RequestHandlerSupporter

Hashtable

ArrayLis t

WebTravelRouteUser

getObjectsOfType(WebTravelRouteUser.c lass)
WebTravelRouteUser[]

create

get(routeID)

ArrayLis t or null

[null returned from hashtable]
create

add(WebTravelRouteUser)

sort WebTravelRouteUser[]
by name

[null returned from
hashtable]

put(routeID, ArrayList)

[*for each
WebTravelRouteUser]

getRoutesInUse()
Identifier[]

[*for each
routeID]

put("usedByTbl", Hashtable)

DynLis t

[DynLis t not ex ists]
redirect to v iew lis t, this time with ID of list just created

[error s tring
from delegate]

Error.vm

touch dyn lis t in
temp obj s tore

put("pageContent", templateName)

put(dynListContentName, DynList)

User
TravelRouteReqHdlr NavLinkRights

The following process ing takes place if the dynamic list DOES NOT ex is t in the temp object s tore

DynLis tReqHdlrDelegate TravelRouteDynLis tSupporter

The following process ing takes place if the dynamic list already ex ists in the temp object s tore.

gets DynLis t from temp object s tore, in
case where the DynList is already displayed
(for example refresh, or after sort or filter)

Context

See createDynList diagram for details

See getDynListSubjects diagram for details .

Travel Route List

clear dyn lis t filters
as needed

[DynLis t not ex ists]
createDynList

[DynLis t not ex ists]
store in temp obj store

v iewDynList()

getDynLis t()

viewTravelRoutes()

canViewTravelRoutes()

[no rights]
Error.vm

[DynList exis ts]
getDynListSubjects()

TravelRouteDynListSubject[]

put("refreshInterval", configured std refresh rate)

error s tring or null

Figure 5-414. TravelRouteReqHdlr:viewTravelRoutes (Sequence Diagram)

CHART R3B3 Detailed Design 5-722 12/23/2008

5.51 Chartlite.servlet.externalsystemmgmt

5.51.1 ClassFiles

5.51.1.1 GUIExternalSystemServletClasses (Class Diagram)

This diagram shows classes used by the GUI (servlet) to support requests related to the

external system.

DefaultDynList

1

1

creates
DynListReqHdlrDelegate

1

1

1

1

ExternalDeviceDynList

WebExternalDevice

DynListDelegateSupporter

«interface»

ExternalDeviceDynListSupporter

DynListSubject

«interface»

ExternalDeviceDynListSubject

1

1

RequestHandler

«interface»

ExternalSystemReqHdlr

WebTrafficEventRule

DiscoverExternalClassesCmd

WebGeoArea

1

QueueableCommand

«interface»

*

execute()
interrupted()

execute():void
discoverClasses():void
discoverEventChannels():void

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

getRef():GeoArea
getName(): string
getDescription(): string
getNumberOfPoints(): int
getLatitudePoint(int num): int
getLongitudePoint(int num)
getID():Identifier

m_data: GeoAreaData
m_id: Identifier
m_dm:DataModel
m_ref: GeoArea

getID(): string
getDescription(): string
getGeographicalAreas(): WebGeoArea[]
getGeographicalAreaIDs(): Identifier[]
getRouteTypes(): string[]
getLanesClosed(): int
getLanesClosedFlag(): bool
getEventTypes(): int[]
getIssueAlertFlag(): bool
getInterestingFlag(): bool
getSearchText(): string[]
getNotificationTarget(): WebNotificationRecipient

 m_rule: TrafficEventRule

getAddEditTrafficEventInclusionRuleForm()
addEditTrafficEventInclusionRule()
removeTrafficEventInclusionRule()
viewTrafficEventInclusionRules()
getExternalDeviceQueryForm()
submitExternalDeviceQueryForm()
submitExternalDeviceSelectionForm()
getExternalAgenciesToOrgsMappingForm()
submitExternalAgenciesToOrgsMappingForm()
getAddEditExternalClientForm()
addEditExternalClient()
removeExternalClient()

m_dynListReqHdlrDelegate: DynListReqHdlrDelegate

createDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter,dynListID:Identifier)
getDynListSubjects(req:HttpServletRequest, supporter:RequestHandlerSupporter, dynList:DynList):DynListSubject[]

PROP_NAME:String
PROP_AGENCY:String
PROP_INCLUDED:String
PROP_EXCLUDED:String

-m_id:Identifier
-m_desc:String
-m_cols:DynListCol[]
-m_sortCol:DynListCol
-m_globalFilters:ArrayList<DynListFilter>
-m_subjects:ArrayList<DynListSubject>

setShowNewDevicesFlag(show:boolean):void
setShowIncludedDevicesFlag(show:booleansetShowExcludedDevicesFlag(show:boolean):void
showNewDevices():boolean
showIncludedDevices():boolean
showExcludedDevices():boolean

m_candidates: ExternalDeviceCandidate[]
m_showNewDevices: boolean
m_showIncludedDevices: boolean
m_showExcludedDevices:boolean

getID(): Identifier
getAgencyName(): String
getName(): string
getDescription(): string
getLocation(): string
isIncluded(): bool
isExcluded(): bool
getDeviceType(): ExternalDeviceType

m_data: ExternalDeviceCandidateInfo

Figure 5-415. GUIExternalSystemServletClasses (Class Diagram)

CHART R3B3 Detailed Design 5-723 12/23/2008

5.51.1.1.1 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a

collection of columns, a collection of global filters, and a collection of subjects. Filters in

this list are treated additively - that is, a subject must pass all filters to be displayed.

5.51.1.1.2 DiscoverExternalClassesCmd (Class)

This class is called to periodically discover classes related to the external system from the

trading service and External Interface module. This includes traffic event rules, and external

connections

5.51.1.1.3 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.51.1.1.4 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter

dynamic lists can be passed from a request handler to this class, provided the URL used for

the requests contain parameters required by this class, such as the id of the list, the property

name, and/or the filter value.

5.51.1.1.5 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.51.1.1.6 ExternalDeviceDynList (Class)

This class implements the dynlist interface for external devices in dynamic lists.

5.51.1.1.7 ExternalDeviceDynListSubject (Class)

This class implements the DynListSubject interface and contains fields for displaying

external devices in dynamic lists.

5.51.1.1.8 ExternalDeviceDynListSupporter (Class)

This class implements the DynListDelegateSupporter for creating dynamic lists of external

devices.

5.51.1.1.9 ExternalSystemReqHdlr (Class)

This class contains request methods related to external systems.

5.51.1.1.10 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a

CommandQueue for asynchronous execution. Derived classes implement the execute

CHART R3B3 Detailed Design 5-724 12/23/2008

method to specify the actions taken by the command when it is executed. This interface

must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a

command in the queue and a call to the interrupted method is made when a

CommandQueue is shut down.

5.51.1.1.11 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.51.1.1.12 WebExternalDevice (Class)

This class wraps an External Device for display in the GUI.

5.51.1.1.13 WebGeoArea (Class)

This class wraps a GeoArea object to provide methods for accessing the data from a

velocity template.

5.51.1.1.14 WebTrafficEventRule (Class)

This class wraps a TrafficEventRule for display in the GUI

CHART R3B3 Detailed Design 5-725 12/23/2008

5.51.2 Sequence Diagrams

5.51.2.1 ExternalDeviceDynListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing used to create an external object dynamic list. Each

column of the list is created, along with comparators and filters used for each column.

Those shown that do not create a filter are not filterable. Those columns that do not show

construction of a comparator use the default text comparator that will be created by the

DefaultDynListCol class. After creating the columns, they are passed to the constructor of

a DefaultDynList, and the DefaultDynList is returned.

DefaultDynListCol

TextValueColFilter

Agency Columncreate

create

setFilter()

DynListReqHdlrDelegate
ExternalDeviceDynListSupporter

DefaultDynListCol

Description column

DefaultDynListCol

SubjectIntegerPropertyComparator

DefaultDynList

Included Column

create

create

SubjectIntegerPropertyComparator

create

create

DefaultDynListCol

DefaultDynListCol

Location column

create

Construct with above columns

Excluded Column

create

createDynList()

create

DefaultDynList

Figure 5-416. ExternalDeviceDynListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-726 12/23/2008

5.51.2.2 ExternalDeviceDynListSupporter:getDynListSubjects (Sequence Diagram)

This diagram shows the processing performed when the ExternalDeviceDynListSupporter

is called to get the dyn list subjects. All queried candidates are evaluated by a state filter,

wrapped with a ExternalDeviceDynListSubject. A list of filtered subjects is returned.

ExternalDeviceDynListSubject[]

ExternalDeviceDynListSupporter
DynListReqHdlrDelegate

getDynListSubjects

ExternalDeviceDynListSubject[for each
candidate

[matches one of the set states]
create

ExternalDeviceDynList

Read new,included,excluded params
and set boolean flags in the dynList

setShowDeviceStates()

Figure 5-417. ExternalDeviceDynListSupporter:getDynListSubjects (Sequence Diagram)

CHART R3B3 Detailed Design 5-727 12/23/2008

5.51.2.3 ExternalSystemReqHdlr:addEditExternalClient (Sequence Diagram)

This diagram shows the processing that occurs when an administrator adds or edits an

external client.

[error]
Error.vm

redirect to view external client list

objectAdded(clientID,WebExternalSystemClient)

UserManagerWrapper
[params missing]

redisplay form with error

Perform for edit

Perform for add

UserManagerWrapper

objectUpdated(clientID)

createExternalApplication(token, ExternalApplicationData)
ExternalApplicationData

RequestHandlerSupporter

getUserManagerWrapper()

DataModel

[client ID not null]
getObject(clientID)

WebExternalSystemClient

new(ExternalApplicationData)

[is edit]
setExternalApplicationConfig(token, ExternalApplicationData)

getStringParam(req,"contactEmail", null)

getBooleanParam(req,"isSupplier", false)

getBooleanParam(req,"isConsumer", false)

[if consumer
until param x is null]

getStringParam(req,"role[x]name",null)

getStringParam(req,"role[x]desc",null)

new(name,desc)

getStringParam(req,"publicKey",null)

getIdentifierParam(req,"clientID", null)

Administrator
ExternalSystemReqHdlr

ServletUtiladdEditExternalClient

check rights

[insufficient rights]
Error.vm

Role

ExternalApplicationDataPopulate with data read
from the request

getStringParam(req,"contactName", null)

getStringParam(req,"contactPhone", null)

getStringParam(req,"clientLogin",null)

getStringParam(req,"clientName",null)

getStringParam(req,"clientDesc",null)

create

WebExternalSystemClient

Figure 5-418. ExternalSystemReqHdlr:addEditExternalClient (Sequence Diagram)

CHART R3B3 Detailed Design 5-728 12/23/2008

5.51.2.4 ExternalSystemReqHdlr:addEditTrafficEventInclusionRule (Sequence Diagram)

This diagram shows the processing that occurs when an administrator has chosen to

add/edit a new external event inclusion rule. The administrator selects/updates the values

from the add/edit external event rule form and submits the rule form

new(false)

getParameterValues("eventTypes")

c losed lanes

[closed lanes == "EmptyUnspecified" || "ANY"]
new(true)

closedLaneFlag

[issueNotification]
getStringParameter(req,"notificationGroup", null)

notificationGroupID

add(value)

ArrayList

Do for geo areas,
routes, states, search text.

eventTypes[]

getStringParam(req,"variable[x]",null)

variable value[while variable[x] != null
x++]

new

Administrator

ExternalSystemReqHdlr ServletUtilNavLinkRights

boolean

HttpServletRequest

addEditExternalEventRule
canManageExternalEventRules

[no rights]
Error.vm

getStringParam(req, "name", newString(""))

rule name

getStringParam(req,"description", newString(""))
rule description

getStringParam(req, "c losedLanes", null)

TrafficEventRuleResult

TrafficEventRuleFactory

Create with fields read
from the request

trafficEventRuleConfig

createTrafficEventRule(token, trafficEventRuleConfig)

TrafficEventRuleConfignew()

isCheckboxChecked(req,"field")

boolean

Issue alert, issue notification,
and is interesting checkbox fields

[issueAlert]
getStringParameter(req,"alertOpCenter", null)

opCenterID

redirect to v iew event rules lis t

getRecipient(true, notificationGroupID)

[problem]
error.vm

WebNotificationCache

notification recipient

Figure 5-419. ExternalSystemReqHdlr:addEditTrafficEventInclusionRule (Sequence

Diagram)

CHART R3B3 Detailed Design 5-729 12/23/2008

5.51.2.5 ExternalSystemReqHdlr:downloadPrivateKey (Sequence Diagram)

This diagram shows the processing that occurs when an administrator chooses to download

the private key file for the generated public key. This request sends the encoded bytes of

the private key and returns null to continue displaying the client form.

flush()
close()

file sent to administrator.. open or save
dialog box opens

close()

write(bytebuffer,0,length)

Byte[]

[while inputStream != null) &&
((length = inputStream.read(bytebuffer)) != -1)

PrivateKey

setContentType("application\txt")

KeyPair

getPrivate()

private key

RequestHandlerSupporter

TempObjectStore

ServletOutputStream

HttpServletResponse

getTempObjectStore()
TempObjectStore

getObject(keyPairID)

KeyPair
getOutputStream()

[keypair not found or id null]
redirect to add or edit client page and show

error message ServletOutputStream

Administrator

ExternalSystemReqHdlr ServletUtil

getPrivateKeyFile(req,resp,supporter)

getIdentifierParam(req,"keyPairID", null)

key pair ID

new(16)

ByteArrayInputStreamNew(privateKey.getEncoded())

getEncoded()
byte[]

setContentLength(privateKey.getEncoded().length)

setHeader("Content-Disposition", "attachment; filename=\"privkey.txt\"");

Figure 5-420. ExternalSystemReqHdlr:downloadPrivateKey (Sequence Diagram)

CHART R3B3 Detailed Design 5-730 12/23/2008

5.51.2.6 ExternalSystemReqHdlr:generateKeyPair (Sequence Diagram)

This diagram shows the processing that occurs when generating a public/private keypair. A

user manager wrapper is called to generate the KeyPair on the CHART Server. The server

returns the generated Key Pair.

RequestHandlerSupporter

generateKeyPair(token,"appID")

UserManagerWrapper

getUserManagerWrapper()

KeyPair

System

generateKeyPair()

return KeyPair

ExternalSystemReqHdlr

Figure 5-421. ExternalSystemReqHdlr:generateKeyPair (Sequence Diagram)

CHART R3B3 Detailed Design 5-731 12/23/2008

5.51.2.7 ExternalSystemReqHdlr:getAddEditExternalClientForm (Sequence Diagram)

This diagram shows the processing that occurs when an Administrator adds or updates an

external system client.

DataModel

TempObjectStore

getTempObjectStore()

[add]
add("keyPairID", keyPairID)

[client id null]
generateKeyPair()

put("roles", roles)

put("pageContent","externalsystem\addEditExternalClient.vm")

show form for adding or editing a client

ServletUtil

Context

RequestHandlerSupporter

UserManagerWrapper

WebRole

getAddEditExternalClientForm

check rights

[insufficient rights]
Error.vm

getIdentifierParam(req,"clientID", null)

[client id not null]
findExternalClient(id)

[client id not null]
put("client",WebExternalClient)

getUserManagerWrapper()

getRoles()

Role[]

[for each
role]

new(role)

Administrator

ExternalSystemReqHdlr

See
ExternalSystemReqHdlr.generateKeyPair

[add]
add(keyPairID, keyPair)

Figure 5-422. ExternalSystemReqHdlr:getAddEditExternalClientForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-732 12/23/2008

5.51.2.8 ExternalSystemReqHdlr:getAddEditTrafficEventInclusionRuleForm (Sequence

Diagram)

This diagram shows the processing that occurs when an administrator has chosen to add a

new traffic event inclusion rule, or edit an existing rule.

Administrator
ExternalSystemReqHdlr

NavLinkRights
Context

ServletUtil RequestHandlerSupporter

getAddEditTrafficEventInclusionRuleForm

canManageExternalEventRules

boolean
[no rights]
Error.vm

getIdentifierParam(req, ruleID, null)

identifer or null if not specified

[identifier not null]
getCachedObject(ruleID)

put("pageContent","externalsystem\addEditTrafficEventRuleForm.vm")

[no identifier specified]
show add rule form

WebTrafficEventRule
[rule not found]

Error.vm
put("rule", rule)

edit rule form shown

Figure 5-423. ExternalSystemReqHdlr:getAddEditTrafficEventInclusionRuleForm

(Sequence Diagram)

CHART R3B3 Detailed Design 5-733 12/23/2008

5.51.2.9 ExternalSystemReqHdlr:getExternalDeviceQueryForm (Sequence Diagram)

This diagram shows the processing that occurs when an administrator has chosen to submit

an external device query to the system. For R3B3, the administrator can query external

DMS's and TSS's

SystemProfileProperties

String[]

getSystemProfileProperties()

getExternalAgencies()

[deviceType == DMS]
put("deviceType", ExternalDataType.DMS)

[deviceType == TSS]
put("deviceType", ExternalDataType.TSS)

external device query form displayed

put("pageContent", "externalSystem\ExternalSystemQueryDevice.vm")

Administrator

ExternalSystemReqHdlr

NavLinkRights

ServletUtil RequestHandlerSupporter

DataModel

getExternalDeviceQueryForm()
canManageExternalDevices

boolean
[no rights]
Error.vm

getIntParam(req, "deviceType",null)

Context

add("agencies", agencies)

getObjectsOfType(WebGeoArea.class)
WebGeoArea objects

add("geoAreas", areas)

This method while query the
system profile for external agency mappings
and return an array of Strings containing
the agency names

Figure 5-424. ExternalSystemReqHdlr:getExternalDeviceQueryForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-734 12/23/2008

5.51.2.10 ExternalSystemReqHdlr:removeExternalClient (Sequence Diagram)

This diagram shows the processing that occurs when an external client is removed from the

system.

ExternalSystemReqHdlr

removeExternalClient

[insufficient rights]
Error.vm

redirect to view client list

objectRemoved(clientID)

ServletUtil UserManagerWrapper

getIdentifierParam(req,"clientID", null)

[identifier null]
Error.vm

deleteExternalApplication(token, id)

Datamodel

check rights

Administrator

Figure 5-425. ExternalSystemReqHdlr:removeExternalClient (Sequence Diagram)

CHART R3B3 Detailed Design 5-735 12/23/2008

5.51.2.11 ExternalSystemReqHdlr:removeTrafficEventInclusionRule (Sequence

Diagram)

This diagram shows the processing that occurs when an external traffic event inclusion rule

is removed.

An administrator has chosen to remove and external event import rule.

Administrator

ExternalSystemReqHdlr ServletUtil
NavLinkRights

TrafficEventRuleFactory

removeTrafficEventInclusionRule
canManageExternalEventRules

[no rights]
Error.vm

getIdentifierParam(req,"ruleID", null)

identifier
[rule not found]

Error.vm
removeTrafficEventRule(token, ruleID)

TrafficEventRuleResult
[problem adding rule]

Error.vm

show rule list

Figure 5-426. ExternalSystemReqHdlr:removeTrafficEventInclusionRule (Sequence

Diagram)

CHART R3B3 Detailed Design 5-736 12/23/2008

5.51.2.12 ExternalSystemReqHdlr:submitExternalDeviceQueryForm (Sequence

Diagram)

This diagram shows the processing that occurs when an administrator has submitted a query

to search for external device candidates The result is a page containing devices that match

the query.

getBooleanParam(req,"isDMSQuery", false)

CandidateSearchCriteria

Do for 3 criteria checkboxes
new, included, and excluded

getStringParam(req,"searchText", new String(""))

isCheckBoxChecked(req,"criteria", false)
boolean

add(value)

Serv letUtil

Do for Geo Areas
and External Agencies

ArrayLis t

getStringParam(req,"variable[x], null)
variable value

[while
variable[x] != null

x++]

new

Administrator

ExternalSystemReqHdlr NavLinkRights

submitExternalDeviceQueryForm()

setCandidateDevices(candidateGroup)

v iewDynLis t()
dynLis tfilterable and configurable lis t of

candidate devices shown

Criteria populated from data
on the submitted form

ExternalDeviceManager

DynListReqHdlrDelegate

ExternalDeviceDynLis tSupporter

new

searchForCandidateDevices(criteria)
CandidateGroup

getDynLis tSupporter()
ExternalDeviceDynLis tSupporter

TempObjectStore

RequestHandlerSupporter

Context

getTempObjectStore()

add(candidateGroupID, candidateGroup)

put("groupID", candidateGroupID()

canManageExternalDevices()

boolean[no rights]
Error.vm

Figure 5-427. ExternalSystemReqHdlr:submitExternalDeviceQueryForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-737 12/23/2008

5.51.2.13 ExternalSystemReqHdlr:submitExternalDeviceSelectionForm (Sequence

Diagram)

This diagram shows the processing that occurs when an administrator has selected devices

to include/exclude from the CHART system.

This diagram shows the processing that occurs when an administrator has selected devices to include/exclude
from the CHART system and submitted the form.

Administrator

ExternalSystemReqHdlr

submitExternalDeviceSelectionForm

isCheckBoxChecked(req,"exclude")
[for each

candidate]

boolean

ExternalDeviceManager

setCandidateDevices(candidates)

set candidate devices result

RequestHandlerSupporter

TempObjectStore

if include is checked,
set device candidate field
of include to true

If exclude is checked, set device candidate
field of exclude to true

NavLinkRights

ServletUtil

boolean

isCheckBoxChecked(req, "include")

canManageExternalDevices()
boolean

[no rights]
Error.vm

getTempObjectStore()
temp object store

get(candidateGroupID)
candidate group

[problem setting candidates]
Error.vm

getStringParam(req,"candidateGroupID", null)

[group id not found]
Error.vm

Figure 5-428. ExternalSystemReqHdlr:submitExternalDeviceSelectionForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-738 12/23/2008

5.51.2.14 ExternalSystemReqHdlr:viewExternalClientList (Sequence Diagram)

This diagram shows the processing that occurs when and Administrator views the list of

external clients.

getDataModel

Context

put("pageContent", "externalsystem\viewExternalClientList.vm")

Administrator

RequestHandlerSupporter

DataModel
Check rights

getObjectCache()

WebExternalClient[]

put("clients", WebExternalClient[])

list of clients shown

ExternalSystemReqHdlr

ObjectCache
viewExternalClientList

[insufficent rights]
Error.vm

getObjectsOfType(WebExternalClient.class)

Figure 5-429. ExternalSystemReqHdlr:viewExternalClientList (Sequence Diagram)

CHART R3B3 Detailed Design 5-739 12/23/2008

5.51.2.15 ExternalSystemReqHdlr:viewExternalSystemConnectionStatus (Sequence

Diagram)

This diagram shows the processing that occurs when an operator clicks on the external

connections link on the homepage. Connection status is shown for all of the external

connections.

Display External System Status

Context

put("connections", Arrays.sort(WebExternalConnection[])

put("pageContent", "externalsystem\ExternalSystemStatus.vm")

getObjectsOfType(WebExternalConnection.class)

WebExternalConnection[]

Operator

viewExternalSystemConnectionStatus(req,resp,ctx,supporter)

DataModelRequestHandlerSupporter ObjectCache

put("pageTitle", "External System Status")

getDataModel()
DataModel

getObjectCache()

ObjectCache

ExternalSystemReqHdlr

Figure 5-430. ExternalSystemReqHdlr:viewExternalSystemConnectionStatus (Sequence

Diagram)

CHART R3B3 Detailed Design 5-740 12/23/2008

5.51.2.16 ExternalSystemReqHdlr:viewTrafficEventInclusionRules (Sequence

Diagram)

This diagram shows the processing that occurs when the administrator views the list of

traffic event inclusion rules.

RequestHandlerSupporter

getCachedObjectsOfType(WebTrafficEventRule.class)

WebTrafficEventRule[]

ExternalSystemReqHdlr Context

put("rules", ruleWrappers[])

viewExternalEventRules

Event Rules List

canManageExternalEventRules()

put("pageContent", "externalsystem\ViewExternalEventRules.vm"

[no rights]
Error.vm

Administrator

NavLinkRights

Figure 5-431. ExternalSystemReqHdlr:viewTrafficEventInclusionRules (Sequence

Diagram)

CHART R3B3 Detailed Design 5-741 12/23/2008

5.52 chartlite.servlet.messagetemplates

5.52.1 Class Diagrams

5.52.1.1 DMSTravInfoMsgTemplateDynListClasses (Class Diagram)

This diagram contains classes related to the display of message templates in a dynamic

(sortable/filterable) list.

DynListSubject
«interface»

DMSTravInfoMsgTemplateDynListSubject

DynListDelegateSupporter
«interface»

WebDMSTravInfoMsgTemplate

DMSTravInfoMsgTemplateDynListSupporter

«create»

DefaultDynList

1

1

«create»

DynList
«interface»

«create»

*1

BaseDynListFilter

DynListFilter
«interface»

TemplateSignSizeFilter TravelTimeFormatFilter TravelTimeRangeFormatFilter TollRateFormatFilter TollRateTimeFormatFilter DistanceFormatFilter

createDynList(req:HttpServletRequest, supporter:RequestHandlerSupporter,dynListID:Identifier)
getDynListSubjects(req:HttpServletRequest, supporter:RequestHandlerSupporter, dynList:DynList):DynListSubject[]
getFilterValue(col:DynListCol, filterValueStr:String):Object

getID():Identifier
getDescription():String
getColumns():DynListCol[]
getColumn(property:String):DynListCol
setColumns(columns:DynListCol[]):void
setSubjects(subjects:DynListSubject[]):void
getAllSubjects():DynListSubject[]
getFilteredSubjects():DynListSubject[]
getGloballyFilteredSubjects():DynListSubject[]
c learAllFilters():void
getGlobalFilters():DynListFilter[]
addGlobalFilter(filter:DynListFilter):void
removeGlobalFilter(filter:DynListFilter):void
clearGlobalFilters():void
sort(column:DynListCol):void
isCurrentSortCol(property:String):boolean
getCurrentSortCol():DynListCol
isCurrentSortAscending():boolean
isFiltered():boolean
getActiveFilterValueDescs():String[]
hasActiveColumnFilters():boolean
hasActiveGlobalFilters():boolean
getFilteredSubjectList():ArrayList<DynListSubject>

getDescription():String
getUniqueValueDescs(subjects:DynListSubject[]):String[]
getFilteringValueDesc():String
setFilterValue(value:Object):void
passesFilter(subject:DynListSubject):boolean
deactivate():void
isActive():boolean

getPropertyValue(property:DynListCol):String
getPropertyValues(property:DynListCol):String[]

Figure 5-432. DMSTravInfoMsgTemplateDynListClasses (Class Diagram)

5.52.1.1.1 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

CHART R3B3 Detailed Design 5-742 12/23/2008

5.52.1.1.2 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a

collection of columns, a collection of global filters, and a collection of subjects. Filters in

this list are treated additively - that is, a subject must pass all filters to be displayed.

5.52.1.1.3 DistanceFormatFilter (Class)

This class allows filtering on the distance format attribute of a DMS message template.

5.52.1.1.4 DMSTravInfoMsgTemplateDynListSubject (Class)

This class is a proxy representing a single DMS message template in a dynamic list. It has

a reference to the template object.

5.52.1.1.5 DMSTravInfoMsgTemplateDynListSupporter (Class)

This class provides supporting functionality for displaying a DMS message template

dynamic list. It creates the list object and gets the objects representing templates to display

in the list.

5.52.1.1.6 DynList (Class)

This interface is implemented by classes that wish to provide dynamic list capabilities. A

dynamic list is a list of items that has one or more columns that can optionally be sorted,

and the list can be filtered by column values or by global filters.

5.52.1.1.7 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.52.1.1.8 DynListFilter (Class)

This interface is implemented by classes that are used to filter dynamic lists.

5.52.1.1.9 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.52.1.1.10 TemplateSignSizeFilter (Class)

This class allows filtering on the sign size attribute of a DMS message template.

5.52.1.1.11 TollRateFormatFilter (Class)

This class allows filtering on the toll rate format attribute of a DMS message template.

5.52.1.1.12 TollRateTimeFormatFilter (Class)

This class allows filtering on the toll rate time format attribute of a DMS message template.

CHART R3B3 Detailed Design 5-743 12/23/2008

5.52.1.1.13 TravelTimeFormatFilter (Class)

This class allows filtering on the travel time format attribute of a DMS message template.

5.52.1.1.14 TravelTimeRangeFormatFilter (Class)

This class allows filtering on the travel time range format attribute of a DMS message

template.

5.52.1.1.15 WebDMSTravInfoMsgTemplate (Class)

This class wraps the DMSTravInfoMsgTemplate CORBA object representing a message

template. It caches the data represented by the remote object and provides accessors for

easy access to the cached data.

5.52.1.2 GUIMessageTemplateServletClasses (Class Diagram)

This diagram shows GUI classes that are involved in handling requests related to traveler

information message templates.

DMSTravInfoMsgTemplateEditorData

MessageTemplateReqHdlr

RequestHandler

«interface»

NOTE - The add/edit template functionality is handled in the
chartlite.servlet.dms package (DMSReqHdlr diagrams) to
take advantage of existing editor code.

DMSEditorData

init(supporter:RequestHandlerSupporter) : void
getActions() : ArrayList<RequestAction>
processRequest(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
shutdown(supporter:RequestHandlerSupporter) : void

getDMSTravInfoMsgTemplateList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
sortDMSTravInfoMsgTemplateList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
filterDMSTravInfoMsgTemplateList(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
removeDMSTravInfoMsgTemplate(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

m_dynListDelegate : DynListReqHdlrDelegate

DMSTravInfoMsgTemplateEditorData(editorDataID : String,
 template : WebDMSTravInfoMsgTemplate,
 geometry : DMSDisplayInfo,
 allTravelTimeFormats : WebTravelTimeFormat[],
 allTravelTimeRangeFormats : WebTravelTimeRangeFormat[],
 allTollRateFormats : WebTollRateFormat[],
 allTollRateTimeFormats : WebTollRateTimeFormat[],
 allDistanceFormats : WebDistanceFormat[])
getFormattedMulti() : String
getFormTitle() : String
hasEditRights(loginSession : UserLoginSessionImpl) : boolean
isMessageTextRequired() : boolean {true}
setDescription(desc : String) : void
supportsCategory() : boolean {false}
supportsDescription() : boolean {true}
parseFormParameters(req : HttpServletRequest,
 supporter : RequestHandlerSupporter) : void
getAllTravelTimeFormats() : WebTravelTimeFormat[]
getAllTravelTimeRangeFormats() : WebTravelTimeRangeFormat[]
getAllTollRateFormats() : WebTollRateFormat[]
getAllTollRateTimeFormats() : WebTollRateTimeFormat[]
getAllDistanceFormats() : WebDistanceFormat[]
getDescription() : String
getTravelTimeFormatIdx() : int
getTravelTimeRangeFormatIdx() : int
getTollRateFormatIdx() : int
getTollRateTimeFormatIdx() : int
getDistanceFormatIdx() : int
isDestTagAlignmentLeft() : boolean
isDestTagAlignmentCenter() : boolean
isDestTagAlignmentRight() : boolean
isRowDiscardedIfDataMissing() : boolean
isPageDIscardedIfDataMissing() : boolean
isMessageDiscardedIfDataMissing() : boolean
getTemplateConfig() : DMSTravInfoMsgTemplateConfig
getTemplate() : WebDMSTravInfoMsgTemplate

m_template : WebDMSTravInfoMsgTemplate
m_description : String
m_travelTimeFormat : WebTravelTimeFormat
m_travelTimeRangeFormat : WebTravelTimeRangeFormat
m_tollRateFormat : WebTollRateFormat
m_tollRateTimeFormat : WebTollRateTimeFormat
m_distanceFormat : WebDistanceFormat
m_destTagAlignment : MessageTemplateAlignment
m_missingDataOption : RouteMissingDataOption
m_allTravelTimeFormats : WebTravelTimeFormat[]
m_allTravelTimeRangeFormats : WebTravelTimeRangeFormat[]
m_allTollRateFormats : WebTollRateFormat[]
m_allTollRateTimeFormats : WebTollRateTimeFormat[]
m_allDistanceFormats WebDistanceFormat[]

Figure 5-433. GUIMessageTemplateServletClasses (Class Diagram)

CHART R3B3 Detailed Design 5-744 12/23/2008

5.52.1.2.1 DMSEditorData (Class)

This class represents an instance of a DMS message being edited in an editor. It provides

storage so that the message and editor state can be preserved during interim requests before

the form is submitted. It also has logic for manipulating the editor session. This is a base

class and will be extended for specific editor types.

5.52.1.2.2 DMSTravInfoMsgTemplateEditorData (Class)

This class contains the data related to one instance of the DMS message template editor. It

extends DMSEditorData to provide common editor functionality, and also has methods for

getting and setting the editor data.

5.52.1.2.3 MessageTemplateReqHdlr (Class)

This class handles requests related to message templates, except for the requests for adding

/ editing a template, which are in the DMSReqHdlr class.

5.52.1.2.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

CHART R3B3 Detailed Design 5-745 12/23/2008

5.52.2 Sequence Diagrams

5.52.2.1 MessageTemplateReqHdlr:filterDMSTravInfoMsgTemplateList (Sequence

Diagram)

This diagram shows the processing to filter the list of DMS message templates. The work

is mostly delegated to DynListReqHdlrDelegate, which uses the list ID to retrieve the

existing list from the temporary object store. If not found (i.e., if the list has timed out) it

will create a new list and add it to the temporary object store. The filter property is used to

retrieve the DynListCol object representing the column to filter on, and its DynListFilter is

retrieved. The DynListSupporter is called to get the filter value for the column, based on

the filter value string from the request. If the filter value is "--Any--" or there is no filter

value object returned, the column filter is deactivated; otherwise, the filter value is set into

the filter for later use. A redirect is sent in the response so the browser will issue another

request to view the list. When building the new list to display, the Velocity code will ask

for the filtered list and the filter will be applied at that time.

User

MessageTemplateReqHdlr DynListReqHdlrDelegate

The DynListReqHdlrDelegate logic
already ex ists in a utility c lass
so it is only paraphrased here.

DMSTrav InfoMsgTemplate
DynListSupporter

The list will almost always be found in the Temp
Object Store. In the very unlikely case that the
list is expired (i.e., not viewed in a long time)
it may not be available, but this is highly unlikely with
an automatic refresh.

HttpServletResponse DynListCol

DefaultDynLis t

Context

Redirects the response so that
the browser will issue a request
to view the list, which contains the
filter criteria.
See the diagram for viewing the list
for details.

DynList

filterDMSTrav InfoMsg
TemplateList()

Check User Rights

[no rights]
error

filterDynList(req, resp,
ctx , supporter)

Get DynList from TempObjectStore

[DynList not found]
createDynLis t(req, reqHldrSupporter, listID)

[new DynLis t created]
Add To Temp Objec t Store

[list ID, filter property, or
filter value not specified]

error msg

getColumn(filterProperty)
DynListCol or null

sendRedirec t(URL to v iew list)

[success]
null

Create Columns
And Filters

create

[error]
put("errMsg", errMsg)

[error]
put("pageContent", "Error.vm")

[error]
EnclosingTemplate.vm

DynListFilter

[column not found]
error msg

getFilter()
DynListFilter or null

[filter not found]
error msg [filter value equals "--Any--"]

deactivate()

getFilterValue(column, filterValueStr)
Object or null

[filter value object is null]
deactivate

[filter value objec t not null]
setFilterValue(filterValue)

Figure 5-434. MessageTemplateReqHdlr:filterDMSTravInfoMsgTemplateList (Sequence

Diagram)

CHART R3B3 Detailed Design 5-746 12/23/2008

5.52.2.2 MessageTemplateReqHdlr:getDMSTravInfoMsgTemplateList (Sequence Diagram)

This diagram shows the processing to show the list of DMS message templates. The work

is mostly delegated to DynListReqHdlrDelegate, which uses the list ID (if specified) to

retrieve the existing list from the temporary object cache. If not found (i.e., if the list is

displayed for the first time or the object has timed out) it will call the

DMSTravInfoMsgTemplateDynListSupporter class to create a new list. The list is created

and added to the temporary object cache, and the response is sent to redirect the browser to

view the list again. If the list already existed, the DMSTravInfoMsgTemplate objects are

retrieved from the factory wrapper and new DMSTravInfoMsgTemplateDynListSubject

objects are created to represent them in the list. These subjects are stored in the dynamic

list for later use. The previous filters are cleared (if requested) and the Velocity context is

prepared so that the Velocity template can render the HTML for the page.

Create Columns And Filters

Get DynList from TempObjectStore
if ID specified in request

[DynLis t ID not specified
or DynList not found]

createDynLis t(req, reqHldrSupporter, lis tID)

[new DynList created]
Add To Temp Object Store

[new DynList created]
sendRedirect(URL to view DynList using new ID)[new DynList c reated]

create

"Touch" the DynList in the
TempObjectStore to prolong

its lifespan

getDynListSubjects()

DynLis tSubject[]
setSubjects(subjects)

Context

Clear Filters If Specified
In Request

Populate Velocity Context
To Display List

[error]
put("errMsg", errMsg)

[error]
put("pageContent", "Error.vm")

Enc los ingTemplate.vm

[new DynList c reated]

DMSTravInfoMsgTemplate
DynListSubject

WebMessageTemplate
FactoryWrapper

Return all DynListSubjects that could
possibly appear in the lis t (i.e., no user filtering)

[* for each message template]
create

get()
getCachedDMSTravInfoMsgTemplates()

DMSTravInfoMsgTemplate[]

User

MessageTemplateReqHdlr DynListReqHdlrDelegate
DMSTravInfoMsgTemplate

DynLis tSupporter HttpServletResponse

The DynLis tReqHdlrDelegate logic
already ex ists in a utility class
so it is only paraphrased here.

DefaultDynList

DynList

getDMSTravInfoMsg
TemplateLis t()

Check User Rights

[no rights]
error viewDynList(req, resp,

c tx , supporter)

Figure 5-435. MessageTemplateReqHdlr:getDMSTravInfoMsgTemplateList (Sequence

Diagram)

CHART R3B3 Detailed Design 5-747 12/23/2008

5.52.2.3 MessageTemplateReqHdlr:removeDMSTravInfoMsgTemplate (Sequence

Diagram)

This diagram shows the processing to remove a DMS message template from the system.

The templateID parameter is used to get the WebDMSTravInfoMsgTemplate object from

the factory wrapper cache. The WebDMS objects are retrieved from the cache and each

one is asked if it is using the template with the given template ID. If some DMSs are using

the template, an error message is shown to the user. Otherwise, the

DMSTravInfoMsgTemplate CORBA object is called to remove itself. If successful (or an

OBJECT_NOT_EXIST error occurs) the template is removed from the factory wrapper

cache, and the response is sent to redirect the browser to show the updated list of templates.

[not found]
error

HttpServ letResponse

sendRedirect(url)

getParameter("dynListID")

WebMessageTemplate
FactoryWrapper

removeTemplateFromCache(templateID)

DMSTravInfo
MsgTemplate

getRef()

This message will
inc lude a list of all matching
DMSs so the user knows which
to remove the association from,
in order to remove the template.

WebDMS

getCachedObjectsOfType(WebDMS.class)
WebDMS[]

isUsingTemplate(templateID)[* for each
WebDMS]

[DMSs using template]
error

If the dynListID parameter
is specified in the request,
it will be appended to the
URL for redisplay ing the lis t.

encodeRedirectURL("app?action=getDMSTravInfoMsgTemplateLis t" + dynListIDParm)

null

[error other than OBJECT_NOT_EXIST]
error

WebDMSTravInfoMsgTemplate or null

remove(token)

WebDMSTravInfo
MsgTemplate

Check User Rights

[no rights]
error

getCachedDMSTravInfoMsgTemplate(templateID)

getParameter("templateID")

User

MessageTemplate
ReqHdlr

RequestHandler
SupporterHttpServletRequest

removeDMSTravInfoMsgTemplate(
req, resp, c tx, supporter)

Figure 5-436. MessageTemplateReqHdlr:removeDMSTravInfoMsgTemplate (Sequence

Diagram)

CHART R3B3 Detailed Design 5-748 12/23/2008

5.52.2.4 MessageTemplateReqHdlr:sortDMSTravInfoMsgTemplateList (Sequence

Diagram)

This diagram shows the processing to sort the list of DMS message templates. The work is

mostly delegated to DynListReqHdlrDelegate, which uses the list ID to retrieve the existing

list from the temporary object store. If not found (i.e., if the list has timed out) it will create

a new list and add it to the temporary object store. The sort property is used to retrieve the

DynListCol object representing the column to sort on, and the dynamic list is called to sort

the objects on that column, rearranging the objects stored in the list object. A redirect is

sent in the response so the browser will issue another request to view the (newly sorted) list.

Sort Objects
In Lis t

sendRedirect(URL to v iew list)

[success]
null

Create Columns
And Filters

User

MessageTemplateReqHdlr DynListReqHdlrDelegate

The DynListReqHdlrDelegate logic
already exists in a utility c lass
so it is only paraphrased here.

DMSTravInfoMsgTemplate
DynListSupporter HttpServ letResponse

DefaultDynList

Context

create

[error]
put("errMsg", errMsg)

[error]
put("pageContent", "Error.vm")

[error]
EnclosingTemplate.vm

DynList

sortDMSTravInfoMsg
TemplateList()

Check User Rights

[no rights]
error

sortDynList(req, resp,
c tx, supporter)

Get DynList from TempObjectStore

[DynList not found]
createDynList(req, reqHldrSupporter, lis tID)

[new DynList created]
Add To Temp Object Store

The lis t will almost always be found in the Temp
Object Store. In the very unlikely case that the
lis t is expired (i.e., not v iewed in a long time)
it may not be available, but this is highly unlikely with
an automatic refresh.

DynListCol

Redirects the response so that
the browser will issue a request
to view the lis t, which contains the
objects that have just been sorted.
See the diagram for v iewing the lis t
for details .

[lis t ID or sort property not
specified]
error msg

getColumn(sortProperty)
DynListCol or null

sort(column)

[column not found]
error msg

Figure 5-437. MessageTemplateReqHdlr:sortDMSTravInfoMsgTemplateList (Sequence

Diagram)

CHART R3B3 Detailed Design 5-749 12/23/2008

5.53 Chartlite.servlet.video

5.53.1 Class Diagrams

5.53.1.1 GUIVideoServletClasses (Class Diagram)

This diagram shows GUI classes involved in processing video-related requests.

MonitorListSupporter

1

VideoSourceListSupporter

1

1

DynListDelegateSupporter
«interface»

DynListReqHdlrDelegate

1

1

VideoSinkReqHdlr

1

VideoSourceConfigReqHdlr

EditCameraLocationSupporter

EditObjectLocationSupporter
«interface»

getEditCameraLocationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter) : String

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURL() : String
setObjectLocation(location:ObjectLocation,
 req : HttpServletRequest,
 supporter : RequestHandlerSupporter) : String

EditCameraLocationSupporter(camera : WebCamera)
EditCameraLocationSupporter(formData : UserFormData)

m_camera : WebCamera
m_addCameraFormData : UserFormData

createDynList():DynList
getDynListSubjects():DynListSubject[]
getFilterValue():String

createDynList():DynList
getDynListSubjects():DynListSubject[]
getFilterValue():String

Figure 5-438. GUIVideoServletClasses (Class Diagram)

5.53.1.1.1 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.53.1.1.2 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter

dynamic lists can be passed from a request handler to this class, provided the URL used for

the requests contain parameters required by this class, such as the id of the list, the property

CHART R3B3 Detailed Design 5-750 12/23/2008

name, and/or the filter value.

5.53.1.1.3 EditCameraLocationSupporter (Class)

This class is used to support editing the location of an existing or new VideoCamera.

5.53.1.1.4 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

5.53.1.1.5 MonitorListSupporter (Class)

This class is a DynListDelegateSupporter that provides Monitor specific functionality to the

generic DynListReqHdlrDelegate.

5.53.1.1.6 VideoSinkReqHdlr (Class)

This class is a request handler that processes requests related to video sinks such as

Monitors.

5.53.1.1.7 VideoSourceConfigReqHdlr (Class)

This class handles requests related to video source configuration.

5.53.1.1.8 VideoSourceListSupporter (Class)

This class is a DynListDelegateSupporter that provides Video Source specific functionality

to the generic DynListReqHdlrDelegate.

CHART R3B3 Detailed Design 5-751 12/23/2008

5.53.2 Sequence Diagrams

5.53.2.1 EditCameraLocationSupporter:setObjectLocation (Sequence Diagram)

This diagram shows the processing to save the camera location when the user submits the

Edit Location form. The SpecifyLocationReqHdlr calls the EditCameraLocationSupporter

with the location parsed from the request. If the location is being edited while adding /

copying a camera, a utility method is called to store the location in the UserFormData that

has already been stored in the TempObjectStore. When the Add/Copy form is redisplayed,

the UserFormData will be used to populate the location hidden form parameters in the

Add/Copy form. If the location is being saved for an existing DMS, the WebCamera is

called to get the VideoCamera reference, the configuration is queried from the camera, the

location is modified within the configuration, and the VideoCamera is called to set the

configuration. Since this is an asynchronous command, the URL to view the command

status is saved in the EditCameraLocationSupporter and will be passed back in the XML

response so that the parent window's URL can be set.

The user form data has already
been stored in the TempObjectStore
and will be retrieved when the Add/Copy
camera form is redisplayed. The location
parameters will then be carried in that form
using hidden form parameters.

Set Parameters
In UserFormData

[supporter contains UserFormData]
setLocationFormDataParameterValues(

formData, objectLocation)

null

[WebCamera]

getVideoCameraRef()

getCameraConfig(token)

getUserLoginSession(req)

getAccessToken()

VideoCameraConfig

Set Location Field
In Config

[exception]
error message

SpecifyLocation
ReqHdlr

EditCameraLocation
Supporter LocationReqUtil WebCamera

RequestHandler
Supporter

UserLogin
SessionImpl

Due to the asynchronous command,
we can't know at this point whether the
operation succeeded, so we can't update
the cached configuration. It is assumed
that the "configuration changed" CORBA
event will update the cached configuration.

VideoCamera CommandStatusMgr

Store "View One
Command Status" URL

null

setCameraConfig(token, config, cmdStatus.getRef())

getCommandStatusMgr()

createCommandStatusImpl(loginSession.getID, "setting camera location")

setObjectLocation(
objectLocation, req,
reqHdlrSupporter)

Figure 5-439. EditCameraLocationSupporter:setObjectLocation (Sequence Diagram)

CHART R3B3 Detailed Design 5-752 12/23/2008

5.53.2.2 MonitorListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing that is performed when the MonitorListSupporter is

called to create a Monitor dynamic list. A DefaultDynListCol object is created for each

column and stored in an ArrayList. A BaseDynListFilter derived object is added to the

column if the column supports filtering. The list of columns is used to construct a

DefaultDynList. If the "remote" parameter is present in the request, a

RemoteMonitorsDynListFilter is constructed and added to the dyn list as a global filter.

This processing is updated in R3B3 to add support for the Connection Site column.

setDisplayedByDefault(bool) All columns are displayed by default except
for connection site, for which we will pass
false to this method.

System

MonitorListSupporter

ArrayList

New column in R3B3:

Connection Site (filterable, hidden by default)

DefaultDynListCol

DefaultDynList

[column supports fi ltering]
setFilter()

[*for each list
column]

DefaultDynList

[column supports filtering]
create

[filter parm present and == "remote"]
addGlobalFilter()

RemoteMonitorsDynListFilter

BaseDynListFilter

createDynList()

add(DefaultDynListCol)

toArray()

create

DefaultDynListCol[]

create

[filter parm present and == "remote"]
create

sort(groups column)

create(id, name, DefaultDynListCol[])

Figure 5-440. MonitorListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-753 12/23/2008

5.53.2.3 VideoSourceConfigReqHdlr:getEditCameraLocationForm (Sequence Diagram)

This diagram shows how the Edit Camera Location form is displayed. The sourceID

parameter is parsed from the request. If the parameter is not specified, it is an add/copy

operation, but if it is specified, the user is editing the location of an existing camera. If

adding/copying a camera, the request parameters from the add/edit form are saved into a

UserFormData object that is stored in the TempObjectStore and also in the

EditCameraLocationSupporter object that is created. If the source ID is specified, the

WebCamera is retrieved from the cache, the user's rights are checked for the given camera's

organization, and the EditCameraLocationSupporter object is created. This object is added

to the TempObjectStore and the response is redirected so that the

displayEditObjectLocationDataForm request is invoked.

getEditCameraLocationForm(
req, resp, ctx, supporter)

User

VideoSourceConfig
ReqHdlr HttpServletRequest

This commits any user input for when
the form is displayed again after editing the
location, if the user is adding/copying a
camera. This assumes that any parameters
to add a camera are also passed in this request
to edit the camera location.

FormUtil

createTempObjectID()
setID(formDataID)

RequestHandler
Supporter TempObjectStore HttpServletResponse

EditCamera
LocationSupporter

This URL will be:
req.getRequestURI() +
"?action=displayEditObjectLocationDataForm" +
"&editLocationSupporterID=" + supporterID

getParameter("sourceID")

putFormDataInTempObjStore(formData, supporter)
[sourceID specified]

create(formData)

getCachedObject(sourceID)
WebCamera or null

[not found]
error

Check User's Configuration Rights
For The Camera's Organization

[no rights]
error create(webCamera)

createTempObjectID()

add(supporterID, supporter)

encodeRedirectURL(url)
sendRedirect(encodedURL)

null

UserFormData

create(req)

add(formID, formData)

getTempObjectStore()

[no rights]
error

Check Rights To Add Camera

Figure 5-441. VideoSourceConfigReqHdlr:getEditCameraLocationForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-754 12/23/2008

5.53.2.4 VideoSourceListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing that is performed when the VideoSourceListSupporter

is called to create a Video Source dynamic list. A DefaultDynListCol object is created for

each column and stored in an ArrayList. A derivation of DynListComparator is constructed

and added to each column that requires a custom comparator, and a BaseDynListFilter

derived object is added to the column if the column supports filtering. The list of columns

is used to construct a VideoSourceList (a subclass of DefaultDynList). The filterType

parameter (if present) is used to make other filter related configurations to the dyn list. If

the filterType parameter is set to "OpCenterFolders", an OpCenterFolderFilter is

constructed, configured for the user's op center, and added to the dyn list as a global filter

which will show only Video Sources that exist in folders that are tagged for use with the

user's op center. The "region" filterType parameter (if present) is used to set the

TextValueColFilter used for filtering the region column to the region specified. Other

filterType values are used to set the status filter.

This processing is updated in R3B3 to add support for the following columns: Route,

Direction, County, Connection Site, Mile Post.

setDisplayedByDefault(boolean)
All columns will be displayed by default, except
those mentioned as hidden above, for which
we will pass false to this method.

ArrayList

Type of BaseDynLis tFilter
created for the
status column.

TextValueColFilter

[column requires custom sorting]
setSortComparator()

add(DefaultDynLis tCol)

toArray()

[filterType parm == "OpCenterFolders"]
c reate

create

DefaultDynListCol[]

c reate(id, name, DefaultDynListCol[])

[sys tem set to not display camera names]
sort(location desc)

VideoSourceLis tSupporter

DynListComparator

BaseDynListFilter

Type of BaseDynLis tFilter
created for the region
column.

OpCenterFolderFilter

[*check for each
supported filterType

value and setFilterValue
with appropriate constant]

[column requires custom sorting]
create

[column supports filtering]
setFilter()

[*for each list
column]

[filterType parm == OpCenterFolders]
addGlobalFilter()

VideoSourceList

[column supports filtering]
create

[filterType parm == "Online"]
setFilterValue(Status .OnlineAll)

c reate

[filterType parm == "region"]
setFilterValue(region name)

New columns in R3B3:
Route (filterable)
Direc tion (filterable)
County (filterable)
Connection Site (filterable, hidden by default)
Owning Organization (filterable, hidden by default)
Mile Post (hidden by default)

VideoSourceLis t

System

DefaultDynListCol

VideoProv iderStatusFilter

createDynLis t()

Figure 5-442. VideoSourceListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-755 12/23/2008

5.54 Chartlite.servlet.trafficevents

5.54.1 Class Diagrams

5.54.1.1 GUITrafficEventsDynListClasses (Class Diagram)

This diagram contains classes pertaining to the traffic event dynamic list.

New for R3B3:
- PROP_CONNECTION_SITE

Also the following "virtual columns"
from R3B2 that were used only
for sorting became visible in R3B3:
- PROP_SEVERITY
- PROP_TIME_OPENED
- PROP_TIME_LAST_MODIFIED

The columns corresponding
to the 4 properties above will be
hidden by default.

WebObjectLocation
Supporter

«interface»

TrafficEventDynList

TrafficEvent
TypeFilter

LaneClosureFilter SchedulesUsingFilterPendingEvent
LastUsedFilter

TimeOpenedOr
LastModifiedFilter

DynListFilter

«interface»

1

*

1

creates
TrafficEventDynListComparator

TrafficEventDynListSubjectTrafficEventDynListSupporter

DynListComparator

«interface»

DefaultDynList
DynListSubject

«interface»

*1

*1 creates

DynListDelegateSupporter

«interface»

WebTrafficEvent

1

VehiclesFilterNextActivation
TimeFilter

EventSever ityFilter

BaseDynListFilter

NOTE - CountyStateRegionFilter, which was in the
chartlite.servlet.trafficevents.dynlist package prior
to R3B3, is being moved to chartlite.servlet.dynlist.

-setEventStateInclusionFlags(req:HttpServletRequest,
 dynList:TrafficEventDynList) : void
-createDyListCols() : DynListCol[]
-addCol(property : String, multivalued : boolean,
 primarySortProperty : ComparisonProperty,
 visibleByDefault:boolean, colList : ArrayList<DynListCol>) : void

setShowClosedEventsFlag(show:boolean) : void
setShowOpenEventsFlag(show:boolean) : void
setShowPendingEventsFlag(show:boolean) : void
setShowExternalEventsFlag(show:boolean) : void
showClosedEvents() : boolean
showOpenEvents() : boolean
showPendingEvents() : boolean
showExternalEvents() : boolean

m_showOpenEvents : boolean
m_showClosedEvents : boolean
m_showPendingEvents : boolean
m_showExternalEvents : boolean

PROP_CONNECTION_SITE
PROP_COUNTY_REGION_STATE
PROP_DESCRIPTION
PROP_DIRECTION
PROP_EVENT_TYPE
PROP_INITIATING_AGENCY
PROP_INTERESTING
PROP_LANE_CLOSURES
PROP_LOCATION
PROP_NEXT_ACTIVATION_TIME
PROP_OP_CENTER
PROP_PENDING_EVENT_LAST_USED_TIME
PROP_SCHEDULES_USING
PROP_SEVERITY
PROP_TIME_LAST_MODIFIED
PROP_TIME_OPENED
PROP_VEHICLES

m_isTimeOpened : boolean

Figure 5-443. GUITrafficEventsDynListClasses (Class Diagram)

5.54.1.1.1 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

5.54.1.1.2 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a

collection of columns, a collection of global filters, and a collection of subjects. Filters in

this list are treated additively - that is, a subject must pass all filters to be displayed.

CHART R3B3 Detailed Design 5-756 12/23/2008

5.54.1.1.3 DynListComparator (Class)

This interface is implemented by classes that are used to sort dynamic lists.

5.54.1.1.4 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.54.1.1.5 DynListFilter (Class)

This interface is implemented by classes that are used to filter dynamic lists.

5.54.1.1.6 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.54.1.1.7 EventSeverityFilter (Class)

This filter allows filtering by the severity of the traffic event (i.e., percentage of lanes

closed).

5.54.1.1.8 LaneClosureFilter (Class)

This filter allows filtering the traffic event list by the number of lanes closed.

5.54.1.1.9 NextActivation TimeFilter (Class)

This class allows filtering the pending event list by next activation time of the pending

event.

5.54.1.1.10 PendingEvent LastUsedFilter (Class)

This class allows filtering the pending event list by last used time of the pending event.

5.54.1.1.11 SchedulesUsingFilter (Class)

This class allows filtering the pending event list by whether the pending event is used by

schedules.

5.54.1.1.12 TimeOpenedOr LastModifiedFilter (Class)

This class allows the event list to be filtered by time opened or time last modified.

5.54.1.1.13 TrafficEvent TypeFilter (Class)

This class allows the traffic event list to be filtered by the traffic event type.

5.54.1.1.14 TrafficEventDynList (Class)

This class represents an instance of a dynamic list containing traffic events. It has flags for

CHART R3B3 Detailed Design 5-757 12/23/2008

which traffic event states to include, which are stronger than global filters as they cannot be

cleared.

5.54.1.1.15 TrafficEventDynListComparator (Class)

This class compares two TrafficEventDynListSubjects for the purposes of sorting.

5.54.1.1.16 TrafficEventDynListSubject (Class)

This class represents a traffic event within the traffic event dynamic list.

5.54.1.1.17 TrafficEventDynListSupporter (Class)

5.54.1.1.18 VehiclesFilter (Class)

This class allows the event list to be filtered by the number of vehicles involved.

5.54.1.1.19 WebObjectLocation Supporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the

WebObjectLocation wrapper class..

5.54.1.1.20 WebTrafficEvent (Class)

This class represents a TrafficEvent object in the system and caches its data for fast access.

It provides accessor methods to get the cached data, in addition to auxiliary methods.

CHART R3B3 Detailed Design 5-758 12/23/2008

5.54.1.2 chartlite.servlet.trafficevents_classes (Class Diagram)

This diagram shows the various classes that are used to handle requests related to traffic

events.

TrafficEventReqHdlr

chartlite.servlet.TrafficEventUtility

TrafficEventXMLReqHdlr

AddTrafficEventReqHdlr

MergeEventReqHdlr

ResponsePlanReqHdlr

RequestHandler
«interface»

LaneConfigReqHdlr

getPotentialDuplicateEventsXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
deletePendingEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
openPendingEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
viewEventDetails(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getNearbyDevicesJSON(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
-getNearbyDMSJSONArray(objLocDistList : ArrayList<ObjectLocationDistance>) : JSONArray
-getNearbyHARJSONArray(objLocDistList : ArrayList<ObjectLocationDistance>) : JSONArray
-getNearbyTSSJSONArray(objLocDistList : ArrayList<ObjectLocationDistance>, loginSession : UserLoginSessionImpl) : JSONArray
-getNearbyCameraJSONArray(objLocDistList : ArrayList<ObjectLocationDistance>, loginSession : UserLoginSessionImpl,
 supporter : RequestHandlerSupporter) : JSONArray
-populateNearbyDeviceLocationJSON(loc : WebObjectLocation, obj : JSONObject) : void

displayEditLaneConfigurationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
displayEditLaneStateChangedTimeForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
submitLaneConfiguration(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
submitLaneStateChangedTimeForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
submitLaneDirAndStateInfo(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
updateEditLaneConfigurationForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

lookupRequestedEvent(req:HttpServletRequest, supporter:RequestHandlerSupporter):WebTrafficEvent
reportScheduleExecutionIfSpecified(req:HttpServletRequest, supporter:RequestHandlerSupporter) : void
closeAlertIfSpecified(req:HttpServletRequest, supporter:RequestHandlerSupporter) : void
redirToEventDetails(eventID:Identifier, req:HttpServletRequest, resp:HttpServletResponse) : void
getPendingEvents():WebTrafficEvent[]

addTrafficEventXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
addWebTrafficEventAndRedirectToDetailsPage():void
copyTrafficEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
copyTrafficEventWithoutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
copyExternalEventAsCHARTEventWithoutForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createActionEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createCongestionEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createDisabledVehicleEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createEventFromForm(req:HttpServletRequest, supporter:RequestHandlerSupporter, eventDataClass:Class, eventType:short,
 copyEventData:CopyEventFormData):TrafficEventCreationResult
createEventPrivate(req:HttpServletRequest, supporter:RequestHandlerSupporter, eventType:WebTrafficEventType, evtData:BasicEventData,
 evtToCopy:WebTrafficEvent, copyLaneConfig:boolean, copyParticipations:boolean, copyRPIs:boolean, copyLogEntries:boolean,
 newEvtCommLogEntryIDs:Identifier[], pending:boolean, scheduleID:Identifier) : WebTrafficEvent
createEventData(eventDataClass:Class, eventID:byte[]) : BasicEventData
createIncident(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createPlannedRoadwayClosureEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createSafetyMessageEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createSpecialEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
createWeatherServiceEvent(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
displayCopyEventForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getInitialLogEntries(reqHdlrSupporter:RequestHandlerSupporter, newEvtCommLogEntryIDs:Identifier[], eventToCopy:WebTrafficEvent) : LogEntry[]
parseBasicEventDataFormParameters(eventData:BasicEventData, req:RequestParameterSupplier) : void
parseDisabledVehicleEventDataFormParameters(eventData:DisabledVehicleEventData, req:HttpServletRequest) : void
parseIncidentDataFormParameters(eventData:IncidentData, req:HttpServletRequest) : void
submitCopyEventBasicEventDataForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

Figure 5-444. chartlite.servlet.trafficevents_classes (Class Diagram)

CHART R3B3 Detailed Design 5-759 12/23/2008

5.54.1.2.1 AddTrafficEventReqHdlr (Class)

This class is used to handle requests related to adding a traffic event to the system.

5.54.1.2.2 chartlite.servlet.TrafficEventUtility (Class)

This class contains methods that are useful for one or more traffic event related request

handlers.

5.54.1.2.3 LaneConfigReqHdlr (Class)

This class handles any requests related to the traffic event lane configuration.

5.54.1.2.4 MergeEventReqHdlr (Class)

This class handles all requests related to merging traffic events.

5.54.1.2.5 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.54.1.2.6 ResponsePlanReqHdlr (Class)

This class handles requests related to traffic event response plans.

5.54.1.2.7 TrafficEventReqHdlr (Class)

This class handles requests related to traffic events that are not handled by one of the other

specific traffic event request handlers.

5.54.1.2.8 TrafficEventXMLReqHdlr (Class)

This class handles requests related to traffic events that return XML for the Flex2

application.

CHART R3B3 Detailed Design 5-760 12/23/2008

5.54.2 Sequence Diagrams

5.54.2.1 AddTrafficEventReqHdlr:copyExternalEventAsCHARTEventWithoutForm

(Sequence Diagram)

This diagram shows how an external traffic event is copied as a CHART event. The traffic

event with the requested ID is looked up in the cache. The existing createEventPrivate()

method is called to create the copy of the traffic event and the WebTrafficEvent wrapper

object for the new event. The original traffic event is then called to associate the new event,

with the original being the primary traffic event. The cached traffic event data is updated

for both events to reflect the primary/secondary flags, and the associations for both traffic

events are queried from the server. The user is then shown the results page.

Query the associations directly in case
the event is not pushed.

updateAssociatedEvents()
updateAssociatedEvents()

copyExternalEvent
AsCHARTEventWithoutForm(

req, resp, ctx, supporter)

[no rights]
error

WebTrafficEvent or null

getTrafficEventRef()

getEventType()

createEventPrivate(see note)

[exception caught]
error

create

newEventRef : TrafficEvent

Set Primary Flag To False
In New BasicEventData

BasicEventData

BasicEventData

put("heading", "Event Created")
put("success", "true")

put("buttonName", "View New Event Details")
put("buttonAction", "viewEventDetails&eventID=" + newEvent.getID().toString())

put("pageContent", "Results.vm")
"EnclosingTemplate.vm"

User

AddTrafficEvent
ReqHdlr TrafficEventUtility WebTrafficEvent TrafficEvent

The method: createEventPrivate()
already exists prior to R3B3, and
requires no changes in R3B3.
It has too many parameters to list inline:
-req
-reqHdlrSupporter
-webEventType
-basicEventData
-webTrafficEvent
-copyLaneConfig (true)
-copyParticipations (false)
-copyRPIs (false)
-copyLogEntries (false)
-initialLogEntries (null)
-createPending (false)
-scheduleID (null)

TrafficEvent newEvent:
WebTrafficEvent

Context

Check User's Rights

lookupRequestedEvent(
req, supporter)

[traffic event not found]
error

associateEvent(token, newEventRef, isPrimary {true})

getRawBasicEventData()

getRawBasicEventData()

Set Primary Flag To True
In Original Basic Event Data

getBasicEventData()

WebTrafficEventType

newEvent : WebTrafficEvent

create

getTrafficEventRef()

CHART R3B3 Detailed Design 5-761 12/23/2008

Figure 5-445. AddTrafficEventReqHdlr:copyExternalEventAsCHARTEventWithoutForm

(Sequence Diagram)

CHART R3B3 Detailed Design 5-762 12/23/2008

5.54.2.2 TrafficEventDynListSupporter:addCol (Sequence Diagram)

This diagram shows how a column is added to the list of columns to add to the

TrafficEventDynList. If a sort property is specified, a TrafficEventDynListComparator is

created. The DefaultDynListCol object is created to represent the column. The column is

added to the list.

DynListCol

TrafficEvent
DynListComparator

DefaultDynListCol
[primarySortProperty not null]

create(primarySortProperty, TimeOpenedOrCreated)

create(property, comparator, multiValued)

add(col)

TrafficEventDynListSupporter

TrafficEventDynListSupporter ArrayList<DynListCol>

addCol(property, multivalued,
 primarySortProperty,

 visibleByDefault, colList)

Figure 5-446. TrafficEventDynListSupporter:addCol (Sequence Diagram)

CHART R3B3 Detailed Design 5-763 12/23/2008

5.54.2.3 TrafficEventDynListSupporter:createDynList (Sequence Diagram)

This diagram shows how the traffic event dynamic list is created. First the column objects

are created, as shown in the CreateDynListCols diagram. The TrafficEventDynList object

is created. If the county/region/state is specified in the request, the filter value is set into

the column. The event state inclusion flags are set based on request parameters indicating

whether to display open, closed, pending, and/or external events. Finally the event type

column is set as the default sort column.

TrafficEventDynList

RequestHandler
Supporter ObjectCache

HttpServlet
Request DynListCol

Sets the flags in the dyn list for including traffic events
that are opened, closed, pending, and/or external.

Updates the mapping of the schedules used for
each pending event, if pending events are being shown.

DynListCol[]

create(dynListID, "Events", cols, dataModel)

getObjectCache()
getDataModel()

getParameter("countyRegionState")

getColumn(PROP_COUNTY_REGION_STATE)
DynListCol

setFilterValue(countyRegionState)

[not specified]

setEventStateInclusionFlags(req, dynList)

updatePendingEventSchedulesMap()

getColumn(PROP_EVENT_TYPE)
sort(eventTypeCol)

DynList

User

TrafficEvent
DynListSupporter

See the CreateDynListCols
sequence diagram for details.

createDynList(
req, supporter, dynListID)

createDynListCols()

Figure 5-447. TrafficEventDynListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-764 12/23/2008

5.54.2.4 TrafficEventDynListSupporter:createDynListCols (Sequence Diagram)

This diagram shows how the DynListCol objects are created to represent the columns of a

traffic event dynamic list. The addCol() utility method is called to create the column and

traffic event comparator, and add it to the newly created list. After creating a column, if a

filter is appropriate for the column, the filter is created and set into the column. Finally the

list is converted to an array and returned.

CHART R3B3 Detailed Design 5-765 12/23/2008

DynListCol[]

toArray(new DynListCol[0])
DynListCol[]

PendingEvent
LastUsedFilter

addCol(PROP_PENDING_EVENT_LAST_USED_TIME, false, PendingEventLastUsedTime, true, colList)

create()
setFilter(filter)

addCol(PROP_INTERESTING, false, null, true, colList)

create(col, "Interesting")
setFilter(filter)

addCol(PROP_INITIATING_AGENCY, false, null, true, colList)

create(col, "Agency")
setFilter(filter)

createDynListCols()

create

addCol(PROP_DESCRIPTION, false, Description, true, colList)

addCol(PROP_LOCATION, false, Location, true, colList)

create(col, "Direction")

NextActivation
TimeFilter

create("Next Activation Time")
setFilter(filter)

SchedulesUsing
Filter

addCol(PROP_SCHEDULES_USING, false, SchedulesUsing, true, colList)

create("Schedules Using")
setFilter(filter)

VehiclesFilter
addCol(PROP_VEHICLES, false, VehiclesInvolved, true, colList)

create("Vehicles Involved")
setFilter(filter)

LaneClosureFilter

addCol(PROP_LANE_CLOSURES, false, LanesClosed, true, colList)

create("Lane Closures")
setFIlter(filter)

CountyState
RegionFilter

addCol(PROP_COUNTY_REGION_STATE, false, County, true, colList)

create("County Region State")
setFilter(filter)

DynListCol

TrafficEvent
TypeFilter

setFilter(filter)

addCol(PROP_EVENT_TYPE, false, Type, true, colList)

create("Event Type")
setFilter(filter)

addCol(PROP_OP_CENTER, false, OpCenter, true, colList)

create(col, "Op Center")
setFilter(filter)

System

TrafficEvent
DynListSupporter

ArrayList
<DynListCol>

TextValueColFilter
addCol(PROP_DIRECTION, false, null, true, colList)

EventSeverity
Filter

TimeOpenedOr
LastModifiedFilter

addCol(PROP_EVENT_SEVERITY, false, EventSeverity, false, colList)

create()
setFilter(filter)

addCol(PROP_TIME_OPENED, false, TimeOpened, false, colList)

create(true)
setFilter(filter)

addCol(PROP_TIME_LAST_MODIFIED, false, TimeLastModified, false, colList)

create(false)
setFilter(filter)

addCol(PROP_TIME_LAST_CONNECTION_SITE, false, ConnectionSIte, false, colList)

create(col, "Connection Site")
setFilter(filter)

addCol(PROP_NEXT_ACTIVATION_TIME, false, NextActivationTime, true, colList)

Figure 5-448. TrafficEventDynListSupporter:createDynListCols (Sequence Diagram)

CHART R3B3 Detailed Design 5-766 12/23/2008

5.54.2.5 TrafficEventReqHdlr:getNearbyCameraJSONArray (Sequence Diagram)

This diagram shows how the JSONArray object is built containing the information about

nearby cameras. For each of the WebObjectLocationSupporter / distance pairs, the

WebCamera and the distance are retrieved. A new JSON object is created, populated using

information queried from the WebCamera (except the distance which was already

calculated), and added to the JSONArray.

put("name", name)

put("distanceMiles", new Double(distanceMiles))

add(jsonObj)

isCommFailed()

isHardwareFailed()

[* for each obj]

JSONArray

put("commFailed", Boolean.valueOf(commFailed))

create

populateNearby
DeviceLocationJSON(loc, jsonObj)

isInMaintMode()

getNearbyCameraJSONArray(
dmsObjLocDis tanceLis t,
loginSess ion, supporter)

put("commMarginal", Boolean.valueOf(commMarginal))

put("hwFailed", Boolean.valueOf(hwFailed))

put("maintMode", Boolean.valueOf(maintMode))

getLocation()

isCommMarginal()

getObject()
WebCamera

getDis tanceMiles()

isOffline()
put("offline", Boolean.valueOf(offline))

isOnline()

UserLogin
Sess ionImpl

RequestHandler
Supporter

localMonitors :
JSONArray

WebMonitorGroup

monitor :
JSONObject

getLocalMonitorGroupID()
getCachedObject(groupID)

WebMonitorGroup or null

getMonitors
CurrentlyDisplaying()

ArrayList<WebVideoSink>

containsSink(s ink.getID())

create

put("controllingOpCenter", opCtrName)
getControllingOpCenterName()

TrafficEventReqHdlr

TrafficEvent
ReqHdlr WebCamera

JSONArray

ObjectLocation
Dis tance

<WebCamera>

JSONObject

See the sequence diagram:
populateNearbyDeviceLocationJSON
for details. It populates the following:
-locationDesc
-directionName
-routeDesc
-milePostStr

put("online", Boolean.valueOf(online))

create

getID()
put("id", id.toString())

getName()

add(monitorJSONObject)

create
put("id", sink.getID().toString())
put("name", s ink.getName())

[group does
not contain

monitor]

[* for each
monitor]

put("localMonitors", localMonitorsJSONArray)

Figure 5-449. TrafficEventReqHdlr:getNearbyCameraJSONArray (Sequence Diagram)

CHART R3B3 Detailed Design 5-767 12/23/2008

5.54.2.6 TrafficEventReqHdlr:getNearbyDMSJSONArray (Sequence Diagram)

This diagram shows how the JSONArray object is built containing the information about

nearby DMSs. For each of the WebObjectLocationSupporter / distance pairs, the WebDMS

and the distance are retrieved. A new JSON object is created, populated using information

queried from the WebDMS (except the distance which was already calculated), and added

to the JSONArray.

CHART R3B3 Detailed Design 5-768 12/23/2008

put("plainTextMessage", plainTextMessage)

JSONObject

getTrueDisplayFileName()

getTrueDisplayImageHeight()
getTrueDisplayImageWidth()

getTrueDisplayPixelCols()
getTrueDisplayPixelRows()

create
put("filename", filename)

put("height", new Integer(imageHeight))

put("pixelCols", new Integer(pixelCols))

put("trueDisplay", trueDisplayJSONObj)

create

populateNearby
DeviceLocationJSON(loc, jsonObj)

[* for each obj]

JSONArray

put("commFailed", Boolean.valueOf(commFailed))

put("commMarginal", Boolean.valueOf(commMarginal))

put("hwFailed", Boolean.valueOf(hwFailed))

put("maintMode", Boolean.valueOf(maintMode))

See the sequence diagram:
populateNearbyDeviceLocationJSON
for details. It populates the following:
-locationDesc
-directionName
-routeDesc
-milePostStr

TrafficEv entReqHdlr

TrafficEvent
ReqHdlr

ObjectLocation
Distance

<WebDMS>WebDMS

JSONArray

JSONObject

put("width", new Integer(imageWidth))

put("pixelRows", new Integer(pixelRows))

getNearbyDMSJSONArray(
dmsObjLocDistanceList)

getObject()
WebDMS

getDistanceMiles()

create

getID()
put("id", id.toString())

getName()
put("name", name)

put("distanceMiles", new Double(distanceMiles))

[true display
filename is null

or empty]

add(jsonObj)

isExternal()
put("isExternal", Boolean.valueOf(isExternal))

getLocation()

isCommFailed()

isCommMarginal()

isOffline()
put("offline", Boolean.valueOf(offline))

isOnline()
put("online", Boolean.valueOf(online))

getBeaconStatusString()
put("beaconStatusStr", beaconStatusStr)

getPlainTextMessageString()

isHardwareFailed()

isInMaintMode()

Figure 5-450. TrafficEventReqHdlr:getNearbyDMSJSONArray (Sequence Diagram)

CHART R3B3 Detailed Design 5-769 12/23/2008

5.54.2.7 TrafficEventReqHdlr:getNearbyDevicesJSON (Sequence Diagram)

This diagram shows the processing to find the devices near a traffic event. The event ID in

the request is used to look up the WebTrafficEvent object from the cache. Its GeoLocation

object is queried, which may be null if the traffic event does not have a defined location.

The WebDevice objects are queried from the cache, and split up into lists for DMS, HAR,

TSS, and Camera. External DMSs and TSSs will be excluded if the user does not have

rights to view them. Next, each list is passed to ServletUtil.getNearbyDevices() to get an

ordered list of devices within the distance retrieved from the login session. The returned

list is a subset of the list passed in (see the ServletUtil:getNearbyDevices sequence diagram

for details). Next, each returned list is passed to a private method to generate a JSONArray

object which contains a list of JSONObjects representing each type of device, with device-

specific fields. These arrays (or an error message) are put into a root JSON object which is

sent back in the response. The web page will have a handler to use the data to dynamically

alter the nearby device list.

CHART R3B3 Detailed Design 5-770 12/23/2008

This will look up the c lose devices
radius from a Hashtable stored in
the login session, but if not found it
will query the default radius from the
SystemProfileProperties.

Close devices radius in tenths of a mile

UserLogin
SessionImpl

getEventCloseDevicesRadiusTenths(eventID)

[obj instanceof WebCamera]
add(camera)

[* for each
WebDevice]

getNearbyDevices(geoLoc, dmsList, dis tanceMiles)

lookupRequestedEvent(
req, supporter)

WebTrafficEvent or null

getLocation()

getGeoLocation()
GeoLocation or null

ArrayList<ObjectLocationDistance>

getNearbyDevices(geoLoc, harList, dis tanceMiles)
ArrayList<ObjectLocationDistance>

getNearbyDevices(geoLoc, tssList, dis tanceMiles)
ArrayList<ObjectLocationDistance>

getNearbyDevices(geoLoc, cameraList, dis tanceMiles)
ArrayList<ObjectLocationDistance>

See the Serv letUtil:getNearbyDevices
sequence diagram for details .

JSONObject

getNearbyDMSJSONArray(
dmsObjLocDistanceList)

JSONArray

getNearbyHARJSONArray(
harObjLocDistanceList)

JSONArray

getNearbyTSSJSONArray(
tssObjLocDistanceList,

loginSession)

JSONArray

getNearbyCameraJSONArray(
cameraObjLocDistanceList,

loginSession, supporter)

JSONArray

create

put("dmsArr", dmsJSONArray)
put("harArr", harJSONArray)
put("tssArr", tssJSONArray)

put("cameraArr", cameraJSONArray)

[errMsg not null]
put("errorMsg", errMsg)

create

create

null

[event not found]

User rights checking
will also be performed
to exclude external DMS
and TSS objects from
the lists if the user does
not have rights, but this
is not shown here due to
space limitations.

User

TrafficEventReqHdlr
RequestHandler

Supporter

ArrayList<WebDMS>

ArrayList<WebHAR>

ArrayList<WebTSS>

ArrayList
<WebCamera>

Serv letUtilTrafficEventUtility WebTrafficEvent WebObjectLocation

getNearbyDevicesJSON(
req, resp, ctx , supporter)

getCachedObjectsOfType(
WebDevice.c lass)

WebDevice[]

[obj instanceof WebDMS]
add(dms)

[obj instanceof WebHAR]
add(har)

[obj instanceof WebTSS]
add(tss)

put("nearbyDevicesRadiusTenths", radiusTenths)

sendJSONObject(resp, jsonObj)

create

create

[geo location
is null]

Figure 5-451. TrafficEventReqHdlr:getNearbyDevicesJSON (Sequence Diagram)

CHART R3B3 Detailed Design 5-771 12/23/2008

5.54.2.8 TrafficEventReqHdlr:getNearbyHARJSONArray (Sequence Diagram)

This diagram shows how the JSONArray object is built containing the information about

nearby HARs. For each of the WebObjectLocationSupporter / distance pairs, the WebHAR

and the distance are retrieved. A new JSON object is created, populated using information

queried from the WebHAR (except the distance which was already calculated), and added

to the JSONArray.

isCommFailed()

isHardwareFailed()

[* for each obj]

JSONArray

put("commFailed", Boolean.valueOf(commFailed))

create

populateNearby
DeviceLocationJSON(loc, jsonObj)

isInMaintMode()

isTransmitterOn()
put("transmitterOn", Boolean.valueOf(transmitterOn))

TrafficEventReqHdlr

TrafficEvent
ReqHdlr WebHAR

JSONArray

ObjectLocation
Distance

<WebHAR>

JSONObject

See the sequence diagram:
populateNearbyDeviceLocationJSON
for details. It populates the following:
-locationDesc
-directionName
-routeDesc
-milePostStr

getNearbyHARJSONArray(
dmsObjLocDistanceList)

put("commMarginal", Boolean.valueOf(commMarginal))

put("hwFailed", Boolean.valueOf(hwFailed))

put("maintMode", Boolean.valueOf(maintMode))

getLocation()

isCommMarginal()

getObject()
WebHAR

getDistanceMiles()

isOffline()
put("offline", Boolean.valueOf(offline))

isOnline()
put("online", Boolean.valueOf(online))

create

getID()
put("id", id.toString())

getName()
put("name", name)

put("distanceMiles", new Double(distanceMiles))

add(jsonObj)

Figure 5-452. TrafficEventReqHdlr:getNearbyHARJSONArray (Sequence Diagram)

CHART R3B3 Detailed Design 5-772 12/23/2008

CHART R3B3 Detailed Design 5-773 12/23/2008

5.54.2.9 TrafficEventReqHdlr:getNearbyTSSJSONArray (Sequence Diagram)

This diagram shows how the JSONArray object is built containing the information about

nearby TSSs. For each of the WebObjectLocationSupporter / distance pairs, the WebTSS

and the distance are retrieved. A new JSON object is created, populated using information

queried from the WebTSS (except the distance which was already calculated), and added to

the JSONArray.

CHART R3B3 Detailed Design 5-774 12/23/2008

[has View TSS
Summary Data Rights

Check User's Rights
To View TSS Detailed And

Summary Data

[has View TSS
Detailed Data rights]

getSpeedDesc()

[has rights]
put("speedDesc", speedDesc)

TrafficEventReqHdlr

TrafficEvent
ReqHdlr WebTSS

JSONArray

ObjectLocation
Distance

<WebTSS>

JSONObject

See the sequence diagram:
populateNearbyDeviceLocationJSON
for details. It populates the following:
-locationDesc
-directionName
-routeDesc
-milePostStr

getNearbyTSSJSONArray(
dmsObjLocDistanceList, loginSessionImpl)

getObject()
WebTSS

getDistanceMiles()

isOffline()
put("offline", Boolean.valueOf(offline))

isOnline()
put("online", Boolean.valueOf(online))

create

getID()
put("id", id.toString())

getName()
put("name", name)

put("distanceMiles", new Double(distanceMiles))

isExternal()
put("isExternal", Boolean.valueOf(isExternal))

add(jsonObj)

isCommFailed()

isHardwareFailed()

[* for each obj]

JSONArray

put("commFailed", Boolean.valueOf(commFailed))

create

populateNearby
DeviceLocationJSON(loc, jsonObj)

put("commMarginal", Boolean.valueOf(commMarginal))

put("hwFailed", Boolean.valueOf(hwFailed))

put("maintMode", Boolean.valueOf(maintMode))

getLocation()

isInMaintMode()

isCommMarginal()

Figure 5-453. TrafficEventReqHdlr:getNearbyTSSJSONArray (Sequence Diagram)

CHART R3B3 Detailed Design 5-775 12/23/2008

5.54.2.10 TrafficEventReqHdlr:populateNearbyDeviceLocationJSON (Sequence

Diagram)

This diagram shows how location-related parameters are populated in the JSONObject for a

nearby device, given the WebObjectLocation for the devices. The parameters populated are

locationDesc, directionName, routeDesc, and milePostStr.

[roadway location
null]

WebIntersecting
FeatureLocationInfo

WebMilePost
Intersecting
FeatureData

getIntersectingFeature()

[webRouteInfo not null]
getNotificationSuggestedRouteDesc(stateCode or "", showRouteName)

getStateInfo()

WebStateInfo

getLocationDesc()

WebRoadwayLocation or null

WebStateInfo or null

[s tateInfo not null]
getStateCode()

showRouteName()

[routeInfo
null]

put("routeDesc", routeDesc)

getFreeformRouteInfo()
WebFreeformRouteInfo or null

getRouteDescription()
put("routeDesc", routeDesc)

[ff info
null]

getMilesStr()

DMSReqHdlr

DMSReqHdlr JSONObjectWebObjectLocation
WebRoadway

Location WebRouteInfo
WebFreeform

RouteInfo

populateNearbyDevice
LocationJSON(

loc, jsonObj)
put("locationDesc", locationDesc)

getRoadwayLocation()

getDirectionName()
put("directionName", directionName)

getFormalRouteInfo()
WebRouteInfo or null

[mp info
null]

WebIntersectingFeature-
LocationInfo or null

getMilePostInfo()

isStateMilePost()

[state milepost]
put("milePostStr", milesStr)

[intersecting
feature info

null]

WebMilePostIntersectingFeatureData or null

5-454. TrafficEventReqHdlr:populateNearbyDeviceLocationJSON (Sequence Diagram)

CHART R3B3 Detailed Design 5-776 12/23/2008

5.54.2.11 TrafficEventReqHdlr:setNearbyDevicesRadiusJSON (Sequence Diagram)

This diagram shows the processing when the user changes the nearby device radius for a

traffic event. The event ID and the distance in tenths of a mile are parsed from the request

parameters. The user login session is then called to save the radius for the traffic event,

which will preserve it as long as the user is logged in. Finally the

getNearbyDevicesJSON() method is called directly to return the nearby devices for the new

distance value. See the getNearbyDevicesJSON sequence diagram for details.

UserLogin
SessionImpl

setNearbyDevicesRadiusJSON(
req, resp, ctx, supporter)

TrafficEvent
ReqHdlr

RequestHandler
Supporter

getIntParam(req, "distanceTenths", 0)

UserLoginSessionImpl

getNearbyDevicesJSON(req, resp,
ctx, supporter)

Set Value In Hashtable

User

ServletUtility

See the getNearbyDevicesJSON
sequence diagram for details

getIntParam(req, "eventID", null)

getUserLoginSession(req)

[eventID not null]
setEventCloseDevicesRadiusTenths(eventID, distanceTenths)

null

Figure 5-455. TrafficEventReqHdlr:setNearbyDevicesRadiusJSON (Sequence Diagram)

CHART R3B3 Detailed Design 5-777 12/23/2008

5.54.2.12 TrafficEventReqHdlr:viewEventDetails (Sequence Diagram)

This diagram shows the processing to view the event details page. The traffic event with

the requested ID is retrieved from the cache and put into the Velocity context. (The logic is

unchanged for R3B2, and is only reproduced here to explain that the Velocity template will

extract the notification records from this traffic event object by calling

getNotificationRecords().) The lane configuration is obtained from the traffic event and is

used to get the lane display GIF file name and metadata, and those are put into the Velocity

context. The response devices are retrieved and are put into the context, as are the road

conditions and the event types (for copy event). The recently viewed events list is updated

within the UserLoginSession. Finally the template name is returned so it can be processed

by Velocity.

In R3B3, additional user rights checking is added to the template to display either the actual

or cleansed event name, actual or cleansed incident type (if applicable), and to show or hide

the event history links.

CHART R3B3 Detailed Design 5-778 12/23/2008

For R3B2 the velocity template will
determine whether the event is pending
by calling the WebTrafficEvent.isPending()
method, and will change its behavior appropriately
to only display the applicable functionality.

put("alertID", alertID")

put("scheduleID", req.getParameter("scheduleID"))

The alert ID will be passed in if the page is being viewed
when resolving an ExecuteScheduledActions alert with
one Open Event action. If spec ified, the details page will
include a checkbox allowing the user to close the alert
as part of the Open Copy or Open operation.

If the event is pending, the schedule ID flag is used if
 the page is being viewed
due to an ExecuteScheduledActions alert with one Open Event
action. In this case we need to carry the schedule ID
through to the Open, Open Copy, or Copy As Pending buttons, so that
we can call the schedule to report that it was executed,
and so that the schedule ID can be passed to the new event
to record that it intiated from the schedule.

If the event is open and was initiated via a schedule,
the velocity template can call WebTrafficEvent.getInitiatingSchedule()
and/or getInitiatingScheduleID() to get the schedule info.

put("readOnly", req.getParameter("readOnly"))

ResponsePlanItemInfo

create

User

TrafficEventReqHdlr TrafficEventUtility WebTrafficEvent

viewEventDetails()

WebTrafficEvent or null

put("trafficEvent", trafficEvent)

getFilename(laneConfig)

getLaneDisplayLargeGIFManager

put("laneConfig", webLaneConfig)

WebLaneConfiguration

getResponsePlanItems()

For R3B2 the velocity template will
get the traffic event's notifications by calling
the WebTrafficEvent.getNotificationRecords() method.

It will get the schedules referencing it by calling
WebTrafficEvent.getReferenc ingSchedules()

RecentViewedEvents

[incident or weather event]
populateContextFor

RoadConditionForm()
put("roadConditions",

roadConditions)

put("defaultRoadCondition",
defaultRoadCondition)

getRecentViewedEvents()

UserLoginSessionImpl

[* for each
RPI]

put("pageContent", "<type-specific VM file>"

The "read only" flag will be used to invoke the
Event Details page in a mode that prevents the
user from opening or editing the pending event.
This is used by the Execute Schedule Actions page.

Get WebTrafficEvent from cache

Context LaneDisplayGIFManager

lookupRequestedEvent()

[not found]
return error

getLaneConfiguration()

getLaneDisplay(filename)

put("laneDisplay", laneDisplay)

put("gifFilename", filename)

[lane config null
or empty]

WebResponsePlanItem[]

eventViewed(webTrafficEvent)

put("pageTItle", title)

put("eventTypes", WebTrafficEventType.values())

return
 "EnclosingTemplate.vm"

Look up response device from cache

put("rpiInfoList", rpiInfoList)

Figure 5-456. TrafficEventReqHdlr:viewEventDetails (Sequence Diagram)

CHART R3B3 Detailed Design 5-779 12/23/2008

5.54.2.13 TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

This diagram shows the processing that takes place to populate the list of traffic events

shown on the user's home page. This processing is invoked by the home page Flex2

application when the home page is first loaded, and periodically to refresh the traffic event

information. The Flex2 application uses the XML returned from this request to display the

traffic events for which the operation center is responsible. This is done on a tab control,

with the events filtered onto different tabs based on the event type. Each tab shows the

number of events of that type that appear on the tab, allowing the user to know the number

of open events of each type even for tabs that are not the currently displayed tab.

For each event that appears on a tab, the following information will be shown: - The event

name, which is also a link that when clicked shows the event details page in the user's

working window - The event location - The county/state (if specified in the traffic event)

Lane closure information will be shown for Incidents, planned closures, and special events

if lane closure data has been specified in the event.

If the event is an incident, the tab will also show the the vehicles involvedinformation if this

data has been specified for the traffic event.

If the event is a congestion event, the tab will show the "recurring" indicator if the event has

been flagged as recurring congestion.

If the event is a disabled vehicle event, the tab will contain the color/make and/or tag

information if that data has been entered into the traffic event.

If the event is a weather service event, road condition data will be shown if it has been

specified in the event.

CHART R3B3 Detailed Design 5-780 12/23/2008

[traffic event
is closed]

getControllingOpCenterID()
Identifier

[op center parameter
not null and not

equal to event controlling
op center]

add(event)

RequestHandlerSupporter

ArrayList

getCachedObjectsOfType(WebTrafficEvent.class)
WebTrafficEvent[]

new[for each
event type]

User

TrafficEventXMLReqHdlr

User has loaded the home page, or the timer
on the home page fires to refresh the traffic
event data. In either case, the flex application
on the home page makes this call.

HttpServletRequest

Parameter is optional. If present, only traffic
events for which the specified op center is
responsible are returned. Otherwise, all open
events are returned.

getOpenTrafficEventsXML()

getParameter("opCenterID")

TrafficEventsXML.vm

Context

Sort each array list using Collections.sort()
using an event comparator that sorts by
time opened and severity. Put sorted array list
in Context using name of xyzEvents where
xyz is the event type.

sort()
[for each

traffic event
type]

[for each
event]

Traffic event is added to the appropriate array list
based on it's type. Don't add if external event and
user lacks right to view OR user did not choose to
view external events.

WebTrafficEvent

isClosed()

put("xyzEvents", ArrayList)

Figure 5-457. TrafficEventXMLReqHdlr:getOpenTrafficEventsXML (Sequence Diagram)

CHART R3B3 Detailed Design 5-781 12/23/2008

5.55 Chartlite.servlet.trafficevents.location

5.55.1 Classes

5.55.1.1 chartlite.servlet.location_classes (Class Diagram)

This diagram shows CHART GUI servlet classes related to locations.

EditTrafficEv entLocationSupporter

EditObjectLocationSupporter
«interface»

SpecifyLocationReqHdlr

LocationReqUtil

RequestHandler
«interface»

getIntersectingRouteListXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getRouteListXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getSpecifyLocationCombinedListDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getSpecifyLocationInitialFormDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getStateLocationInfoXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
displayEditObjectLocationDataForm(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
getEditObjectLocationDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String
setObjectLocationDataXML(req:HttpServletRequest, resp:HttpServletResponse, ctx:Context, supporter:RequestHandlerSupporter):String

parseObjectLocation(supplier : ParamSupplier) : ObjectLocation
-parseIntersectingFeatureLocationInfo(supplier : ParamSupplier) : IntersectingFeatureLocationInfo
-parseRoadwayLocation(supplier : ParamSupplier) : RoadwayLocation
-parseRouteSpecification(supplier : ParamSupplier,
 routeTypeValueParamName : String, freeformRouteDescParamName : String,
 routePrefixParamName : String, routeNumberParamName : String,
 routeSuffixParamName : String, roadNameParamName : String) : RouteSpecification
setLocationFormDataParameterValues(formData : UserFormData, loc : WebObjectLocation) : void

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURL() : String
setObjectLocation(location:ObjectLocation,
 req : HttpServletRequest,
 supporter : RequestHandlerSupporter) : String

EditTrafficEventLocationSupporter(
 event : WebTrafficEvent)
EditTrafficEventLocationSupporter(
 formData : CopyEventFormData)
isForTrafficEvent() : boolean {true}
isNameOverridden() : boolean
hasLanes() : boolean
getEventTypeDesc() : String
getIncidentTypeName() : String
getActionTypeDesc() : String

m_event : WebTrafficEvent
m_formData : CopyEventFormData

Figure 5-458. chartlite.servlet.location_classes (Class Diagram)

CHART R3B3 Detailed Design 5-782 12/23/2008

5.55.1.1.1 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

5.55.1.1.2 EditTrafficEventLocationSupporter (Class)

This class provides functionality for editing the location of an existing traffic event, or one

that is being copied.

5.55.1.1.3 LocationReqUtil (Class)

This class provides functionality for location-related requests.

5.55.1.1.4 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.55.1.1.5 SpecifyLocationReqHdlr (Class)

CHART R3B3 Detailed Design 5-783 12/23/2008

5.55.2 Sequence Diagrams

5.55.2.1 SpecifyLocationReqHdlr:displayEditObjectLocationDataForm (Sequence

Diagram)

This diagram shows the processing to display the Edit Object Location Data form. This

diagram requires that the type-specific part of the code performs the following

preconditions: 1) check the user rights (if appropriate), 2) create an object implementing

the EditObjectLocationSupporter interface, 3) put the object in the TempObjectStore, and

4) redirect the response to this request using the "editLocationSupporterID" parameter.

This request will retrieve the EditObjectLocationSupporter object from the

TempObjectStore and will put it in the Velocity context and load the Edit Object Location

Data Form template.

Context

put("editLocationSupporter", supporter)

put("pageContent", "EditObjectLocationDataForm.vm"
"PopupTemplate.vm"

TempObjectStore
EditObjectLocation

Supporter

The part of the application that invokes this request must:
1. check appropriate user rights
2. create an object implementing the EditObjectLocationSupporter interface
3. put it in the TempObjectStore
4. send a redirect in the response to invoke this request

getParameter(
"editLocationSupporterID")

getTempObjectStore()

EditObjectLocationSupporter or null

SpecifyLocation
ReqHdlr

RequestHandler
Supporter

[not specified]
error

[not found]
error

HttpServletRequest

User

displayEditObjectLocationDataForm(
req, resp, ctx, supporter)

getObject(editLocationSupporterID)

Figure 5-459. SpecifyLocationReqHdlr:displayEditObjectLocationDataForm (Sequence

Diagram)

CHART R3B3 Detailed Design 5-784 12/23/2008

5.55.2.2 SpecifyLocationReqHdlr:getEditObjectLocationDataXML (Sequence Diagram)

This diagram shows how the location data XML is built for populating the Edit Location

Flex application. The ID of the edit location supporter object is retrieved and is used to find

the object in the TempObjectStore. (This should not fail because the request was invoked

by the Flex control, which also needed the supporter object.) This supporter object is put

into the Velocity context and the EditObjectLocationDataXML template is returned. The

template will query the location data (and the extra data for traffic events) to populate the

XML that is being returned.

getObject(editLocationSupporterID)
EditObjectLocationSupporter or null

[not found or expired]
error

put("editLocationSupporter", supporter)

setContentType("application\xml")

"xml\EditObjectLocationDataXML.vm"

HttpServletRequest

getParameter(
"editLocationSupporterID")[not specified]

error

User

RequestHandler
Supporter TempObjectStore Context HttpServletResponse

Note these backslashes should be forward slashes,
which are prevented by the design tool.

getTempObjectStore()

getEditObjectLocationDataXML(
req, resp, ctx, supporter)

SpecifyLocationReqHdlr

Figure 5-460. SpecifyLocationReqHdlr:getEditObjectLocationDataXML (Sequence

Diagram)

CHART R3B3 Detailed Design 5-785 12/23/2008

5.55.2.3 SpecifyLocationReqHdlr:setObjectLocationDataXML (Sequence Diagram)

This diagram shows the processing when the Edit Object Location Data Form is submitted.

The edit location supporter ID from the request is used to retrieve the object from the

TempObjectStore. The ObjectLocation is parsed from the request parameters, and the

EditObjectLocationSupporter is called to set the location. The details of this will be

specific to the type of object, and are not shown here. The XML result indicating success

or failure is returned.

HttpServletRequest TempObjectStore

[success]
getUpdateParentPageURL()

put("updateParentPageURL", url)

getTempObjectStore()

EditObjectLocationSupporter or null

getParameter(
"editLocationSupporterID")[not specified]

error

[exception]
error

Commit Location

put("errMsg", errMsg)

[success]
removeObject(editLocationSupporterID)

HttpServ let
RequestParam

Supplier

LocationReqUtil
EditObjectLocation

Supporter

The details of this will be
implemented by the type-specific
supporter. See the appropriate
sequence diagram.

create(req)

parseObjectLocation(paramSupplier)
ObjectLocation

setObjectLocation(objectLocation, req, reqHdlrSupporter)

error message or null

return "SetObjectLocationResultXML.vm"

User
SpecifyLocationReqHdlr

RequestHandler
Supporter Context

getObject(editLocationSupporterID)

[not found or expired]
error

setEditObjectLocationDataXML(
req, resp, c tx , supporter)

Figure 5-461. SpecifyLocationReqHdlr:setObjectLocationDataXML (Sequence Diagram)

CHART R3B3 Detailed Design 5-786 12/23/2008

5.56 Chartlite.servlet.shazam

5.56.1 Class Diagrams

5.56.1.1 GUISHAZAMServletClasses (Class Diagram)

This diagram shows classes used by the servlet to process requests related to SHAZAM

devices.

if used during
Add SHAZAM

if used to edit location
of existingSHAZAM

DynListDelegateSupporter
«interface»

1

Updated for R3B3

DynListSubject
«interface»

DynListReqHdlrDelegate

1

1

SHAZAMDynListSubject

SHAZAMListSupporter

1

Updated for R3B3

1

if used to edit location
of existingSHAZAM

1

1

SHAZAMReqHdlr
AddSHAZAMFormData

UserFormData

New for R3B3

EditSHAZAMLocationSupporter

EditObjectLocationSupporter
«interface»

1 1
uses

WebSHAZAM

if used during
Add SHAZAM

1

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURL() : String
setObjectLocation(location:ObjectLocation,
 req : HttpServletRequest,
 supporter : RequestHandlerSupporter) : String

EditSHAZAMLocationSupporter(formData:AddSHAZAMFormData)
EditSHAZAMLocationSupporter(shazam:WebSHAZAM)

AddSHAZAMFormData()
AddSHAZAMFormData(copy:WebSHAZAM)
getSHAZAMConfig():SHAZAMConfig
setLocation(loc:ObjectLocation):void
isCopy():boolean

-m_shazam:WebSHAZAM
PROP_NAME
PROP_LOCATION
PROP_ASSOCIATED_HAR
PROP_BEACON_STATE
PROP_STATUS
PROP_LAST_UPDATE
PROP_ROUTE
PROP_DIRECTION
PROP_COUNTY
PROP_PORT_MANAGERS
PROP_CONN_SITE
PROP_OWNING_ORG
PROP_MILE_POST

getAddSHAZAMForm():String
processAddSHAZAM():String
getEditSHAZAMLocationForm():String

createDynList():DynList
getDynListSubjects():DynListSubject[]
getFilterValue():String

Figure 5-462. GUISHAZAMServletClasses (Class Diagram)

5.56.1.1.1 AddSHAZAMFormData (Class)

This class is used to store data from the Add SHAZAM form while interim pages are

displayed (such as the edit location form).

5.56.1.1.2 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

CHART R3B3 Detailed Design 5-787 12/23/2008

5.56.1.1.3 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter

dynamic lists can be passed from a request handler to this class, provided the URL used for

the requests contain parameters required by this class, such as the id of the list, the property

name, and/or the filter value.

5.56.1.1.4 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.56.1.1.5 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

5.56.1.1.6 EditSHAZAMLocationSupporter (Class)

This class is used to support the generic edit location operation for SHAZAM devices.

5.56.1.1.7 SHAZAMDynListSubject (Class)

This class is a wrapper for a WebSHAZAM object that allows it to be displayed in a

dynamic list.

5.56.1.1.8 SHAZAMListSupporter (Class)

This class is a DynListDelegateSupporter for the SHAZAM dynamic list. It provides

SHAZAM specific functionality to the generic DynListReqHdlrDelegate.

5.56.1.1.9 SHAZAMReqHdlr (Class)

This class processes requests related to SHAZAM devices.

5.56.1.1.10 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex

form, and provides convenience methods for parsing the values from the request.

5.56.1.1.11 WebSHAZAM (Class)

This class is a wrapper for a SHAZAM CORBA object, used to cache data related to the

SHAZM in the GUI object cache and to provide access to the SHAZAM configuration and

status data on web pages.

CHART R3B3 Detailed Design 5-788 12/23/2008

5.56.2 Sequence Diagrams

5.56.2.1 EditSHAZAMLocationSupporter:setObjectLocation (Sequence Diagram)

This diagram shows the processing that is performed when the

EditSHAZAMLocationSupporter's setObjectLocation method is called. This method is

called by the generic location editing request handler when the user submits the edit

location form. If the supporter was constructed using a form data object (which is the case

if an Add SHAZAM operation is in progress), the location data stored inside the form data

is updated and the method returns. If the supporter was constructed using a WebSHAZAM,

its CORBA object reference is called to set the location data in the CORBA SHAZAM

object. The location data in the WebSHAZAM is updated and the method returns.

AddSHAZAMFormData WebSHAZAM
RequestHandler

Supporter
UserLogin

SessionImpl SHAZAM

null

getSHAZAMRef()

getAccessToken()

updateLocation(objectLocation)

setLocation(token, objectLocation)

[supporter contains
AddSHAZAMFormData]

setLocation(objectLocation)
[supporter contains

WebSHAZAM]

getUserLoginSession(req)

[exception]
error message

null

setObjectLocation(
objectLocation, req,

reqHdlrSupporter)

SpecifyLocation
ReqHdlr

EditSHAZAMLocation
Supporter

Figure 5-463. EditSHAZAMLocationSupporter:setObjectLocation (Sequence Diagram)

CHART R3B3 Detailed Design 5-789 12/23/2008

5.56.2.2 SHAZAMListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing that is performed when the SHAZAMListSupporter is

called to create a SHAZAM dynamic list. A DefaultDynListCol object is created for each

column and stored in an ArrayList. A derivation of DynListComparator is constructed and

added to each column, and a BaseDynListFilter derived object is also added to the column

if the column supports filtering. The list of columns is used to construct a DefaultDynList.

The filterType parameter (if present) is used to make other filter related configurations to

the dyn list. If the filterType parameter is set to "OpCenterFolders", an

OpCenterFolderFilter is constructed, configured for the user's op center, and added to the

dyn list as a global filter which will show only SHAZAMs that exist in folders that are

tagged for use with the user's op center. Other filterType values are used to set the status

filter, and in the case of the "OnlineActivated" filter type, configuration for the beacon

filter.

This processing is updated in R3B3 to add support for the following columns: Route,

Direction, County, Port Managers, Connection Site, Owning Org, Mile Post.

setDisplayedByDefault(boolean) All columns are displayed by default except
those mentioned above, for which we will pass
false to this method.

create(id, name, DefaultDynLis tCol[])

create

setSortComparator()

add(DefaultDynListCol)

toArray()

System

ArrayLis t

DefaultDynLis tCol

OpCenterFolderFilter

[filterType parm == OpCenterFolders]
addGlobalFilter()

[filterType parm == "OnlineActivated"]
setFilterValue()

DefaultDynList

SHAZAMListSupporter

New columns in R3B3:
Route (filterable)
Direction (filterable)
County (filterable)
Port Managers (filterable, hidden by default)
Connection Site (filterable, hidden by default)
Owning Org (filterable, hidden by default)
Mile Post (hidden by default)

DynListComparator

BaseDynLis tFilter

Type of BaseDynLis tFilter
created for the beacons
column.

SHAZAMBeaconFilter

[filterType parm == "OpCenterFolders"]
create

[filterType parm == "Online"]
setFilterValue(Status.OnlineAll)

[*check for each
supported filterType

value and setFilterValue
with appropriate constant]

create

[column supports filtering]
create

[*for each list
column]

createDynList()

create

[column supports filtering]
setFilter()

DefaultDynLis tCol[]

Type of BaseDynLis tFilter
created for the
s tatus column.

DefaultDynList

SHAZAMStatusFilter

Figure 5-464. SHAZAMListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-790 12/23/2008

5.56.2.3 SHAZAMReqHdlr:getAddSHAZAMForm (Sequence Diagram)

NOTE: getAddSHAZAMForm exists prior to R3B3 and is modified in R3B3 to use a form

data object to support the multi-page entry process that includes setting the SHAZAM

location.

This diagram shows the processing that is performed when the administrator chooses to add

a SHAZAM to the system or create a new SHAZAM by copying an existing SHAZAM.

This processing is also performed if an add or copy is already in progress and the Add form

is being redisplayed after navigating away from the add form to set the location data. If this

is the case, a formID parameter will be used to retrieve the form data object from the temp

object store. If performing a copy, the WebSHAZAM being copied will be retrieved from

the object cache and will be used to create an AddSHAZAMFormData object. This will

have the effect of pre-populating the Add SHAZAM form with data from the SHAZAM

being copied. If this is an Add SHAZAM operation that was not already in progress

(neither formID nor shazamID is present in the request), a new empty

AddSHAZAMFormData object is created. The form data is stored in the temp object store

if not already stored there. Other objects needed for the form for select lists are obtained

from the object cache and placed in the context. The Add SHAZAM form is then displayed

to the user.

CHART R3B3 Detailed Design 5-791 12/23/2008

NOTE: getAddSHAZAMForm exists prior to R3B3 and is modified in R3B3 to use a form data
object to support the multi-page entry process that inc ludes setting the SHAZAM location.

[no orgs configurable
by user]
Error.vm

Administrator
SHAZAMReqHdlr RequestHandlerSupporter NavLinkRightsContextTempObjectStore AddSHAZAMFormData

getAddSHAZAMForm()

getOrgsConfigurableByUser()

createTempObjectID()
formID

setID(formID)

add(formID, AddSHAZAMFormData)

Request Parameters :
formID - present if the add form is being redisplayed after an interim submit (such as setting the location data)
shazamID - present if this is a copy operation being invoiked

getObject(formID)

put("formData", formData)

Arrays

getCachedObjectsOfType(WebSHAZAMFactory .class)
WebSHAZAMFactory []

getCachedObjectsOfType(WebPortManager.c lass)
WebPortManager[]

sort(WebSHAZAMFactory[])

sort(WebPortManager[])

put("shazamFactoryLis t", WebSHAZAMFactory[])

put("orgList", WebOrganization[])

put("portMgrList", WebPortManager[])

put("directionInfo", new DirectionInfo())

AddSHAZAM.vm

The following processing is performed if a formID is present in the request, indicating add is already in progress.

The following processing is performed if a shazamID is present in the request, indicating a copy operation.

The following processing is performed if neither formID or shazamID is present in the request, indicating a new Add operation.

The following is performed if the AddSHAZAMFormData is newly created for Add or Copy above.

getCachedObject(shazamID)
WebSHAZAM

create(WebSHAZAM)

canConfigureSHAZAM(WebSHAZAM)
boolean

[no rights]
Error.vm

create

AddSHAZAMFormData

Figure 5-465. SHAZAMReqHdlr:getAddSHAZAMForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-792 12/23/2008

5.56.2.4 SHAZAMReqHdlr:getSHAZAMEditLocationForm (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to edit the

location fields for a SHAZAM. This can be done as part of the Add SHAZAM process, or

can be done on an existing SHAZAM from its details page. If done during the Add

SHAZAM process, a formID parameter will be present and is used to retrieve the

AddSHAZAMFormData object from the temp object store. The populateFromRequest

method is called to store any data the user had entered in fields of the Add SHAZAM form

prior to choosing to set the location fields. An EditSHAZAMLocationSupporter object is

then created, passing the AddSHAZAMFormData to the constructor.

If a shazamID is passed in the request, this indicates the operation is being performed

"stand alone" from the SHAZAM details page. In this case, the user rights must be

checked, and the WebSHAZAM is retrieved from the object cache. An

EditSHAZAMLocationSupporter is then constructed from the WebSHAZAM object.

After the EditSHAZAMLocationSupporter is created (either with AddSHAZAMFormData

or a WebSHAZAM), it is placed in the temp object store so it can be accessed by the

generic location editing request handler. The request is then redirected to the request that

shows the generic edit location form.

Check User's Configuration Rights
For The SHAZAM's Organization

[no r ights]
error

create(webSHAZAM)

createTempObjectID()

add(supporterID, supporter)

encodeRedirectURL(url)
sendRedirect(encodedURL)

null

getEditSHAZAMLocationForm(
req, resp, ctx, supporter)

populateFromRequest(req)

User
SHAZAMReqHdlr HttpServletRequest

RequestHandler
Supporter

This is executed if the formID is specified.
This is used when adding a SHAZAM.
The presence of the AddSHAZAMFormData implies
that user rights were checked already.

TempObjectStore HttpServletResponse

EditSHAZAMLocation
Supporter

This commits any user input for when
the form is displayed again after editing the
location.

AddSHAZAMFormData

This URL will be:
req.getRequestURI() +
"?action=displayEditObjectLocationDataForm" +
"&editLocationSupporterID=" + supporterID

getParameter("formID")

getParameter("shazamID")
[neither specified]

error

getTempObjectStore()

getObject(tmpObjID)

[shazamID specified]

AddSHAZAMFormData or null
[not found]

error

create(formData)

getCachedObject(harID)
WebSHAZAM or null

[not found]
error

Figure 5-466. SHAZAMReqHdlr:getSHAZAMEditLocationForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-793 12/23/2008

5.56.2.5 SHAZAMReqHdlr:processAddSHAZAM (Sequence Diagram)

NOTE: processAddSHAZAM exists prior to R3B3 and is modified in R3B3 to use a form

data object to support the multi-page entry process that includes setting the SHAZAM

location.

This diagram shows the processing that takes place when the user submits the Add

SHAZAM Form. The formID is retreived from the request parameters and is used to

retrieve the form data from the temp object store. The form data's populateFromRequest

method is used to get all request parameters into the form data object, and its

getSHAZAMConfig() method is used to populate a SHAZAMConfig object using the

request parameters. The selected creation site (factory) is not part of the SHAZAMConfig,

so it is retrieved from the form data separately. Any errors that are detected by the form

data when creating the SHAZAMConfiguration or when attempting to get the selected

factory ID cause the AddSHAZAM form to be redisplayed with an error message. If there

were no errors, the SHAZAMConfiguration is passed to the SHAZAMFactory to create a

new SHAZAM object. The new SHAZAM is then called to obtain its ID, status, and

configuration to allow a WebSHAZAM object to be created and stored in the GUI cache.

CHART R3B3 Detailed Design 5-794 12/23/2008

Put form data in context in case of error that
requires form to be redisplayed.

[no rights]
redirect to

getAddSHAZAMForm

put("formData", formData)

getIdentifierParam("fac tory")
Identifier or null

[factoryID is null]
appendErrorMessage()

getCachedObject(fac tory ID)

NOTE: processAddSHAZAM ex is ts prior to R3B3 and is modified in R3B3 to use a form data
object to support the multi-page entry process that includes setting the SHAZAM location.

DataModel

objec tAdded(Identifier, WebSHAZAM)

[Exception adding SHAZAM]
setErrorMessage()

[Exception addding
SHAZAM]
redirect to

getAddSHAZAMForm

redirect to
SHAZAM list

SHAZAM

WebSHAZAM

SHAZAM
create

getID()
Identifier

getStatus()
SHAZAMStatus

getConfiguration()
SHAZAMConfiguration

create(SHAZAM, Identifier, SHAZAMConfiguration, SHAZAMStatus, DataModel)

WebSHAZAMFactory

SHAZAMFactory

getFactoryRef()
SHAZAMFactory

createSHAZAM(token, config)

Administrator
SHAZAMReqHdlr

Request Parameters :
formID - ID of form data stored in temp object store
field params - parameters from each field on the Add form

TempObjectStore AddSHAZAMFormData

Ex is ting code in processAddSHAZAM
(pre-R3B3) that retrieves request parameters
and validates is moved here. Any errors
detected will cause error message to get loaded
and null to be returned.

RequestHandlerSupporter

TokenManipulator

processAddSHAZAM()
getObject(formID)

AddSHAZAMFormData

populateFromRequest()

getSHAZAMConfig()

SHAZAMConfig or null

[formData.hasError()]]
redirect to

getAddSHAZAMForm
checkAccess(token, configHARRight, config.m_owningOrgID)

boolean

[no rights]
setErrorMessage()

Contex t

WebSHAZAMFactory

Figure 5-467. SHAZAMReqHdlr:processAddSHAZAM (Sequence Diagram)

CHART R3B3 Detailed Design 5-795 12/23/2008

5.57 Chartlite.servlet.har

5.57.1 Class diagrams

5.57.1.1 GUIHARServletClasses (Class Diagram)

This diagram shows classes used by the servlet to process requests related to HAR devices.

if used to edit location of existing HAR

if used during add HAR

1

1

1 1

Updated for R3B3

HARDynListSubject

DynListSubject

«interface»

HARListSuppor ter

DynListDelegateSupporter

«interface» DynListReqHdlrDelegate

Updated for R3B3

EditHARLocationSuppor ter

EditObjectLocationSupporter

«interface»

WebHAR

if used during add HAR

1 1

if used to edit location of existing HAR

1

1

new for R3B3

AddHARFormData

AddAP55HARFormData AddSyncHARFormData AddDR1500HARFormData

HARReqHdlr SyncHARReqHdlrAP55HARReqHdlr DR1500HARReqHdlr

RequestHandler

«interface»

PROP_NAME
PROP_LOCATION
PROP_CURRENT_MSG
PROP_STATUS
PROP_ACTIVE_NOTIFIERS
PROP_USED_BY
PROP_ROUTE
PROP_DIRECTION
PROP_COUNTY
PROP_PORT_MGRS
PROP_CONN_SITE
PROP_OWNING_ORG
PROP_MILE_POST

createDynList():DynList
getDynListSubjects():DynListSubject[]
getFilterValue():Object

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURL() : String
setObjectLocation(location:ObjectLocation,
 req : HttpServletRequest,
 supporter : RequestHandlerSupporter) : String

EditHARLocationSupporter(har:WebHAR)
EditHARLocationSupporter(formData:AddHARFormData)

Figure 5-468. GUIHARServletClasses (Class Diagram)

5.57.1.1.1 AddAP55HARFormData (Class)

This class holds data specific to the AP55 HAR when adding an AP55 HAR to the system.

5.57.1.1.2 AddDR1500HARFormData (Class)

This class holds data specific to a DR1500 HAR when adding a DR1500 HAR to the

system.

5.57.1.1.3 AddHARFormData (Class)

This class is used to store configuration data for a HAR during an Add operation, as the

CHART R3B3 Detailed Design 5-796 12/23/2008

operation can require several web pages to complete and the data from each form must be

stored between requests.

5.57.1.1.4 AddSyncHARFormData (Class)

This class holds data specific to a Sync HAR when adding a Sync HAR to the system.

5.57.1.1.5 AP55HARReqHdlr (Class)

This class handles requests that are specific to the AP55 HAR model.

5.57.1.1.6 DR1500HARReqHdlr (Class)

This class handles requests that are specific to the DR1500 HAR model.

5.57.1.1.7 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.57.1.1.8 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter

dynamic lists can be passed from a request handler to this class, provided the URL used for

the requests contain parameters required by this class, such as the id of the list, the property

name, and/or the filter value.

5.57.1.1.9 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.57.1.1.10 EditHARLocationSupporter (Class)

This class implements the EditObjectLocationSupporter interface for HARs. It can be

constructed with an AddHARFormData object so it can be used during the Add HAR

operation, in which case all location changes are stored in the AddHARFormData object. It

can also be constructed using a WebHAR, for use when editing the location of an existing

HAR. When this is done, the new location gets set into the actual HAR object (via a

CORBA call).

5.57.1.1.11 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example,

the target of the edited location may be an existing object, or it may be a form data object

for creating a new object).

5.57.1.1.12 HARDynListSubject (Class)

This class is a dyn list subject that holds a WebHAR. It also defines the property names for

each column that will be shown in the list. The following columns are added in R3B3:

CHART R3B3 Detailed Design 5-797 12/23/2008

route, direction, port managers, connection site, owning org, and mile post.

5.57.1.1.13 HARListSupporter (Class)

This class is a dyn list delegate supporter for the HAR list. It provides methods to create a

dynamic list, get the subjects included in the list, and to get the value for a filter.

5.57.1.1.14 HARReqHdlr (Class)

This class handles requests that are valid for any HAR model.

5.57.1.1.15 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to

process requests.

5.57.1.1.16 SyncHARReqHdlr (Class)

This class handles requests that are specific to the Sync HAR model.

5.57.1.1.17 WebHAR (Class)

This class is a GUI wrapper for a CORBA HAR object.

CHART R3B3 Detailed Design 5-798 12/23/2008

5.57.2 Sequence Diagrams

5.57.2.1 EditHARLocationSupporter:setObjectLocation (Sequence Diagram)

This diagram shows the processing that is performed when the

EditHARLocationSupporter's setObjectLocation method is called. This method is called by

the generic location editing request handler when the user submits the edit location form. If

the supporter was constructed using a form data object (which is the case if an Add HAR

operation is in progress), the location data stored inside the form data is updated and the

method returns. If the supporter was constructed using a WebHAR, its CORBA object

reference is called to set the location data in the CORBA HAR object. The location data in

the WebHAR is updated and the method returns.

SpecifyLocation
ReqHdlr

EditHARLocation
Supporter WebHARConfig

RequestHandler
Supporter HAR

[supporter contains
WebHAR]]

getUserLoginSession(req)

[exception]
error message

null

setObjectLocation(
objectLocation, req,
reqHdlrSupporter)

WebHAR
UserLogin

SessionImpl

null

getHARRef()

getAccessToken()

updateLocation(objectLocation)

setLocation(token, objectLocation)

AddHARFormData

[supporter contains
AddHARFormData]

getConfig()

getHARConfig()

Set Location Field
In Config

WebHARConfig

HARConfig

Figure 5-469. EditHARLocationSupporter:setObjectLocation (Sequence Diagram)

CHART R3B3 Detailed Design 5-799 12/23/2008

5.57.2.2 HARListSupporter:createDynList (Sequence Diagram)

This diagram shows the processing that is performed when the HARListSupporter is called

to create a HAR dynamic list. A DefaultDynListCol object is created for each column and

stored in an ArrayList. A derivation of DynListComparator is constructed and added to

each column, and a BaseDynListFilter derived object is also added to the column if the

column supports filtering. The list of columns is used to construct a DefaultDynList. A

ConstituentHARFilter is then added to the dyn list as a global filter to initially hide

constituents of synchronized HARs. The filterType parameter (if present) is used to make

other filter related configurations to the dyn list. If the filterType parameter is set to

"OpCenterFolders", an OpCenterFolderFilter is constructed, configured for the user's op

center, and added to the dyn list as a global filter which will show only HARs that exist in

folders that are tagged for use with the user's op center. Other filterType values are used to

set the status filter, and in the case of the "OnlineWithMsg" filter type, the message filter.

This processing is updated in R3B3 to add support for the following columns: Route,

Direction, County, Port Managers, Connection Site, Owning Org, Mile Post.

setDisplayedByDefault(boolean)

OpCenterFolderFilter

HARMessageFilter

Type of BaseDynListFilter
created for the message
column.

[filterType parm == OpCenterFolders]
addGlobalFilter()

[filterType parm == "OnlineWithMsg"]
setFilterValue()

DefaultDynLis t

New columns in R3B3:
Route (filterable)
Direction (filterable)
County (filterable)
Port Managers (filterable, hidden by default)
Connection Site (filterable, hidden by default)
Owning Org (filterable, hidden by default)
Mile Post (hidden by default)

System

HARLis tSupporter

ArrayList

DefaultDynListCol

DynListComparator

BaseDynListFilter

DefaultDynList

createDynLis t()

create

create

create

[column supports filtering]
create

setSortComparator()

[column supports filtering]
setFilter()

add(DefaultDynLis tCol)

[*for each HAR lis t
column]

toArray()

DefaultDynLis tCol[]

create(id, name, DefaultDynListCol[])

ConstituentHARFilter
c reate

addGlobalFilter()

HARStatusFilter

Type of BaseDynListFilter
created for the
status column.

[filterType parm == "OpCenterFolders"]
c reate

[*check for each
supported filterType

value and setFilterValue
with appropriate cons tant]

[filterType parm == "Online"]
setFilterValue(Status.OnlineAll)

All columns are displayed by default except those
mentioned above (for which we will pass false to this method)

Figure 5-470. HARListSupporter:createDynList (Sequence Diagram)

CHART R3B3 Detailed Design 5-800 12/23/2008

5.57.2.3 HARReqHdlr:getEditHARLocationForm (Sequence Diagram)

This diagram shows the processing that is performed when the user chooses to edit the

location fields for a HAR. This can be done as part of the Add HAR process (any model),

or can be done on an existing HAR from its details page. If done during the AddHAR

process, a tmpObjID parameter will be present and is used to retrieve the

AddHARFormData object from the temp object store. The parseFormData method is

called to store any data the user had entered in fields of the Add HAR form prior to

choosing to set the location fields. An EditHARLocationSupporter object is then created,

passing the AddHARFormData to the constructor.

If a harID is passed in the request, this indicates the operation is being performed "stand

alone" from the HAR details page. In this case, the user rights must be checked, and the

WebHAR is retrieved from the object cache. An EditHARLocationSupporter is then

constructed from the WebHAR object.

After the EditHARLocationSupporter is created (either with AddHARFormData or a

WebHAR), it is placed in the temp object store so it can be accessed by the generic location

editing request handler. The request is then redirected to the request that shows the generic

edit location form.

CHART R3B3 Detailed Design 5-801 12/23/2008

User
HARReqHdlr HttpServletRequest

RequestHandler
Supporter

This is executed if the tmpObjID is specified.
This is used when adding a HAR (any model).
The presence of the AddHARFormData implies
that user rights were checked already.

This commits any user input for when
the form is displayed again after editing the
location. Any exception thrown is swallowed
because this is not the user's final submit
of the form.

TempObjectStore HttpServletResponse

EditHARLocation
Supporter

This URL will be:
req.getRequestURI() +
"?action=displayEditObjectLocationDataForm" +
"&editLocationSupporterID=" + supporterID

getParameter("tmpObjID")

getParameter("harID")
[neither specified]

error

getTempObjectStore()

getObject(tmpObjID)

[harID specified]

AddHARFormData or null
[not found]

error

create(formData)

getCachedObject(harID)
WebHAR or null

[not found]
error

Check User's Configuration Rights
For The HAR's Organization

[no rights]
error

create(webHAR)

createTempObjectID()

add(supporterID, supporter)

encodeRedirectURL(url)
sendRedirect(encodedURL)

null

getEditHARLocationForm(
req, resp, ctx, supporter)

AddHARFormData

parseFormData(req)

Figure 5-471. HARReqHdlr:getEditHARLocationForm (Sequence Diagram)

CHART R3B3 Detailed Design 5-802 12/23/2008

5.58 Charlite.Flex.shared.components-flex

5.58.1 Class Diagrams

5.58.1.1 GUIFlexComponentsClasses (Class Diagram)

This diagram shows common Flex components.

SpecifyLocation

The change in this class in R3B3 is to
refactor "TrafficEventLocation" to "ObjectLocation".
As the object location is the same as the traffic event location,
the XML in the Velocity macro: trafficEventLocationXML() should
also work for object locations (although the macro
needs to be renamed to objectLocationXML()).

+init(sessionID:String, reqTimeoutSec:int) : void
+initWithObjectLocationXML(sessionID: String,
 objLocationXML:XMLList, reqTimeoutSec:int) : void
+getDefaultStateCode() : String
+updateDefaultStateMRUCounties(xmlRoot:Object):void
+isRouteSpecified() : boolean
+populateLocationParametersForRequest(params : Object) : void
+getObjectLocationDesc() : String
+getSuggestedObjectLocationDesc(showRouteName:Boolean,
 showIntRouteName:Boolean, requireIntRouteSelection : Boolean) : String
+isLocationDescriptionOverridden() : Boolean
+clearControls() : Boolean

+m_locationDesc : String
+aliasCompletionInput : CompletionInput
+stateComboBox : ComboBox
+countyCompletionInput : CompletionInput
+regionCompletionInput : CompletionInput
+routeTypeComboBox : ComboBox
+routeCompletionInput : CompletionInput
+showRouteNameCheckBox : CheckBox
+directionComboBox : ComboBox
+proximityTypeComboBox : ComboBox
+intersectingFeatureTypeComboBox : ComboBox
+intersectingRouteCompletionInput : CompletionInput
+showIntRouteNameCheckBox : CheckBox
+milePostTextInput : TextInput
+countyMilePostCheckBox : CheckBox
+locationDescTextArea : TextArea
+overrideLocationDescCheckBox : CheckBox

Figure 5-472. GUIFlexComponentsClasses (Class Diagram)

5.58.1.1.1 SpecifyLocation (Class)

This is a Flex control that allows the location fields to be specified.

CHART R3B3 Detailed Design 5-803 12/23/2008

5.59 Chartlite.Flex.editlocation

5.59.1 Class Diagrams

5.59.1.1 GUIFlexEditLocationClasses (Class Diagram)

SpecifyLocation

EditLocation

EditEventLocation

1

1

-init() : v oid
-handleGetEditEv entLocationDataXMLResult(ev ent:ResultEv ent) : v oid
+locationDescChangeListener(ev ent:Ev ent) : v oid
-updateEv entName() : v oid
-getSuggestedEv entName(locationDesc : String) : String
-showErrorMsg(msg : String) : v oid
-showStatusMsg(msg : String) : v oid
-showMessagePriv (msg:String, isError:Boolean) : v oid
-setEv entLocation() : v oid
-display Ov errideConf irmationDialog() : v oid
-conf irmOv errideLocationDescHnadler(ev ent:Ev ent) : v oid
-checkIf LaneConf igWillBeCleared() : v oid
-display ClearLaneConf igConf irmationDialog() : v oid
-conf irmClearLaneConf igHandler(ev ent:Ev ent) : v oid
-setEv entLocationNow() : v oid
-handleSetEv entLocationDataXMLResult(ev ent:ResultEv ent) : v oid
-closeWindow(updateParent:Boolean) : v oid
+onServ iceFault(ev t : FaultEv ent) : v oid

getEditEv entLocationDataXMLReq : HTTPServ ice
setEv entLocationDataXMLReq : HTTPServ ice
m_sessionID : String
m_ev entID : String
m_f ormDataID : String
m_ev entName : String
m_ev entTy peDesc : String
m_incidentTy peName : String
m_actionTy peDesc : String
m_ev entHasLanes : Boolean
m_stdXMLReqTimeoutSecs : int
m_locXMLReqTimeoutSecs : int

Figure 5-473. GUIFlexEditLocationClasses (Class Diagram)

CHART R3B3 Detailed Design 5-804 12/23/2008

5.59.1.1.1 EditEventLocation (Class)

5.59.1.1.2 EditLocation (Class)

5.59.1.1.3 SpecifyLocation (Class)

This is a Flex control that allows the location fields to be specified.

CHART R3B3 Detailed Design 5-805 12/23/2008

5.60 Chartlite.util

5.60.1 Classes

5.60.1.1 chartlite.util_classes (Class Diagram)

This diagram shows utility classes used in the CHART GUI servlet.

j av a.lang.Comparable
«interface»

Obj ectLocationDistance

ParamSupplier
«interface»

HttpServ letRequestParamSupplierUserFormData

Serv letUtil

getObjectFromIDString(dataModel:DataModel, idStr:String) : Object
getCurrentUserToken(req:HttpServletRequest):byte[]
sendJSONObject(resp:HttpServletResponse, obj:JSONObject) : void
getStringParam(supplier:ParamSupplier, paramName:String, defaultValue:String) : String
getBooleanParam(supplier:ParamSupplier, paramName:String) : boolean
getIntParam(supplier:ParamSupplier, paramName:String, defaultValue:int) : int
isCheckboxChecked(supplier:ParamSupplier, paramName:String) : boolean
getNearbyObjects(loc : GeoLocation, objs : ArrayList<WebObjectLocationSupporter>,
 maxDistanceMiles : double) : ArrayList<ObjectLocationDistance<WebObjectLocationSupporter>>

getParameter(param : String) : String

m_req : HttpServletRequest

getObject() : T
getDistanceMiles() : double

m_obj : T
m_distanceMiles : double

Figure 5-474. chartlite.util_classes (Class Diagram)

CHART R3B3 Detailed Design 5-806 12/23/2008

5.60.1.1.1 HttpServletRequestParamSupplier (Class)

This class implements the ParamSupplier interface to provide parameters from an

HttpServletRequest object.

5.60.1.1.2 java.lang.Comparable (Class)

This interface allows two objects to be compared for the purposes of sorting.

5.60.1.1.3 ObjectLocationDistance (Class)

This class stores an object and a calculated distance to another point. It is used to avoid re-

calculating the distance multiple times.

5.60.1.1.4 ParamSupplier (Class)

This interface allows parameter values to be retrieved. It was added to handle parameters

supplied by a HttpServletRequest and form data using common code.

5.60.1.1.5 ServletUtil (Class)

This class provides static utility methods useful to request handlers in the servlet.

5.60.1.1.6 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex

form, and provides convenience methods for parsing the values from the request.

CHART R3B3 Detailed Design 5-807 12/23/2008

5.60.2 Sequence Diagrams

5.60.2.1 ServletUtil:getNearbyObjects (Sequence Diagram)

This diagram shows the processing to find the objects near a given location, sorted by

distance. When getNearbyObjects() is called, it creates a list for storing object / distance

pairs. Each object from the input list is called to get its GeoLocation, which can be null if

the geo location is not specified for an object. If the geo location is not null, the distance to

the geo location is calculated. Then if the distance is less than the specified maximum

distance, or if the maximum distance is unspecified, an ObjectLocationDistance object is

created to store the object and the distance, and this is added to the list. The list is sorted by

distance and returned to the caller.

[geo loc not null and (maxDistanceMiles < 0 or distanceMiles < maxDistanceMiles)]
create

[list.size() > 1]
sort(list)

return list

System

ServletUtil

ArrayList
<ObjectLocation

Distance>

WebObjectLocation
Supporter WebObjectLocation GeoLocation

ObjectLocation
Distance

Collections

getNearbyObjects(
geoLoc, objList,

maxDistanceMiles)
create

getLocation()
getGeoLocation()
GeoLocation or null

[location not null]
distanceMiles(objectGeoLoc)

[objLocationDIstance created]
add(objLocationDistance)

[* for each
WebObjectLocationSupporter]

Figure 5-475. ServletUtil:getNearbyObjects (Sequence Diagram)

CHART R3B3 Detailed Design 5-808 12/23/2008

5.61 Chartlite.util.dynlist

5.61.1 Class Diagrams

5.61.1.1 DynamicListClasses (Class Diagram)

This diagram shows interfaces and classes that provide generic support for dynamic lists. A

dynamic list is a list of objects that has one or more columns and can be sorted and filtered.

SubjectIntegerPropertyComparator

DynList

«interface»

0..1

1

global filter

*1

*1

0..1
1

DynListFilter

«interface»

DefaultDynList

DynListCol

«interface»

DynListSubject

«interface»

DefaultDynListCol

BaseDynListFilter

SubjectTextPropertyComparator

java.util.Comparator

«interface»

DynListComparator

«interface»
11

TextValueColFilter

These c lasses are updated for R3B3 with methods
to support setting/getting a flag for whether the column
should be shown in the list

getID():Identifier
getDescription():String
getColumns():DynLis tCol[]
getColumn(property:String):DynLis tCol
setColumns(columns:DynListCol[]):void
setSubjects(subjects:DynLis tSubject[]):void
getAllSubjects():DynListSubject[]
getFilteredSubjects():DynListSubject[]
getGloballyFilteredSubjects():DynLis tSubject[]
clearAllFilters():void
getGlobalFilters():DynListFilter[]
addGlobalFilter(filter:DynListFilter):void
removeGlobalFilter(filter:DynLis tFilter):void
clearGlobalFilters():void
sort(column:DynLis tCol):void
isCurrentSortCol(property :String):boolean
getCurrentSortCol():DynListCol
isCurrentSortAscending():boolean
isFiltered():boolean
getActiveFilterValueDescs():String[]
hasActiveColumnFilters():boolean
hasActiveGlobalFilters():boolean
getFilteredSubjectLis t():ArrayList<DynLis tSubject>

getProperty():String
supportsMultipleValues():boolean
supportsFiltering():boolean
getFilter():DynLis tFilter
setFilter(filter:DynLis tFilter):void
allowsSort():boolean
getSortComparator():DynListComparator<DynListSubject>
isColumnSetForDisplay(): boolean
isDisplayedByDefault():boolean
setDisplayedByDefault(set:boolean):void
setColumnForDisplay(set:boolean): void

-m_id:Identifier
-m_desc:String
-m_cols:DynListCol[]
-m_sortCol:DynLis tCol
-m_globalFilters:ArrayList<DynLis tFilter>
-m_subjects:ArrayLis t<DynLis tSubject>

getPropertyValue(property:DynListCol):Str ing
getPropertyValues(property :DynLis tCol):String[]

getDescription():Str ing
getUniqueValueDescs(subjects :DynLis tSubject[]):String[]
getFilteringValueDesc():String
setFilterValue(value:Object):void
passesFilter(subject:DynListSubject):boolean
deactivate():void
isActive():boolean

setSortOrder(isAscending:boolean):void
isSortOrderAscending():boolean

-m_description:String
#m_filterValue:Object

-m_col:DynLis tCol

-m_property :DynListCol
-m_isMultiValueProperty :boolean
-m_ascending:boolean

-m_ascending:boolean
-m_property:DynLis tCol

-m_property:String
-m_filter:DynLis tFilter
-m_sortComparator:DynListComparator<DynListSubject>
-m_multiVal:boolean
-m_isColumnSetForDisplay
-m_isColumnSetForDefaultDisplay

Figure 5-476. DynamicListClasses (Class Diagram)

CHART R3B3 Detailed Design 5-809 12/23/2008

5.61.1.1.1 BaseDynListFilter (Class)

This abstract class provides a base implementation of the DynListFilter interface.

5.61.1.1.2 DefaultDynList (Class)

This class provides a default implementation of the DynList interface. It supports a

collection of columns, a collection of global filters, and a collection of subjects. Filters in

this list are treated additively - that is, a subject must pass all filters to be displayed.

5.61.1.1.3 DefaultDynListCol (Class)

This class provides a default implementation of the DynListCol interface. This column is

constructed with a string property name for which subjects are expected to provide a value.

By default, this column uses a SubjectTextPropertyComparator, which means a string

comparison of the property values provided by the subjects for this column is used. You

may optionally set a different comparator. Multiple values for this column (from a single

subject) are supported.

5.61.1.1.4 DynList (Class)

This interface is implemented by classes that wish to provide dynamic list capabilities. A

dynamic list is a list of items that has one or more columns that can optionally be sorted,

and the list can be filtered by column values or by global filters.

5.61.1.1.5 DynListCol (Class)

This interface is implemented by classes that are to be used as a column in a dynamic list.

5.61.1.1.6 DynListComparator (Class)

This interface is implemented by classes that are used to sort dynamic lists.

5.61.1.1.7 DynListFilter (Class)

This interface is implemented by classes that are used to filter dynamic lists.

5.61.1.1.8 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a

dynamic list.

5.61.1.1.9 java.util.Comparator (Class)

This interface is implemented by classes that can be sorted.

5.61.1.1.10 SubjectIntegerPropertyComparator (Class)

This class is a dyn list comparator that can be used to sort columns that contain integer

CHART R3B3 Detailed Design 5-810 12/23/2008

values.

5.61.1.1.11 SubjectTextPropertyComparator (Class)

This class provides an implementation of the DynListComparator interface which compares

subjects based on the values they supply for the property supplied to this class during

construction. A case insensitive text comparison is done on the values, and multiple value

columns are supported.

5.61.1.1.12 TextValueColFilter (Class)

This class is a DynListFilter that filters subjects of a dynamic list based on the text value of

a column's property.

CHART R3B3 Detailed Design 6-1 12/23/2008

6 Mapping To Requirements

The following table shows how the requirements in the CHART R3B3 Requirements document map to design elements contained

in this design.

Those requirements that are included for reference but are not to be implemented in R3B3 are shaded in grey; those that are not

shaded in grey are requirements to be implemented in R3B3. Grey requirements may be marked “[FUTURE]”, meaning they are

existing baseline requirements which are included for reference but are to be implemented in a future release. These may be

existing or new requirements. If new, they are marked as “[FUTURE, NEW]”. Grey requirements may be marked as “[NEW BUT

ALREADY IMPLEMENTED]” meaning they have already been implemented in the system and are being added to the baseline to

reflect the as-built system. Requirements revised from the baseline are marked with an asterisk: ‘*’.

Req No. Requirement Type Use Case(s) Additional Element(s)

1 ADMINISTER SYSTEMS AND EQUIPMENT HEADER N/A N/A

1.1
ADMINISTER CHART ORGANIZATIONS,

LOCATIONS, AND USERS
HEADER N/A N/A

1.1.1

MAINTAIN CHART ORGANIZATIONS AND

GEOGRAPHIC AREAS OF RESPONSIBILITY. The

system shall allow the user to separately specify identify

organizations, types of locations, and geographic areas of

responsibility, and to associate them to each other.

HEADER N/A N/A

1.1.1.2
MAINTAIN GEOGRAPHIC AREAS OF

RESPONSIBILITY [FUTURE]
HEADER N/A N/A

1.1.1.2.3

The system shall allow the user to define map-based areas

of responsibility. Suggestions/examples to be validated:

regions, county boundaries, city boundaries. [FUTURE]

FUTURE N/A N/A

1.1.1.2.3.1

The system shall allow a suitably privileged user to define

named geographical areas to serve as components (building

blocks) for areas of responsibility.

Geographical

Configure

Geographical

Settings

GeoAreaModulePkg CD,

GeoAreaModulePkg:initialize SD,

GeoAreaModuleImpl:shutdown SD

1.1.1.2.3.1.1
The system shall allow a suitably privileged user to add a

geographical area.
Geographical

Add Geographical

Area

displayAddEditGeoAreaForm,

submitAddEditGeoAreaForm.

GeoAreaFactoryImpl:addGeoArea SD

CHART R3B3 Detailed Design 6-2 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.1.1.2.3.1.1.1 A geographical area shall include a name. Geographical
Add Geographical

Area

displayAddEditGeoAreaForm,

submitAddEditGeoAreaForm,

GeoAreaModulePkg CD

1.1.1.2.3.1.1.2

A geographical area shall be defined as a polygon, with

vertices specified in geographical (latitude/longitude)

coordinates.

Geographical
Add Geographical

Area

displayAddEditGeoAreaForm,

submitAddEditGeoAreaForm,

GeoAreaModulePkg CD

1.1.1.2.3.1.1.2.1
The system shall allow a user to add a point to the polygon

by specifying geographical coordinates.
Geographical Specify Polygon

displayAddEditGeoAreaForm,

submitAddEditGeoAreaForm,

GeoAreaModuleImpl:addGeoArea SD

1.1.1.2.3.1.1.2.2
The system shall allow a user to modify the coordinates of

a point in the polygon.
Geographical Specify Polygon

displayAddEditGeoAreaForm,

submitAddEditGeoAreaForm,

GeoAreaModuleImpl:updateGeoArea SD

1.1.1.2.3.1.1.2.3
The system shall allow a user to remove a point from the

polygon.
Geographical Specify Polygon

displayAddEditGeoAreaForm,

submitAddEditGeoAreaForm,

GeoAreaModuleImpl:updateGeoArea SD

1.1.1.2.3.1.1.2.4

The system shall allow a user to define the polygon by

importing a file in Keyhole Markup Language (KML)

format.

Geographical
Specify Polygon,

Import KML File
importKMLFileJSON

1.1.1.2.3.1.2

The system shall allow a suitably privileged user to modify

a geographical area, following the same rules as when

adding a geographical area.

Geographical
Edit Geographical

Area

displayAddEditGeoAreaForm,

submitAddEditGeoAreaForm,

GeoAreaModuleImpl:updateGeoArea SD

1.1.1.2.3.1.3
The system shall allow a suitably privileged user to delete a

geographical area.
Geographical

Delete Geographical

Area

removeGeoArea,

GeoAreaModuleImpl:removeGeoArea SD

1.1.1.2.3.1.3.1
The system shall prompt the user for confirmation before

removing a geographical area.
Geographical

Delete Geographical

Area
removeGeoArea

1.1.1.2.3.1.3.2
The system shall not allow a geographical area to be

removed if it is referenced in the system.
Geographical

Delete Geographical

Area

removeGeoArea,

GeoAreaModuleImpl:removeGeoArea SD

1.1.1.2.3.2

The system shall validate any geographical coordinates

entered by a user as freeform text against system-wide

bounds.

Geographical Specify Polygon submitAddEditGeoAreaForm

1.1.1.2.3.2.1

The system shall allow a suitably privileged user to specify

the system-wide bounds for acceptable user-entered

coordinates.

Geographical

Configure

Geographical

Settings

1.1.1.2.3.2.1.1
The system shall allow a suitably privileged user to define

the minimum acceptable latitude (southern boundary).
Geographical

Configure

Geographical

Settings

CHART R3B3 Detailed Design 6-3 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.1.1.2.3.2.1.2
The system shall allow a suitably privileged user to define

the maximum acceptable latitude (northern boundary).
Geographical

Configure

Geographical

Settings

1.1.1.2.3.2.1.3
The system shall allow a suitably privileged user to define

the minimum acceptable longitude (western boundary).
Geographical

Configure

Geographical

Settings

1.1.1.2.3.2.1.4
The system shall allow a suitably privileged user to define

the maximum acceptable longitude (eastern boundary).
Geographical

Configure

Geographical

Settings

1.4 MAINTAIN CHART CONTROL HEADER N/A

1.4.6 MANAGE ALERTS HEADER N/A

1.4.6.1

A suitably privileged user shall be able to specify an

“ignore” system property for an alert type, which indicates

that no user will ever see alerts of this type at any time.

This provides a “back-out” capability to completely ignore

alerts of this type.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types

data.alerts.classes CD

getAlertTimeoutsAndPoliciesForm,

setAlertTimeoutsAndPolicies

1.4.6.2

A suitably privileged user shall be able to define the default

and maximum values for timeouts related to alert

processing.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types

data.alerts.classes CD

getAlertTimeoutsAndPoliciesForm,

setAlertTimeoutsAndPolicies

1.4.6.2.1
A suitably privileged user shall be able to specify the

default Accept timeout for each alert type.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types

data.alerts.classes CD

getAlertTimeoutsAndPoliciesForm,

setAlertTimeoutsAndPolicies

1.4.6.2.2
A suitably privileged user shall be able to specify the

maximum Accept timeout for each alert type.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types

data.alerts.classes CD

getAlertTimeoutsAndPoliciesForm,

setAlertTimeoutsAndPolicies

1.4.6.2.3
A suitably privileged user shall be able to specify the

default alert Delay timeout for each alert type.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types

data.alerts.classes CD

getAlertTimeoutsAndPoliciesForm,

setAlertTimeoutsAndPolicies

1.4.6.2.4
A suitably privileged user shall be able to specify the

maximum Delay timeout for each alert type.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types

data.alerts.classes CD

getAlertTimeoutsAndPoliciesForm,

setAlertTimeoutsAndPolicies

CHART R3B3 Detailed Design 6-4 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.4.6.2.5
A suitably privileged user shall be able to specify the

escalation timeout for each alert type.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types

data.alerts.classes CD

getAlertTimeoutsAndPoliciesForm,

setAlertTimeoutsAndPolicies

1.4.6.2.6

A suitably privileged user shall be able to specify the

archive timeout for Closed alerts, after which a Closed alert

is removed from the active CHART system and is able to

be sent to an alert archive.

EXISTING N/A

1.4.6.2.7

A suitably privileged user shall be able to disable escalation

of alerts of a particular alert type for which escalation is

currently not desired.

EXISTING

(extending

for new

alerts)

Configure R3B3

Alert Types
data.alerts.classes CD

1.5 INSTALL AND MAINTAIN DEVICES HEADER N/A

1.5.2 PUT EQUIPMENT/ DEVICES ON-LINE. HEADER N/A

1.5.2.1
The system shall allow the user with appropriate rights to

select (or modify) the equipment device parameters.
EXISTING N/A

1.5.2.1.4
The system shall support configuration parameters for

DMS devices.
EXISTING View DMS Details

GUIDMSDataClasses

DMSControlModule:

DMSControlClassDiagram

DMSControlModule:GetConfiguration

1.5.2.1.4.9

The system shall support setting a responsible Center for a

DMS which is to receive the Device Failure Alert when the

device goes into communication failure.

DMS Configure DMS

parseBasicConfigSettings

DMSControlClassDiagram

DMSControlModule:handleOpstatus

DMSControlModule:SetConfiguration

DMSControlModule:GetConfiguration

1.5.2.1.4.10
The system shall support setting a notification group to

receive DMS communication failure notification messages.
DMS Configure DMS

parseBasicConfigSettings

DMSControlClassDiagram

DMSControlModule:handleOpstatus

DMSControlModule:SetConfiguration

DMSControlModule:GetConfiguration

1.5.2.1.4.11
The system shall support setting a notification group to

receive DMS hardware failure notification messages.
DMS Configure DMS

parseBasicConfigSettings

DMSControlClassDiagram

DMSControlModule:handleOpstatus

DMSControlModule:SetConfiguration

DMSControlModule:GetConfiguration

CHART R3B3 Detailed Design 6-5 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.2.1.4.12
The system shall support setting the device port for

communication with the device.
DMS

Configure DMS,

Specify TCPIP

Device Connection

1.5.2.1.4.12.4
The system shall support setting the IP Address and TCP

port number for a DMS that supports TCP/IP protocol.
DMS

Configure DMS,

Specify TCPIP

Device Connection,

View TCP/IP Port

Configuration

DMSControlClassDiagram

DeviceUtilityPkg:PortLocatorClasses

PortLocator:getPort

PortLocator:getconnectedPort2

PortLocator:ReleasePort2

1.5.2.1.4.13
The system shall support setting a default font number for

NTCIP DMS.
DMS

Configure NTCIP

DMS, View NTCIP

Font Settings

parseBasicConfigSettings

DMSControlModuleClassDiagram

DMSControlModule:GetConfiguration

DMSControlModule:SetConfiguration

1.5.2.1.4.14
The system shall support setting default line spacing for

NTCIP DMS.
DMS

Configure NTCIP

DMS, View NTCIP

Font Settings

parseBasicConfigSettings

DMSControlModuleClassdiagram

DMSControlModule:GetConfiguration

DMSControlModule:SetConfiguration

1.5.2.1.4.15
The system shall support setting the DMS location as

specified in 1.5.2.4
DMS

Configure DMS, Set

Device Location

DMSReqHdlr:getEditDMSLocationForm,

EditDMSLocationSupporter:setObjectLocation

DMSControlModuleClassdiagram

1.5.2.1.4.16
The system shall support setting a travel time display

schedule for a DMS.
DMS

Set DMS Travel

Time Display

Schedule, View

Travel Time Message

Schedule

setDMSTravelTimeDisplaySchedule,

Chart2DMSImpl:setTravelTimeSchedule

1.5.2.1.4.17
The system shall support associating travel routes to a

DMS.
DMS

Add Travel Route to

DMS, Remove

Travel Route from

DMS

viewEditDMSTravelRoutesForm,

setDMSTravelRoutes,

Chart2DMSImpl:setRelatedRoutes

1.5.2.1.4.18

The system shall support setting the arbitration queue level

at which a travel time message should be added to the

arbitration queue for a DMS.

DMS

Specify DMS

Traveler Information

Message Settings

parseBasicConfigSettings,

Chart2DMSImpl:setQueueLevels

1.5.2.1.4.18.1

The system shall consider any traveler information message

that contains at least one travel time field but no toll rate

fields a travel time message.

DMS
Activate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

CHART R3B3 Detailed Design 6-6 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.2.1.4.18.2
The arbitration queue level at which travel time messages

are added shall default to the Travel Time level for a DMS.
DMS

Specify DMS

Traveler Information

Message Settings

parseBasicConfigSettings

1.5.2.1.4.19

The system shall support setting the arbitration queue level

at which a toll rate message should be added to the

arbitration queue for a DMS.

DMS

Specify DMS

Traveler Information

Message Settings

parseBasicConfigSettings,

Chart2DMSImpl:setQueueLevels

1.5.2.1.4.19.1

The system shall consider any traveler information message

that contains at least one toll rate field as a toll rate

message (regardless of other fields the message may

contain such as travel time fields).

DMS
Activate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

1.5.2.1.4.19.2
The arbitration queue level at which toll rate messages are

added shall default to the Toll Rate level for a DMS.
DMS

Specify DMS

Traveler Information

Message Settings

parseBasicConfigSettings

1.5.2.1.5

The system shall allow a suitably privileged user to add a

new device which communicates via an implemented

protocol over an implemented communications medium.

EXISTING N/A DeviceUtility:PortLocatorClasses

1.5.2.1.5.6
The system shall support DMS communication via a

TCP/IP communications medium.
DMS

Communicate With

DMS
DeviceUtility:PortLocatorClasses

1.5.2.1.5.7
The system shall support TSS communication via a TCP/IP

communications medium.
TSS

Communicate With

TSS

1.5.2.1.7

The system shall provide an API to implement DMS

functionality specified in the NTCIP standard NEMA

TS3.6.

DMS
Set NTCIP DMS

Message

1.5.2.1.7.1
The system shall automatically set the default Font number

before displaying a message for a NTCIP DMS.
DMS

Set NTCIP DMS

Message
NTCIPProtocolHandler:SetMessage

1.5.2.1.7.2
The system shall automatically set the default line spacing

before displaying a message for an NTCIP DMS.
DMS

Set NTCIP DMS

Message
NTCIPProtocolHandler:SetMessage

1.5.2.1.8

Phone numbers associated with a HAR will be viewable

through the Properties option for that HAR in the

Navigator. The system shall support configuration

parameters for HAR devices. *

EXISTING View HAR Details GUIVideoDataClasses CD

1.5.2.1.8.4
The system shall support setting device location for a HAR

as specified in 1.5.2.4.
HAR

Configure HAR, Set

Device Location

GUIHARClasses, GUIHARServletClasses,

getEditHARLocationForm,

EditHARLocationSupporter.setObjectLocation

HARControlModule CD

CHART R3B3 Detailed Design 6-7 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.2.1.9

The GUI shall provide the capability to show the id of each

device. The system shall support configuration parameters

for SHAZAM devices. *

EXISTING
View SHAZAM

Details
GUISHAZAMClasses

1.5.2.1.9.10
The system shall support setting the location of a

SHAZAM as specified in 1.5.2.4.
SHAZAM

Configure SHAZAM,

Set Device Location

GUISHAZAMClasses,

GUISHAZAMServletClasses,

getSHAZAMEditLocationForm,

EditSHAZAMLocationSupporter:setObjectLoc

ation

SHAZAMControlModule CD

1.5.2.1.17
The system shall support configuration parameters for TSS

(Traffic Sensor System) devices (detectors).
EXISTING N/A

1.5.2.1.17.7
The system shall support setting TSS location as specified

in 1.5.2.4.
TSS

Configure Detector,

Set Device Location

TSSReqHdlr:getEditTSSLocationForm,

EditTSSLocationSupporter:setObjectLocation

TSSControlModuleCD

1.5.2.1.17.8

The system shall support setting a responsible Center for a

TSS which is to receive the Device Failure Alert when the

device goes into hardware failure.

EXISTING N/A

1.5.2.1.17.9
The system shall support setting IP Address and TCP port

number for a TSS that supports TCP/IP protocol.
TSS

Configure Detector,

Specify TCPIP

Device Connection,

View TCPIP Port

Configuration

setTSSConfigCommSettings

TSSManagementModulePackage CD

DeviceUtility:PortLcoatorClasses

PolledTSSImpl:setConfiguration

1.5.2.1.18

1.5.2.1.18 The system shall support setting

configuration parameters for Cameras. [NEW BUT

ALREADY IMPLEMENTED]

EXISTING View Camera Details
GUIVideoDataClasses CD

1.5.2.1.18.1
The system shall support setting the device location of a

camera as in 1.5.2.4.
Video

Configure Camera,

Set Device Location

EditCameraLocationSupporter:setObjectLocati

on,

VideoSourceConfigReqHdlr:getEditCameraLo

cationForm

Common2 CD

VideoHighLevel-VideoSource

1.5.2.1.20
The system shall not allow the user to change the

configuration parameters for an External Device.
Device

Configure DMS,

Configure Detector

GUIDMSDataClasses

GUITSSDataClasses

ExternalDMS:SetExternalConfiguration

CHART R3B3 Detailed Design 6-8 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.2.4

The system shall allow the user with appropriate rights to

select specify the equipment location by lat/long when

supported by the equipment type. *

HEADER
View Device

Location Details

chartlite.servlet.location_classes,

SpecifyLocationReqHdlr:displayEditObjectLoc

ationDataForm,

SpecifyLocationReqHdlr:getEditObjectLocatio

nDataXML,

SpecifyLocationReqHdlr:setObjectLocationDat

aXML

1.5.2.4.1
The system shall support viewing and setting the State

where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.2
The system shall support viewing and setting the County

where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.3
The system shall support viewing and setting the Route

Type where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.4
The system shall support viewing and setting the Route

where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.4.1

The system shall support an indicator stating whether the

route number or route name is to be used when displaying

the route where the device is located.

Device Set Device Location
chartlite.servlet.location_classes

Common2 CD

1.5.2.4.5
The system shall support viewing and setting the Direction

of the Route where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.5.1

The system shall support bi-directional directions.

(Examples: North/South, East/West, Inner Loop/Outer

Loop)

Device Set Device Location
chartlite.servlet.location_classes

Common2 CD

1.5.2.4.6

The system shall support the following proximity

descriptions for describing the location of the device

relative to the intersecting feature (if any): AT, PAST,

PRIOR, NORTH OF, SOUTH OF, WEST OF, EAST OF.

Device Set Device Location
chartlite.servlet.location_classes

Common2 CD

1.5.2.4.7

The system shall support viewing and setting the

intersecting route to specify the location of the device along

a route.

Device Set Device Location
chartlite.servlet.location_classes

Common2 CD

1.5.2.4.7.1

The system shall support an indicator stating whether the

intersecting route number or name is to be used when

displaying the route where the device is located.

Device Set Device Location
chartlite.servlet.location_classes

Common2 CD

1.5.2.4.8
The system shall support viewing and setting the State

Milepost of the route where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

CHART R3B3 Detailed Design 6-9 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.2.4.9
The system shall support viewing and setting the Latitude

where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.10
The system shall support viewing and setting the Longitude

where a device is located.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.12
The system shall support viewing and setting a text

description of a device location.
Device Set Device Location

chartlite.servlet.location_classes

Common2 CD

1.5.2.4.12.1
The system shall require the location description to be

specified.
Device Set Device Location

SpecifyLocationReqHdlr:setObjectLocationDat

aXML

1.5.2.4.12.2
The system shall automatically generate the location

description based on the other location fields specified.
Device Set Device Location

1.5.2.4.12.3
The system shall allow the user to override the system

generated location description.
Device Set Device Location

1.5.2.4.12.3.1
The system shall warn the user when overriding the

generated location description for a device.
Device Set Device Location

1.5.2.4.13

The system shall not allow the user to specify the

equipment location if the equipment data is imported from

an external system.

Device
Configure DMS,

Configure Detector

getEditDMSLocationForm,

getEditTSSLocationForm

Common2 CD

DMSControl CD

1.5.5 VIEW DEVICE LISTS HEADER N/A

1.5.5.1
The system shall allow the user to view the list of DMSs

that exist in the system.
EXISTING N/A

1.5.5.1.1
The system shall allow the user to view detailed data for

each DMS in the list
EXISTING N/A

1.5.5.1.1.6
The detailed data displayed for a DMS shall include the

County where the DMS is located (if specified).
DMS View DMS List

chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.7
The detailed data displayed for a DMS shall include the

Route where the DMS is located (if specified).
DMS View DMS List

chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.8

The detailed data displayed for a DMS shall include the

Direction of the route where the DMS is located (if

specified).

DMS View DMS List
chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.9
The detailed data displayed for a DMS shall include the

Port Managers assigned to a DMS.
DMS View DMS List

chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.9.1
The DMS's port managers within the list shall be hidden by

default.
DMS View DMS List DMSListSupporter:createDynList

CHART R3B3 Detailed Design 6-10 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.1.1.10

The detailed data displayed for a DMS shall include the

connection site name (i.e., the name of the server from

which the object is served).

DMS View DMS List
chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.10.1
The DMS connection site name within the list shall be

hidden by default.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.1.11

The detailed data displayed for a DMS shall include an

indicator of whether or not a DMS's travel time schedule is

overridden.

DMS View DMS List
chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.11.1
The DMS travel time schedule overridden indicator within

the list shall be hidden by default.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.1.12
The detailed data displayed for a DMS shall include the

State Milepost where the DMS is located (if specified).
DMS View DMS List

chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.12.1
The State Milepost for a DMS within the list shall be

hidden by default.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.1.13
The detailed data displayed for a DMS shall include the

Owning Organization of the device.
DMS View DMS List

chartlite.servlet.dms_dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.1.13.1
The Owning Organization for a DMS within the list shall

be hidden by default.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2
The system shall allow the user to sort the list of DMSs that

exist in the system.
EXISTING View DMS List DMSListSupporter:createDynList

1.5.5.1.2.6
The system shall allow the user to sort the list of DMSs by

County.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2.7
The system shall allow the user to sort the list of DMSs by

Route.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2.8
The system shall allow the user to sort the list of DMSs by

Direction.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2.9
The system shall allow the user to sort the list of DMSs by

Port Manager name.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2.10
The system shall allow the user to sort the list of DMSs by

Connection Site name.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2.11
The system shall allow the user to sort the list of DMSs by

Travel Time schedule overridden indicator.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2.12
The system shall allow the user to sort the list of DMSs by

State Milepost.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.2.13
The system shall allow the user to sort the list of DMSs by

Owning Organization.
DMS View DMS List DMSListSupporter:createDynList

CHART R3B3 Detailed Design 6-11 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.1.3
The system shall allow the user to filter the list of DMSs

that exist in the system.
EXISTING View DMS List DMSListSupporter:createDynList

1.5.5.1.3.4
The system shall allow the user to filter the list of DMSs by

County.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.5
The system shall allow the user to filter the list of DMSs by

Route.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.6
The system shall allow the user to filter the list of DMSs by

Direction.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.7
The system shall allow the user to filter the list of DMSs by

Port Manager name.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.8
The system shall allow the user to filter the list of DMSs by

Connection Site name.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.9
The system shall allow the user to filter the list of DMSs by

Owning Organization.
DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.10

The system shall allow the user to filter the list of DMSs by

the Travel Time Schedule Overridden indicator

(overridden, not overridden, or not applicable)

DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.11

The system shall allow the user to filter the list of DMSs to

include/exclude external DMSs, if the user has the right to

view external DMSs.

DMS View DMS List
chartlite.servlet.dms.dynlist_classes,

DMSListSupporter:createDynList

1.5.5.1.3.11.1
The system shall automatically filter out external DMSs if

the user does not have the right to view external DMSs.
DMS View DMS List

DMSListSupporter:createDynList,

DMSControlClassDiagram-ExternalDMS CD

1.5.5.1.3.12

The system shall allow the user to filter the list of DMSs to

include/exclude internal (CHART) DMSs, if the user has

the right to view external DMSs.

DMS View DMS List DMSListSupporter:createDynList

1.5.5.1.3.13

When the DMS list is filtered such that external DMSs are

included, the system shall allow the user to filter the list to

include/exclude external devices on an agency by agency

basis. (For example, view VDOT DMSs, but not DDOT

DMSs).

DMS View DMS List

DMSListSupporter:createDynList,

DMSControlClassDiagram-ExternalDMS CD,

ExternalDMS CD

1.5.5.2
The system shall allow the user to view the list of HARs

that exist in the system.
EXISTING View HAR List

HARListSupporter:createDynList

1.5.5.2.1
The system shall allow the user to view detailed data for

each HAR in the list
EXISTING N/A

HARListSupporter:createDynList

1.5.5.2.1.7
The detailed data displayed for a HAR shall include the

County where the HAR is located (if specified).
HAR View HAR List

HARListSupporter:createDynList

CHART R3B3 Detailed Design 6-12 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.2.1.8
The detailed data displayed for a HAR shall include the

Route where the HAR is located (if specified).
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.1.9

The detailed data displayed for a HAR shall include the

Direction of the route where the HAR is located (if

specified).

HAR View HAR List
HARListSupporter:createDynList

1.5.5.2.1.10
The detailed data displayed for a HAR shall include the

Port Managers assigned to a HAR.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.1.10.1
The HAR's port managers within the list shall be hidden by

default.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.1.11

The detailed data displayed for a HAR shall include the

connection site name (i.e., the name of the server from

which the object is served).

HAR View HAR List
HARListSupporter:createDynList

1.5.5.2.1.11.1
The HAR connection site name within the list shall be

hidden by default.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.1.12
The detailed data displayed for a HAR shall include the

State Milepost where the HAR is located (if specified).
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.1.12.1
The State Milepost for a HAR within the list shall be

hidden by default.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.1.13
The detailed data displayed for a HAR shall include the

Owning Organization of the device.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.1.13.1
The Owning Organization for a HAR within the list shall

be hidden by default.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.2
The system shall allow the user to sort the list of HARs that

exist in the system.
EXISTING View HAR List

HARListSupporter:createDynList

1.5.5.2.2.7
The system shall allow the user to sort the list of HARs by

County.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.2.8
The system shall allow the user to sort the list of HARs by

Route.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.2.9
The system shall allow the user to sort the list of HARs by

Direction.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.2.10
The system shall allow the user to sort the list of HARs by

Port Manager name.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.2.11
The system shall allow the user to sort the list of HARs by

Connection Site name.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.2.12
The system shall allow the user to sort the list of HARs by

State Milepost.
HAR View HAR List

HARListSupporter:createDynList

CHART R3B3 Detailed Design 6-13 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.2.2.13
The system shall allow the user to sort the list of HARs by

Owning Organization.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.3
The system shall allow the user to filter the list of HARs

that exist in the system.
EXISTING View HAR List

HARListSupporter:createDynList

1.5.5.2.3.5
The system shall allow the user to filter the list of HARs by

County.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.3.6
The system shall allow the user to filter the list of HARs by

Route.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.3.7
The system shall allow the user to filter the list of HARs by

Direction.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.3.8
The system shall allow the user to filter the list of HARs by

Port Manager name.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.3.9
The system shall allow the user to filter the list of HARs by

Connection Site name.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.2.3.10
The system shall allow the user to filter the list of HARs by

Owning Organization.
HAR View HAR List

HARListSupporter:createDynList

1.5.5.3
The system shall allow the user to view the list of

SHAZAMs that exist in the system.
EXISTING View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1
The system shall allow the user to view detailed data for

each SHAZAM in the list
EXISTING N/A SHAZAMListSupporter:createDynList

1.5.5.3.1.7
The detailed data displayed for a SHAZAM shall include

the County where the SHAZAM is located (if specified).
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.8
The detailed data displayed for a SHAZAM shall include

the Route where the SHAZAM is located (if specified).
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.9

The detailed data displayed for a SHAZAM shall include

the Direction of the route where the SHAZAM is located

(if specified).

SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.10
The detailed data displayed for a SHAZAM shall include

the Port Managers assigned to a SHAZAM.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.10.1
The SHAZAM's port managers within the list shall be

hidden by default.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.11

The detailed data displayed for a SHAZAM shall include

the connection site name (i.e., the name of the server from

which the object is served).

SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.11.1
The SHAZAM connection site name within the list shall be

hidden by default.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

CHART R3B3 Detailed Design 6-14 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.3.1.12

The detailed data displayed for a SHAZAM shall include

the State Milepost where the SHAZAM is located (if

specified).

SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.12.1
The State Milepost for a SHAZAM within the list shall be

hidden by default.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.13
The detailed data displayed for a SHAZAM shall include

the Owning Organization of the device.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.1.13.1
The Owning Organization for a SHAZAM within the list

shall be hidden by default.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2
The system shall allow the user to sort the list of

SHAZAMs that exist in the system.
EXISTING View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2.7
The system shall allow the user to sort the list of

SHAZAMs by County.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2.8
The system shall allow the user to sort the list of

SHAZAMs by Route.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2.9
The system shall allow the user to sort the list of

SHAZAMs by Direction.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2.10
The system shall allow the user to sort the list of

SHAZAMs by Port Manager name.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2.11
The system shall allow the user to sort the list of

SHAZAMs by Connection Site name.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2.12
The system shall allow the user to sort the list of

SHAZAMs by State Milepost.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.2.13
The system shall allow the user to sort the list of

SHAZAMs by Owning Organization.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.3
The system shall allow the user to filter the list of

SHAZAMs that exist in the system.
EXISTING View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.3.3
The system shall allow the user to filter the list of

SHAZAMs by County.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.3.4
The system shall allow the user to filter the list of

SHAZAMs by Route.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.3.5
The system shall allow the user to filter the list of

SHAZAMs by Direction.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.3.6
The system shall allow the user to filter the list of

SHAZAMs by Port Manager name.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.3.3.7
The system shall allow the user to filter the list of

SHAZAMs by Connection Site name.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

CHART R3B3 Detailed Design 6-15 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.3.3.8
The system shall allow the user to filter the list of

SHAZAMs by Owning Organization.
SHAZAM View SHAZAM list SHAZAMListSupporter:createDynList

1.5.5.4
The system shall allow the user to view the list of Detectors

that exist in the system.
EXISTING View Detector List TSSListSupporter:createDynList

1.5.5.4.1
The system shall allow the user to view detailed data for

each Detector in the list
EXISTING N/A TSSListSupporter:createDynList

1.5.5.4.1.6
The detailed data displayed for a Detector shall include the

County where the Detector is located (if specified).
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.7
The detailed data displayed for a Detector shall include the

Route where the Detector is located (if specified).
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.8

The detailed data displayed for a Detector shall include the

Direction of the route where the Detector is located (if

specified).

TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.9
The detailed data displayed for a Detector shall include the

Port Managers assigned to a Detector.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.9.1
The Detector's port managers within the list shall be hidden

by default.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.10

The detailed data displayed for a Detector shall include the

connection site name (i.e., the name of the server from

which the object is served).

TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.10.1
The Detector connection site name within the list shall be

hidden by default.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.11
The detailed data displayed for a Detector shall include the

State Milepost where the Detector is located (if specified).
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.11.1
The State Milepost for a Detector within the list shall be

hidden by default.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.12
The detailed data displayed for a Detector shall include the

Owning Organization of the detector.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.12.1
The Owning Organization for a Detector within the list

shall be hidden by default.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.1.13

The system shall allow the user to view additional details

for each detector shown in the Detector list. [NEW BUT

ALREADY IMPLEMENTED]

TSS N/A

CHART R3B3 Detailed Design 6-16 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.4.1.13.1

The system shall allow a suitably privileged user to view

the volume, speed, and occupancy data for the zone groups

configured for a detector. [NEW BUT ALREADY

IMPLEMENTED]

TSS N/A

1.5.5.4.1.13.1.1
The speed shown shall be an exact speed or a speed range

depending on the user’s rights.
TSS

View Detector

Details, Configure

TSS Speed Summary

Ranges

GUITSSDataClasses

1.5.5.4.1.13.1.2

The system shall allow a suitably privileged user to view

the volume, speed, and occupancy data for each zone

included in a zone group.

TSS
View Lane Specific

Data

GUITSSDataClasses,

TSSManagementModulePkg CD

1.5.5.4.2
The system shall allow the user to sort the list of Detectors

that exist in the system.
EXISTING View Detector List TSSListSupporter:createDynList

1.5.5.4.2.6
The system shall allow the user to sort the list of Detectors

by County.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.2.7
The system shall allow the user to sort the list of Detectors

by Route.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.2.8
The system shall allow the user to sort the list of Detectors

by Direction.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.2.9
The system shall allow the user to sort the list of Detectors

by Port Manager name.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.2.10
The system shall allow the user to sort the list of Detectors

by Connection Site name.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.2.11
The system shall allow the user to sort the list of Detectors

by State Milepost.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.2.12
The system shall allow the user to sort the list of Detectors

by Owning Organization.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.3
The system shall allow the user to filter the list of Detectors

that exist in the system.
EXISTING View Detector List TSSListSupporter:createDynList

1.5.5.4.3.3
The system shall allow the user to filter the list of Detectors

by County.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.3.4
The system shall allow the user to filter the list of Detectors

by Route.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.3.5
The system shall allow the user to filter the list of Detectors

by Direction.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.3.6
The system shall allow the user to filter the list of Detectors

by Port Manager name.
TSS View Detector List TSSListSupporter:createDynList

CHART R3B3 Detailed Design 6-17 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.4.3.7
The system shall allow the user to filter the list of Detectors

by Connection Site name.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.3.8
The system shall allow the user to filter the list of Detectors

by Owning Organization.
TSS View Detector List TSSListSupporter:createDynList

1.5.5.4.3.9

The system shall allow the user to filter the list of Detectors

to include/exclude external Detectors, if the user has the

right to view external Detectors.

TSS View Detector List
TSSListSupporter:createDynList,

TSSManagement CD

1.5.5.4.3.9.1

The system shall automatically filter out external Detectors

if the user does not have the right to view external

Detectors.

TSS View Detector List
TSSListSupporter:createDynList,

TSSManagement CD

1.5.5.4.3.10

The system shall allow the user to filter the list of Detectors

to include/exclude internal (CHART) Detectors, if the user

has the right to view external Detectors.

TSS View Detector List
TSSListSupporter:createDynList,

TSSManagement CD

1.5.5.4.3.11

When the Detector list is filtered such that external

Detectors are included, the system shall allow the user to

filter the list to include/exclude external devices on an

agency by agency basis. (For example, view VDOT

Detectors, but not DDOT Detectors).

TSS View Detector List
TSSListSupporter:createDynList,

TSSManagement CD

1.5.5.5
The system shall allow the user to view the list of Cameras

that exist in the system.
EXISTING View Camera List

VideoSourceListSupporter:createDynList

1.5.5.5.1
The system shall allow the user to view detailed data for

each Camera in the list
EXISTING N/A VideoSourceListSupporter:createDynList

1.5.5.5.1.6
The detailed data displayed for a Camera shall include the

County where the Camera is located (if specified).
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.1.7
The detailed data displayed for a Camera shall include the

Route where the Camera is located (if specified).
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.1.8

The detailed data displayed for a Camera shall include the

Direction of the route where the Camera is located (if

specified).

Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.1.9
The detailed data displayed for a Camera shall include the

State Milepost where the Camera is located (if specified).
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.1.9.1
The State Milepost for a Camera within the list shall be

hidden by default.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.1.10
The detailed data displayed for a Camera shall include the

Owning Organization of the camera.
Video View Camera List VideoSourceListSupporter:createDynList

CHART R3B3 Detailed Design 6-18 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.5.1.10.1
The Owning Organization for a Camera within the list shall

be hidden by default.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.1.11
The detailed data displayed for a Camera shall include the

Connection Site name.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.1.11.1
The Connection Site name for a Camera within the list

shall be hidden by default.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.2
The system shall allow the user to sort the list of Cameras

that exist in the system.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.2.6
The system shall allow the user to sort the list of Cameras

by County.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.2.7
The system shall allow the user to sort the list of Cameras

by Route.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.2.8
The system shall allow the user to sort the list of Cameras

by Direction.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.2.9
The system shall allow the user to sort the list of Cameras

by State Milepost.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.2.10
The system shall allow the user to sort the list of Cameras

by Owning Organization.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.2.11
The system shall allow the user to sort the list of Cameras

by Connection Site name.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.3
The system shall allow the user to filter the list of Cameras

that exist in the system.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.3.4
The system shall allow the user to filter the list of Cameras

by County.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.3.5
The system shall allow the user to filter the list of Cameras

by Route.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.3.6
The system shall allow the user to filter the list of Cameras

by Direction.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.3.7
The system shall allow the user to filter the list of Cameras

by Owning Organization.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.5.3.8
The system shall allow the user to filter the list of Cameras

by Connection Site name.
Video View Camera List VideoSourceListSupporter:createDynList

1.5.5.6
The system shall allow the user to view the list of Monitors

that exist in the system.
Video View Monitor List MonitorListSupporter:createDynList

1.5.5.6.1
The system shall allow the user to view detailed data for

each Monitor in the list
Video N/A MonitorListSupporter:createDynList

1.5.5.5.1.6
The detailed data displayed for a Monitor shall include the

Connection Site name.
Video View Monitor List MonitorListSupporter:createDynList

CHART R3B3 Detailed Design 6-19 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

1.5.5.5.1.6.1
The Connection Site name for a Monitor within the list

shall be hidden by default.
Video View Monitor List MonitorListSupporter:createDynList

1.5.5.6.2
The system shall allow the user to sort the list of Monitors

that exist in the system.
Video View Monitor List MonitorListSupporter:createDynList

1.5.5.6.2.6
The system shall allow the user to sort the Monitor list by

Connection Site name.
Video View Monitor List MonitorListSupporter:createDynList

1.5.5.6.3
The system shall allow the user to filter the list of Monitors

that exist in the system.
Video View Monitor List MonitorListSupporter:createDynList

1.5.5.6.3.5
The system shall allow the user to filter the Monitor list by

Connection Site name.
Video View Monitor List MonitorListSupporter:createDynList

1.5.5.7
The system shall allow the user to choose the columns to

display in a device list.
Device

View DMS List,

View Monitor List,

View HAR List,

View SHAZAM List,

View Camera List,

View Monitor List,

Set Column Visibility

DynListReqHdlrDelegate.createDynList,

setColumnVisibility, DynamicListClasses

1.5.5.7.1
The column containing the device name shall always be

displayed.
Device Set Column Visibility

DMSListSupporter.createDynList

HARListSupporter:createDynList

SHAZAMListSupporter:createDynList

TSSListSupporter:createDynList

VideoSourceListSupporter:createDynList,

MonitorListSupporter:createDynList,

1.5.5.7.2

The system shall store the user’s selection for columns to

be displayed and initially show only the selected columns

the next time the list is shown.

Device Set Column Visibility
DynListReqHdlrDelegate.createDynList,

setColumnVisibility, DynamicListClasses

1.5.5.7.2.1

The user’s column display selection shall be stored on a

per-user basis on the computer currently in use by the user.

(A browser cookie)

Device Set Column Visibility
DynListReqHdlrDelegate.createDynList,

setColumnVisibility, DynamicListClasses

1.5.5.7.2.2

The user’s column display selection shall be per device list.

(The settings for the DMS list can be different than those

for the HAR list, etc.)

Device Set Column Visibility
DynListReqHdlrDelegate.createDynList,

setColumnVisibility, DynamicListClasses

3 MONITOR TRAFFIC AND ROADWAYS HEADER N/A

3.2 RECORD CONDITIONS HEADER N/A

CHART R3B3 Detailed Design 6-20 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

3.2.1

The system shall capture data from internal CHART

detectors, sensors, and probes that automatically send their

data to the CHART database when they are polled or send

their signal. *

EXISTING N/A

3.2.2

The system shall automatically send the recorded data from

internal CHART detectors and sensors to the archive after

the pre-determined time. *

EXISTING N/A

3.2.2.1
The system shall archive all detector traffic monitoring data

per detection zone. *
EXISTING N/A

3.3 ISSUE ALERT OR POST INFORMATION HEADER N/A

3.3.10
The system shall prevent duplicate, non-closed alerts from

being displayed to users.
EXISTING N/A

3.3.10.7

Two External Connection Alerts shall be considered

duplicates when the external connection they reference are

the same.

External

Interface

Confirm Unique

Alert

compare() in ExternalConnectionAlertImpl in

AlertModule CD

3.3.10.8
Two External Event Alerts shall be considered duplicates

when the external event they reference are the same.

External

Interface

Confirm Unique

Alert

compare() in ExternalEventAlertImpl in

AlertModule CD

3.3.10.9
Two Travel Time Alerts shall be considered duplicates

when the travel route they reference are the same.
Travel Times

Confirm Unique

Alert

compare() in TravelTimeAlertImpl in

AlertModule CD

3.3.10.10

Two Toll Rate Alerts shall be considered duplicates when

the travel route they reference are the same and the alert

description text is identical.

Toll Rates
Confirm Unique

Alert

compare() in TollRateAlertImpl in

AlertModule CD

3.4 RECEIVE AND RESPOND TO ALERT HEADER N/A

3.4.1. A suitably privileged operator shall be able to view alerts.* EXISTING View Alerts
viewAlertsInitialView,

viewAlertsPeriodicUpdate

3.4.1.1.
The system shall display alerts at all times on the CHART

home page.
EXISTING View Alerts

viewAlertsInitialView,

viewAlertsPeriodicUpdate

3.4.1.1.3
The system shall provide a visual cue to the user when

there are alerts in the “New” state.
EXISTING View Alerts viewNewAlerts

3.4.1.1.4
The system shall provide an audio cue to the user when

there are alerts in the “New” state.
EXISTING View Alerts getAlertSound

3.4.1.1.4.1
The system shall allow an administrator to configure the

sound that is played as the audio cue, per alert type.
EXISTING

Configure R3B3

Alert Types
ConfigureAlertAudioCue

CHART R3B3 Detailed Design 6-21 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

3.4.1.1.4.3

The systems shall play the corresponding audio cue (by

alert type) to the user upon receipt by the user session of

the new alert.

EXISTING View Alerts viewNewAlerts

3.4.2.

A suitably privileged user shall be able to manage alerts

through the following states: New, Accepted, Delayed, and

Closed.

EXISTING

R3B3ManageAlertsA

ndNotifications

diagram

performAlertAction

3.4.2.6
A suitably privileged user shall be able to Resolve alerts in

the New, Accepted, and Delayed states
EXISTING Resolve Alert resolveAlert

3.4.2.6.9

Clicking the Resolve link of an External Connection Alert

shall cause the external connection status list to be

displayed.

External

Interface
Resolve Alert resolveAlert

3.4.2.6.10

Clicking the Resolve link of an External Event Alert shall

cause the details page for the external event to be

displayed.

External

Interface
Resolve Alert resolveAlert

3.4.2.6.11

Clicking the Resolve link of a Travel Time Alert shall

cause the details page for the associated Travel Route to be

displayed.

Travel Times Resolve Alert resolveAlert

3.4.2.6.12

Clicking the Resolve link of a Toll Rate Alert shall cause

the details page for the associated Travel Route to be

displayed.

Toll Rates Resolve Alert resolveAlert

4 MANAGE EVENTS HEADER N/A

4.2 OPEN EVENT HEADER N/A

4.2.1
The system shall allow a suitably privileged user to create a

new event.
EXISTING N/A

4.2.1.3
The system shall store the associated Center with each

event entry.
EXISTING N/A

4.2.1.3.2
The system shall support the transfer of responsibility for

an open event from one Center to another.
EXISTING

Transfer Traffic

Event

4.2.1.3.2.1

When a traffic event is transferred to a new operations

center, the system shall reassign the owning organization to

the owning organization of the operations center to which

the traffic event has been transferred.

Public /

Private Data

Sharing

Transfer Traffic

Event

4.2.1.8

The system shall assign a Traffic Event an owning

organization based on the owning organization of the

operations center the creating user has logged into.

Public Private

Data Sharing

Create Traffic Event

1

CHART R3B3 Detailed Design 6-22 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

4.2.3

DEPLOY RESOURCES The system shall allow the user

to view the pre-defined decision support plans to suggest

the course of action and notifications, and execute the

selected (or modified) course of action. The ability to

record the deploying of resources only applies to user

generated events – not External Events.*

FUTURE N/A

4.2.3.2

EVALUATE EVENT RESPONSE

RECOMMENDATIONS. The system shall display the

most appropriate corresponding recommended response

plan from the pre-defined decision support plans, based on

the event type, conditions, day of week and time of day

(e.g., to determine closest open maintenance shop),

location, and area of responsibility.

FUTURE N/A

4.2.3.2.1

The system shall display the recommended DMS, HAR,

Detector, Detectpr. SHAZAM, CCTV camera and monitor

usage and the corresponding message/control, based on the

event location *

Close

Devices

View Devices Near

Event

TrafficEventReqHdlr: getNearbyDevicesJSON,

getNearbyCameraJSONArray,

getNearbyDMSJSONArray,

getNearbyHARJSONArray,

getNearbyTSSJSONArray,

ServletUtil:getNearbyObjects

4.2.3.2.1.1
The recommended device usage will be available only if

the traffic event has a latitude and longitude specified.

Close

Devices

View Devices Near

Event
getNearbyDevicesJSON

4.2.3.2.1.2
The system shall display all applicable devices located

within a specified radius of the traffic event.

Close

Devices

View Devices Near

Event, Set Close

Device Radius

getNearbyDevicesJSON

4.2.3.2.1.2.1
Devices that do not have a lat/long specified will not be

displayed.

Close

Devices

View Devices Near

Event
getNearbyDevicesJSON

4.2.3.2.1.2.2

The user shall be permitted to change the radius used to

determine if devices should be recommended based on

their location.

Close

Devices

Set Close Device

Radius
getNearbyDevicesJSON

4.2.3.2.1.2.2.1
The user’s current radius setting for each event shall be

retained until the user logs out.

Close

Devices

Set Close Device

Radius
getNearbyDevicesJSON

4.2.3.2.1.2.3

The system shall include both CHART and external

devices as applicable that are located within the specified

radius of the traffic event.

Close

Devices

View Devices Near

Event
getNearbyDevicesJSON

CHART R3B3 Detailed Design 6-23 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

4.2.3.2.1.2.4

The system shall display details for each recommended

DMS as available, including Name/Location Description,

Distance from the Event, Route, Direction, Intersecting

Feature, Current Message, Current Beacon State, Current

Mode (online/offline/maintenance), and current status.

Close

Devices

View Devices Near

Event
getNearbyDMSJSONArray

4.2.3.2.1.2.5

The system shall display the details for each recommended

HAR as available, including Name/Location Description,

Distance from the Event, Route, Direction, Intersecting

Feature, Current Mode, Current Status, and Current

Transmitter Status.

Close

Devices

View Devices Near

Event
getNearbyHARJSONArray

4.2.3.2.1.2.6

The system shall display the details for each recommended

Detector as available, including Name/Location

Description, Distance from the Event, Route, Direction,

Intersecting Feature, Current Mode, Current Status, and

Average Speed.

Close

Devices

View Devices Near

Event
getNearbyTSSJSONArray

4.2.3.2.1.2.6.1

The display of Average Speed for a detector shall be

subject to the user’s rights to view detailed detector VSO

data OR view summary detector VSO data for the

organization which owns the device. (User sees actual

Average Speed, Average Speed Range, or No Average

Speed depending on their user rights).

Close

Devices

View Devices Near

Event
getNearbyTSSJSONArray

4.2.3.2.1.2.7

The system shall display the details for each recommended

Camera as available, including Name/Location Description,

Distance from Event, Route, Direction, Intersecting

Feature, Current Status, Local Monitors where it is

currently displayed, and the Current Controlling Op Center.

Close

Devices

View Devices Near

Event
getNearbyCameraJSONArray

4.2.3.2.1.3

The system shall allow a user with proper rights to choose

to add a recommended DMS to the response plan of the

event.

Close

Devices

Add Close DMS to

Response Plan

(simple variant of existing code, no design

req’d)

4.2.3.2.1.3.1
The system shall add the DMS to the response plan with an

empty message specified.

Close

Devices

Add Close DMS to

Response Plan

(simple variant of existing code, no design

req’d)

4.2.3.2.1.3.2
The system shall not permit an external DMS to be added

to the response plan of the event.

Close

Devices

Add Close DMS to

Response Plan

(simple variant of existing code, no design

req’d)

4.2.3.2.1.4

The system shall allow a user with proper rights to choose

to add a recommended HAR to the response plan of the

event.

Close

Devices

Add Close HAR to

Response Plan

(simple variant of existing code, no design

req’d)

CHART R3B3 Detailed Design 6-24 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

4.2.3.2.1.4.1

The system shall add the HAR to the response plan with an

empty message specified. (default header, empty body,

default trailer)

Close

Devices

Add Close HAR to

Response Plan

(simple variant of existing code, no design

req’d)

4.2.3.3

SELECT/ MODIFY COURSE OF ACTION The system

shall allow the user to accept, modify, or bypass the

decision support recommendations for device usage,

message, and control; for resource requests and

notifications; for equipment type; and for equipment

location.

FUTURE N/A

4.2.3.3.7 SELECT DEVICE PLAN OR PLAN ITEMS HEADER N/A

4.2.3.4 EXECUTE COURSE OF ACTION HEADER N/A

4.2.3.4.7

The system shall automatically send out the selected

messages or notifications to the specified resources in

accordance with the selected course of action.

FUTURE N/A

4.2.3.4.7.1
The system shall provide the capability to automatically

notify individuals of specific system events.
FUTURE N/A

4.2.4
The system shall allow a suitably privileged user to create a

CHART Event from an external event.

External

Interface

Create CHART

Event from External

Event

copyExternalEventAsCHARTEventWIthoutFo

rm

4.2.4.1

When a CHART Event is created from an external event

the system shall automatically associate the CHART Event

with the external event.

External

Interface

Create CHART

Event from External

Event, Associate

CHART Event with

External Event

copyExternalEventAsCHARTEventWIthoutFo

rm

4.3 RESPOND TO AND MONITOR EVENT HEADER N/A

4.3.1

MONITOR EVENT. The system shall allow the user to

view and update the status of devices, resources responding

to an event, and the event response activities.

EXISTING N/A

4.3.1.3 MONITOR DEVICE STATUS HEADER N/A

CHART R3B3 Detailed Design 6-25 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

4.3.1.3.6

For devices that were already displaying a message before

an event was initiated, the system shall automatically

arbitrate the message queue in accordance with the

previously defined business rules. (Suggestion for

validation: there may need to be some adjustments to the

message protocols and arbitration business rules to address

prioritizing messages based on geography and severity in

addition to just event type (which is currently the only

arbitration queue factor). Additional suggestion: Ensure

that travel time messages do note interfere with incident-

related messages.) *

EXISTING
Add Message To

Device Queue

4.3.1.3.6.1
Messages shall be ordered in a queue based on their

priority.
EXISTING

Add Message To

Device Queue

4.3.1.3.6.1.1

A message entering a device queue with a higher priority

than the current message on the device shall preempt the

current message (except where combination rules apply).

EXISTING
Evaluate DMS

Device Queue Entries

4.3.1.3.6.1.3
A preempted message shall be returned to the device

queue.
EXISTING

Evaluate DMS

Device Queue Entries

4.3.1.3.6.1.3.1
The system shall log a message to the operations log when

a message is preempted.
EXISTING

Evaluate DMS

Device Queue Entries

4.3.1.3.6.2
The system shall support a method of specifying which

message types may be combined in a DMS queue.
EXISTING

Evaluate DMS

Device Queue

Entries, Configure

DMS Message

Combination Rules

4.3.1.3.6.3
The system shall allow a suitably privileged user to select

combinations of different message types in a DMS Queue.
EXISTING

Prioritize Device

Queue

4.3.1.3.6.5

The system shall maintain the identity of each unique

message in a combined message such that the process of

creating the combined message can be reversed.

EXISTING
Evaluate DMS

Device Queue Entries

4.3.1.3.6.6

The system shall support the concatenation of messages in

a queue on a single device for simultaneous

display/broadcast.

EXISTING
Evaluate DMS

Device Queue Entries

4.3.1.3.6.7
The system shall maintain attributes for messages in a

device queue.
EXISTING

Add Message To

Device Queue

4.3.1.3.6.7.1
Device queue message attributes shall include the event the

message is associated with.
EXISTING

Add Message To

Device Queue

CHART R3B3 Detailed Design 6-26 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

4.3.1.3.6.7.2
Device queue message attributes shall include the Center

responsible for the message.
EXISTING

Add Message To

Device Queue

4.3.1.3.6.8
The system shall support the assignment of priorities to

queued messages based on the message type/source.
EXISTING

Add Message To

Device Queue

4.3.1.3.6.8.4

The system shall support an arbitration queue priority level

of Toll Rate used for messages informing drivers of the toll

rate to a given destination.

Toll Rates
Add Message To

Device Queue

ArbQueuePriorityLevel in

SystemInterfaces/DeviceManagement

4.3.1.3.6.8.4.1

The Toll Rate level shall have a relative priority level of 7.

(Note – this number is only used to describe its relationship

to other levels in the requirements but does not necessarily

imply a numeric implementation).

Toll Rates
Add Message To

Device Queue

ArbQueuePriorityLevel in

SystemInterfaces/DeviceManagement

4.3.1.3.6.8.5

The system shall support an arbitration queue priority level

of Travel Time used for messages informing drivers of the

travel time to a given destination.

Travel Times
Add Message To

Device Queue

ArbQueuePriorityLevel in

SystemInterfaces/DeviceManagement

4.3.1.3.6.8.5.1

The Travel Time level shall have a relative priority level of

6. (Note – this number is only used to describe its

relationship to other levels in the requirements but does not

necessarily imply a numeric implementation).

Travel Times
Add Message To

Device Queue

ArbQueuePriorityLevel in

SystemInterfaces/DeviceManagement

4.3.5 VIEW EVENT LIST HEADER N/A

4.3.5.1

The system shall allow the user to view a list of Open

events in the system. [NEW BUT ALREADY

IMPLEMENTED]

EXISTING N/A

4.3.5.1.1
The system shall show the Description of the event [NEW

BUT ALREADY IMPLEMENTED]
EXISTING N/A

4.3.5.1.1.1
The system shall allow the user to sort the list by

Description. [NEW BUT ALREADY IMPLEMENTED]
EXISTING N/A

4.3.5.1.2
The system shall show the Location Description of the

event. [NEW BUT ALREADY IMPLEMENTED]
EXISTING N/A

4.3.5.1.2.1
The system shall allow the user to sort the list by Location

Description. [NEW BUT ALREADY IMPLEMENTED]
EXISTING N/A

4.3.5.1.3 The system shall show the Time Opened for an event. Misc View Time Opened

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

CHART R3B3 Detailed Design 6-27 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

4.3.5.1.3.1 The Time Opened shall be hidden in the list by default. Misc View Time Opened

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.3.2
The system shall allow the user to sort the list by Time

Opened.
Misc View Time Opened

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.3.3
The system shall allow the user to filter the list by Time

Opened.
Misc View Time Opened

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.4
The system shall show the Time Last Modified for an

event.
Misc

View Time Last

Modified

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.4.1
The Time Last Modified shall be hidden in the list by

default.
Misc

View Time Last

Modified

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.4.2
The system shall allow the user to sort the list by Time Last

Modified.
Misc

View Time Last

Modified

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.4.3
The system shall allow the user to filter the list by Time

Last Modified.
Misc

View Time Last

Modified

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.5
The system shall show the Percent Of Lanes Closed for an

event.
Misc

View Lane Closed

Percent

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.5.1
The Percent Of Lanes Closed shall be hidden in the list by

default.
Misc

View Lane Closed

Percent

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.5.2
The system shall allow the user to sort the list by Percent

Of Lanes Closed.
Misc

View Lane Closed

Percent

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.5.3
The system shall allow the user to filter the list by Percent

Of Lanes Closed.
Misc

View Lane Closed

Percent

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.6
The system shall show the Network Connection Site for an

event.
Misc

View Network

Connection Site

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

CHART R3B3 Detailed Design 6-28 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

4.3.5.1.6.1
The Network Connection Site shall be hidden in the list by

default.
Misc

View Network

Connection Site

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.6.2
The system shall allow the user to sort the list by Network

Connection Site.
Misc

View Network

Connection Site

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.1.6.3
The system shall allow the user to filter the list by Network

Connection Site.
Misc

View Network

Connection Site

TrafficEventDynListSupporter:createDynList,

createDynListCols, addCol

4.3.5.4
The system shall allow the user to choose the columns to

display in a traffic event list.
Misc

View Traffic Event

List, Set Column

Visibility

TrafficEventDynListSupporter.createDynListC

ols

4.3.5.4.1
The column containing the event name shall always be

displayed.
Misc Set Column Visibility

TrafficEventDynListSupporter.createDynListC

ols

4.3.5.4.2

The system shall store the user’s selection for columns to

be displayed and initially show only the selected columns

the next time the list is shown.

Misc Set Column Visibility
TrafficEventDynListSupporter.createDynListC

ols

4.3.5.4.2.1

The user’s column display selection shall be stored on a

per-user basis on the computer currently in use by the user.

(A browser cookie)

Misc Set Column Visibility
TrafficEventDynListSupporter.createDynListC

ols

4.3.5.4.2.2

The user’s column display selection shall be per list type.

(The settings for the Open Events list can be different than

those for the Pending Events list, etc.)

Misc Set Column Visibility
TrafficEventDynListSupporter.createDynListC

ols

5 MANAGE TRAFFIC HEADER N/A N/A

5.3 CALCULATE TRAVEL TIMES (see also 2.3.2) HEADER N/A N/A

5.3.6
The system shall calculate the travel time for a travel route

that contains one or more roadway links.

Travel Times

/ Toll Rates

Compute Route

Travel Time

TravelRouteFactoryImpl:updateLinkData,

TravelRouteFactoryImpl:computeTravelTime

5.3.6.1

The system shall compute the travel time for a travel route

by summing the travel time calculations for each of the

travel route’s roadway links.

Travel Times

/ Toll Rates

Compute Route

Travel Time
TravelRouteFactoryImpl:computeTravelTime

5.3.6.1.1

The travel time for each roadway link shall be computed by

multiplying the current travel time of the roadway link by a

configured “percent included” setting for the roadway link.

(This setting is specified in 5.4.1.5.4)

Travel Times

/ Toll Rates

Compute Route

Travel Time
TravelRouteFactoryImpl:computeTravelTime

CHART R3B3 Detailed Design 6-29 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.3.6.2

The system shall make the route travel time unavailable if

the number of roadway links which do not meet its

assigned quality level is greater than the number of links

allowed to fall below their assigned quality level for the

travel route. (These settings are discussed in 5.4.1.5.4.2 and

5.4.1.14)

Travel Times

/ Toll Rates

Compute Route

Travel Time
TravelRouteFactoryImpl:computeTravelTime

5.3.6.3

The system shall issue Travel Time Alerts based on the

computed travel time for a travel route using the settings as

specified in 5.4.1.11.

Travel Times

/ Toll Rates

Compute Route

Travel Time, Create

Travel Time Alert

TravelRouteFactoryImpl:computeTravelTime

5.3.6.4

The system shall issue Travel Time Notifications based on

the computed travel time for a travel route using the

settings as specified in 5.4.1.11.

Travel Times

/ Toll Rates

Compute Route

Travel Time, Send

Travel Time

Notification

TravelRouteFactoryImpl:computeTravelTime

5.4

MAINTAIN TRAVEL ROUTES. The system shall

maintain “travel routes” for the purpose of managing and

posting travel times and toll rates on those routes.

HEADER N/A TravelRouteModule

5.4.1
The system shall allow a suitably privileged user to add a

travel route to the system.

Travel Times

/ Toll Rates
Add Travel Route

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.1
The system shall require the user to specify a descriptive

name for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

validateConfig in

TravelRouteFactoryImpl:addRoute

5.4.1.2

The system shall require the user to specify a preferred

destination name for the travel route for use in DMS

messages.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

validateConfig in

TravelRouteFactoryImpl:addRoute

5.4.1.3

The system shall allow the user to specify an alternate

destination name for the travel route for use in DMS

messages.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.3.1

The system shall require that the alternate destination name

(if entered) be shorter in length than the preferred

destination name for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

validateConfig in

TravelRouteFactoryImpl:addRoute

5.4.1.4

The system shall allow the user to specify a second

alternate destination name for the travel route for use in

DMS messages.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

validateConfig in

TravelRouteFactoryImpl:addRoute

5.4.1.4.1

The system shall require that the second alternate

destination name (if entered) be shorter in length than the

first alternate destination name for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

validateConfig in

TravelRouteFactoryImpl:addRoute

CHART R3B3 Detailed Design 6-30 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.1.5
The system shall allow the user to specify the roadway

links that comprise a travel route.

Travel Times

/ Toll Rates

Add Roadway Links

To Travel Route, Edit

Roadway Link Usage

In Travel Route,

Modify Roadway

Link Order In Travel

Route, Remove

Roadway Link From

Travel Route

addTravelRouteLinkForm,

addTravelRouteLink,

TravelRouteFactoryImpl:addRoute

5.4.1.5.1
The system shall allow the user to add a roadway link to

the list of roadway links that comprise the travel route.

Travel Times

/ Toll Rates

Add Roadway Links

To Travel Route

addTravelRouteLinkForm,

addTravelRouteLink,

TravelRouteFactoryImpl:addRoute

5.4.1.5.1.1
The system shall allow the user to select a roadway link

from a list of all available roadway links.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, addOrUpdateLink,

findTravelRouteLinksJSON

5.4.1.5.1.2
The system shall allow the user to filter the list of available

roadway links.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

findTravelRouteLinksJSON

5.4.1.5.1.2.1 County shall be an available roadway link filter criteria.
Travel Times

/ Toll Rates

Specify Roadway

Links To Add

findTravelRouteLinksJSON

5.4.1.5.1.2.2 Route type shall be an available roadway link filter criteria.
Travel Times

/ Toll Rates

Specify Roadway

Links To Add

findTravelRouteLinksJSON

5.4.1.5.1.2.3
Route name/number shall be an available roadway link

filter criteria.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, addOrUpdateLink,

findTravelRouteLinksJSON

5.4.1.5.1.2.4
Travel direction shall be an available roadway link filter

criteria.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

findTravelRouteLinksJSON

5.4.1.5.1.2.5
External ID shall be an available roadway link filter

criteria.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

findTravelRouteLinksJSON

5.4.1.5.1.3
The system shall allow the user to select one or more

available roadway links to be added to the travel route.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add
suggestLinks, findTravelRouteLinksJSON

5.4.1.5.1.4

The system shall show details for each roadway link

available for selection, to the extent that such data is

provided and has been imported into the CHART system.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add
suggestLinks, findTravelRouteLinksJSON

5.4.1.5.1.4.1

The available roadway link details shall include the name

of the external system that provides data for the roadway

link.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

INRIXDefLinkImportProgramPkg:importINRI

XLinks

CHART R3B3 Detailed Design 6-31 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.1.5.1.4.2

The available roadway link details shall include the

roadway link’s external ID. (This is the ID by which the

external system identifies the link.)

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

INRIXDefLinkImportProgramPkg:importINRI

XLinks

5.4.1.5.1.4.3
The available roadway link details shall include the

roadway link’s name.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

INRIXDefLinkImportProgramPkg:importINRI

XLinks

5.4.1.5.1.4.4

The available roadway link details shall include the name

and/or number of the route where the roadway link is

located.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

INRIXDefLinkImportProgramPkg:importINRI

XLinks

5.4.1.5.1.4.5
The available roadway link details shall include the travel

direction.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

INRIXDefLinkImportProgramPkg:importINRI

XLinks

5.4.1.5.1.4.6
The available roadway link details shall include the length

of the roadway link, in miles.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

INRIXDefLinkImportProgramPkg:importINRI

XLinks

5.4.1.5.1.4.7
The available roadway link details shall include the county

in which the roadway link is located.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

INRIXDefLinkImportProgramPkg:importINRI

XLinks

5.4.1.5.1.4.8

The available roadway link details shall include the

distance from the prior roadway link shown in the list, in

miles.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add
suggestLinks, findTravelRouteLinksJSON

5.4.1.5.1.4.8.1

The distance from the prior roadway link shall be

calculated as the distance from the end of the prior roadway

link to the beginning of the roadway link.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks, findTravelRouteLinksJSON,

RoadwayLinkManager.suggestLinks

5.4.1.5.1.4.8.2

The distance from prior roadway link for the first available

roadway link shall be the distance from the last roadway

link currently included in the travel route if the travel route

currently includes one or more roadway links.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add
suggestLinks, findTravelRouteLinksJSON

5.4.1.5.1.4.8.3

The distance from prior roadway link for the first available

roadway link shall be N/A if there are no prior roadway

links currently added to the travel route.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add
suggestLinks, findTravelRouteLinksJSON

5.4.1.5.1.5

The system shall allow the user to view a list of suggested

roadway links for selection if the travel route already

contains one or more roadway links.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add

suggestLinks

5.4.1.5.1.5.1

The list of suggested roadway links shall include the

roadway link that has a beginning lat/long that is closest to

the ending lat/long of the last roadway link currently

included in the travel route.

Travel Times

/ Toll Rates

Specify Roadway

Links To Add
suggestLinks

CHART R3B3 Detailed Design 6-32 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.1.5.2

The system shall allow a user to remove a roadway link

from the list of roadway links that comprise the travel

route.

Travel Times

/ Toll Rates

Remove Roadway

Link From Travel

Route

removeTravelRouteLink

5.4.1.5.3
The system shall allow the user to specify the order in

which the roadway links occur on the travel route.

Travel Times

/ Toll Rates

Modify Roadway

Link Order In Travel

Route

moveTravelRouteLink

5.4.1.5.4

The system shall allow the user to specify settings for the

roadway links pertaining to their use within the travel

route.

Travel Times

/ Toll Rates

Edit Roadway Link

Usage In Travel

Route, Specify

Roadway Link Usage

Settings

setTravelRouteLinkSettingsForm,

setTravelRouteLinkSettings,

TravelRouteFactoryImpl:addRoute

5.4.1.5.4.1

The system shall allow the user to set the percentage of the

roadway link’s travel time to be used when computing the

travel route’s travel time and distance.

Travel Times

/ Toll Rates

Specify Roadway

Link Usage Settings

setTravelRouteLinkSettingsForm,

setTravelRouteLinkSettings,

TravelRouteFactoryImpl:addRoute

5.4.1.5.4.2

The system shall allow the user to set the minimum data

quality allowed for the roadway link’s data when using that

data in the travel route.

Travel Times

/ Toll Rates

Specify Roadway

Link Usage Settings

setTravelRouteLinkSettingsForm,

setTravelRouteLinkSettings,

TravelRouteFactoryImpl:addRoute

5.4.1.5.4.2.1
The system shall support a roadway link data quality level

of Low.

Travel Times

/ Toll Rates

Specify Roadway

Link Usage Settings

setTravelRouteLinkSettingsForm,

setTravelRouteLinkSettings,

TravelRouteFactoryImpl:addRoute

5.4.1.5.4.2.2
The system shall support a roadway link quality level of

Medium.

Travel Times

/ Toll Rates

Specify Roadway

Link Usage Settings

setTravelRouteLinkSettingsForm,

setTravelRouteLinkSettings,

TravelRouteFactoryImpl:addRoute

5.4.1.5.4.2.3
The system shall support a roadway link quality level of

High.

Travel Times

/ Toll Rates

Specify Roadway

Link Usage Settings

setTravelRouteLinkSettingsForm,

setTravelRouteLinkSettings,

TravelRouteFactoryImpl:addRoute

5.4.1.6

The system shall allow the user to view the roadway links

that have been specified to comprise the travel route,

including detailed data to the extent that such data is

provided and has been imported into the CHART system.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.1
The system shall display the system that supplies data for

each roadway link.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.2

The system shall display the ID of each roadway link as

specified by the system that provides data for the roadway

link.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

CHART R3B3 Detailed Design 6-33 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.1.6.3 The system shall display the name of each roadway link.
Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.4
The system shall display the name and/or number of the

route where each roadway link is located.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.5
The system shall display the direction of traffic flow for

each roadway link.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.6 The system shall display the length of each roadway link.
Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.7
The system shall display the county in which each roadway

link is located.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.8

The system shall display the distance from the beginning of

each roadway link to the end of the prior link specified for

the travel route.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.6.8.1
The system shall not display a distance from the prior

roadway link for the first roadway link in a travel route.

Travel Times

/ Toll Rates

View Roadway Links

Specified For Travel

Route

addEditTravelRouteForm

5.4.1.7
The system shall allow the user to specify a toll rate source

for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

setTollRateSourceForm, setTollRateSource,

TravelRouteFactoryImpl:addRoute

5.4.1.7.1
The system shall allow the user to select a toll rate source

to provide toll rate data for the travel route.

Travel Times

/ Toll Rates

Select Toll Rate

Source
setTollRateSourceForm, setTollRateSource

5.5.1.7.2

The system shall allow the user to remove the toll rate

source for the travel route (effectively disabling toll rate

data for the travel route)

Travel Times

/ Toll Rates

Remove Toll Rate

Source
removeTollRateSource

5.4.1.8
The system shall require the user to specify the location

data for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.8.1

The system shall allow the user to choose to have the

system derive the location data for the travel route from the

roadway links that comprise the travel route, if the travel

route contains 1 or more roadway links.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute

5.4.1.8.2
The system shall allow the user to manually specify the

location data for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute

CHART R3B3 Detailed Design 6-34 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.1.8.2.1
The system shall require the user to specify 1 or more

counties in which the travel route is located.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.8.2.2
The system shall require the user to specify 1 or more roads

(routes) on which the travel route is located.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.8.2.2.1
The system shall require the user to specify each route’s

route type.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.8.2.2.2
The system shall require the user to specify each route’s

name or number.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.8.2.2.3
The system shall require the user to specify each route’s

direction.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.9

The system shall allow the user to enable travel times for

the travel route if one or more roadway links are specified

for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRout

5.4.1.9.1

The system shall require the user to specify the maximum

travel time for the travel route if travel times are enabled

for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRout

5.4.1.9.1.2

The system shall not display the route’s travel time on any

DMS if the route’s travel time exceeds the specified

maximum value.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime

5.4.1.9.2

The system shall require the user to specify the minimum

travel time for the travel route if travel times are enabled

for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute

5.4.1.9.2.1

The system shall constrain the travel time for the travel

route to the specified minimum value if the travel route’s

travel time is computed to be lower than the specified

minimum value.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime

5.4.1.10

The system shall allow the user to disable travel times for

the travel route if travel times are currently enabled for the

travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute

5.4.1.10.1

The system shall cease to display the travel time from the

travel route on any DMS where it is currently displayed if

travel times for the travel route are disabled.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime,

DMSTravInfoMsgDataSupplier:getData

5.4.1.11

The system shall allow the user to enable travel time alerts

and/or notifications to be sent if one or more roadway links

are specified for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRout

CHART R3B3 Detailed Design 6-35 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.1.11.1

The system shall require the user to specify a travel time

that when exceeded for the travel route will cause the

system to issue an alert, notification, or both for the travel

route, depending on whether travel time alerts and/or

notifications are enabled for the travel route. (This is

referred to as the alert/notification travel time).

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRou

5.4.1.11.2
The system shall allow the user to enable travel time alerts

for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute

5.4.1.11.2.1

The system shall require the user to specify the operations

center to be alerted when the travel route’s travel time

exceeds the alert/notification travel time, when travel time

alerts are enabled for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteFactoryImpl:addRoute

5.4.1.11.2.2

If travel time alerts are enabled for a travel route, the

system shall issue an alert to the specified operations center

whenever the travel time transitions from a time below the

alert/notification travel time to a time equal to or greater

than the alert/notification travel time.

Travel Times

/ Toll Rates

Compute Route

Travel Time, Create

Travel Time Alert

TravelRouteFactoryImpl:computeTravelTime

5.4.1.11.3
The system shall allow the user to enable travel time

notifications for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute

5.4.1.11.3.1

The system shall require the user to specify the notification

group to be notified when the travel route’s travel time

exceeds the alert/notification travel time, when travel time

notifications are enabled for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm,

addEditTravelRouteTravelRouteFactoryImpl:a

ddRoute

5.4.1.11.3.2

If travel time notifications are enabled for a travel route, the

system shall issue a notification to the specified notification

group whenever the travel time transitions from a time

below the alert/notification travel time to a time equal to or

greater than the alert/notification travel time.

Travel Times

/ Toll Rates

Compute Route

Travel Time, Send

Travel Time

Notification

TravelRouteFactoryImpl:computeTravelTime

5.4.1.12
The system shall allow the user to disable travel time alerts

for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.13
The system shall allow the user to disable travel time

notifications for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.14

The system shall allow the user to specify the number of

roadway links whose current data quality may fall below

their configured minimum data quality when computing the

travel time for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

CHART R3B3 Detailed Design 6-36 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.1.15
The system shall allow the user to enable toll rates for the

travel route if the route has a toll rate source specified.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.16
The system shall allow the user to disable toll rates for the

travel route if enabled.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.16.1

The system shall cease to display the toll rate for the travel

route on any DMS when toll rates for the travel route are

disabled.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime,

DMSTravInfoMsgDataSupplier:getData

5.4.1.17

The system shall allow the user to enable toll rate alerts

and/or notifications to be sent if toll rates are enabled for

the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.17.1
The system shall allow the user to enable toll rate alerts for

the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.17.1.1

The system shall require the user to specify the operations

center to be alerted when the travel route’s currently active

toll rate is cleared.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.17.1.2

If toll rate alerts are enabled for a travel route, the system

shall issue an alert to the specified operations center

whenever a currently active toll rate for that travel route is

cleared, provided there is a currently active toll rate

document available in the system.

Travel Times

/ Toll Rates

Create Toll Rate

Alert
TravelRouteFactoryImpl:updateTollRateData

5.4.1.17.2
The system shall allow the user to enable toll rate

notifications for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.17.2.1

The system shall require the user to specify the notification

group to be notified when the travel route’s currently active

toll rate is cleared, when toll rate notifications are enabled

for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.17.2.2

If toll rate notifications are enabled for a travel route, the

system shall issue a notification to the specified notification

group whenever a currently active toll rate for that travel

route is cleared, provided there is a currently active toll rate

document available in the system.

Travel Times

/ Toll Rates

Send Toll Rate

Notification
TravelRouteFactoryImpl:updateTollRateData

5.4.1.18
The system shall allow the user to disable toll rate alerts for

the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

5.4.1.19
The system shall allow the user to disable toll rate

notifications for the travel route.

Travel Times

/ Toll Rates

Set Travel Route

Properties
addEditTravelRouteForm, addEditTravelRoute

CHART R3B3 Detailed Design 6-37 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.2
The system shall allow a suitably privileged user to view

travel routes that exist in the system.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1
The system shall show data for each travel route currently

defined in the system.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.2 The system shall show the name of each travel route.
Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.3
The system shall show the length of each travel route if the

user has selected to display that column.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.4

The system shall show travel time related data if travel time

is applicable to the travel route. (Travel time is not

applicable if the travel route does not have any roadway

links defined, if travel times are disabled for the travel

route, or if there is no current travel time for the travel

route due to a data feed or data quality issue.)

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.4.1

The system shall show the current Travel Time of each

travel route, rounded to the nearest minute, if the user has

selected to display that column.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.4.2

The system shall show the current Travel Time trend for

each travel route if the user has selected to display that

column.

Travel Times

/ Toll Rates

View Travel Route

List, View Travel

Time Trend

viewTravelRoutes

5.4.2.1.4.2.1

Travel time trend shall be computed by comparing the

average of the latest N recent travel times to the average of

the earliest N recent travel times, where N is a configurable

system-wide travel time sample size, the number of recent

travel times to compare.

Travel Times

/ Toll Rates

View Travel Time

Trend
TravelRouteImpl:computeTravelTime

5.4.2.1.4.2.1.1

The recent travel times shall include all travel time

computations for the travel route that have occurred within

the last hour.

Travel Times

/ Toll Rates

View Travel Time

Trend
TravelRouteImpl:computeTravelTime

5.4.2.1.4.2.1.2
The system shall retain at most 12 recent travel times for a

travel route.

Travel Times

/ Toll Rates

View Travel Time

Trend
TravelRouteImpl:computeTravelTime

5.4.2.1.4.2.1.3

The system shall include a configurable system-wide travel

time threshold, specified as a percentage, used when

determining the travel time trend.

Travel Times

/ Toll Rates

View Travel Time

Trend, Configure

Travel Time And

Toll Rate Settings

setTravelTimeMiscSettigns

CHART R3B3 Detailed Design 6-38 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.2.1.4.2.1.4

 The travel time trend shall be “Up” if the recent history

has at least 2N travel times and the average of the N later

travel times is X percent greater than the average of the N

earlier travel times, where N is the system-wide travel time

sample size and X is the system-wide travel time trend

threshold.

Travel Times

/ Toll Rates

View Travel Time

Trend
TravelRouteImpl:computeTravelTime

5.4.2.1.4.2.1.5

 The travel time trend shall be “Down” if the recent history

has at least 2N travel times and the average of the N later

travel times is X percent less than the average of the N

earlier travel times, where N is the system-wide travel time

sample size and X is the system-wide travel time trend

threshold.

Travel Times

/ Toll Rates

View Travel Time

Trend
TravelRouteImpl:computeTravelTime

5.4.2.1.4.2.1.6

The travel time trend shall be “Flat” if the recent history

has less than 2N travel times OR the average of the N later

travel times is within X percent of the average of the N

earlier travel times, where N is the system-wide travel time

sample size and X is the system-wide travel time trend

threshold.

Travel Times

/ Toll Rates

View Travel Time

Trend
TravelRouteImpl:computeTravelTime

5.4.2.1.4.2.2
The system shall allow the user to view the recent travel

time history that was used to compute the travel time trend.

Travel Times

/ Toll Rates

View Travel Time

Trend
viewTravelRoutes

5.4.2.1.4.3
The system shall show the current Speed of traffic for each

travel route if the user has selected to display that column.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.4.3.1

The current travel route speed shall be computed as the

travel route length divided by the current travel route time

and represented as miles per hour.

Travel Times

/ Toll Rates

View Travel Route

List
TravelRouteImpl:computeTravelTime

5.4.2.1.5

The system shall show the current Toll Rate for each travel

route if applicable AND the user has selected to display

that column. (Toll rate is not applicable if the travel route

does not have a toll rate source specified, if toll rates are

disabled for the travel route, or if there is no current toll

rate due to a data feed issue).

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.6

The system shall show the other CHART system objects

currently using each travel route if the user has selected to

display that column.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

CHART R3B3 Detailed Design 6-39 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.2.1.6.1

A CHART DMS system object shall be considered to be

using a travel route if the travel route is used in any pre-

configured DMS message (even if that message is not

active).

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.7

The system shall show the roadway route(s) on which each

travel route is located if the user has selected to display that

column.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.8

The system shall show the direction(s) of traffic flow of

each travel route if the user has selected to display that

column.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.1.9

The system shall show the county(ies) in which each travel

route is located if the user has selected to display that

column.

Travel Times

/ Toll Rates

View Travel Route

List
viewTravelRoutes

5.4.2.2
The system shall allow the user to sort the list of travel

routes.

Travel Times

/ Toll Rates

View Travel Route

List, Sort Travel

Route List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.1
The system shall allow the user to sort the list of travel

routes by travel route name.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.2
The system shall allow the user to sort the list of travel

routes by travel route length.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.3
The system shall allow the user to sort the list of travel

routes by travel time.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.4
The system shall allow the user to sort the list of travel

routes by travel time trend.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.5
The system shall allow the user to sort the list of travel

routes by current speed.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.6
The system shall allow the user to sort the list of travel

routes by toll rate.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.7

The system shall allow the user to sort the list of travel

routes by the name of CHART system objects using the

travel route.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.8

The system shall allow the user to sort the list of travel

routes by the roadway route where the travel route is

located.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.2.9
The system shall allow the user to sort the list of travel

routes by the direction of travel on the travel route.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

CHART R3B3 Detailed Design 6-40 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.2.2.10
The system shall allow the user to sort the list of travel

routes by the county in which a travel route is located.

Travel Times

/ Toll Rates

Sort Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3
The system shall allow the user to filter the list of travel

routes.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.1
The system shall allow the user to filter the list of travel

routes by travel time.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.1.1
Filtering by travel time shall be confined to selection of

hard-coded ranges of travel times.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.2
The system shall allow the user to filter the list of travel

routes by travel time trend.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.3
The system shall allow the user to filter the list of travel

routes by current speed.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.3.1
Filtering by current speed shall be confined to selection of

hard-coded ranges of speeds.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.4
The system shall allow the user to filter the list of travel

routes by toll rate.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.5
The system shall allow the user to filter the list of travel

routes by roadway route.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.6
The system shall allow the user to filter the list of travel

routes by travel direction.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.2.3.7
The system shall allow the user to filter the list of travel

routes by county.

Travel Times

/ Toll Rates

Filter Travel Route

List

viewTravelRoutes,

TravelRouteDynListSupporter:createDynList

5.4.3
The system shall allow a suitably privileged user to view

the details of a travel route.

Travel Times

/ Toll Rates

View Travel Route

Details

viewTravelRouteDetails,

getHistoryBucketTimes, toBucketArray

5.4.3.1

The details displayed shall include the current status data

for the travel route, if available. (Availability of travel

time related data is dependent upon the travel route being

configured to include one or more roadway links, travel

times being enabled for the travel route, and data of a

sufficient quality being supplied for the roadway links.

Availability of toll rate data is dependent on a toll rate

source being specified for the travel route, toll rates being

enabled for the travel route, and the toll rate data being

supplied by the toll rate source.)

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

CHART R3B3 Detailed Design 6-41 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.3.1.1
The current status data displayed for the travel route shall

include the current travel time if available.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.1.2
The current status data displayed for the travel route shall

include the current trend if available.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.1.3
The current status data displayed for the travel route shall

include the current speed if available.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.1.4
The current status data displayed for the travel route shall

include the current toll rate if available.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2
The details displayed shall include data for each roadway

link included in the travel route (if any).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.1
The data displayed for a roadway link shall include its

current travel time.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.2
The data displayed for a roadway link shall include its

current travel time trend.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.2.1

The current travel time trend for a roadway link shall be

computed in the same manner as travel time trend is

computed for a travel route, as specified in requirement

5.4.2.1.4.2 and its sub-requirements.

Travel Times

/ Toll Rates

View Travel Route

Details, View Travel

Time Trend

TravelRouteImpl:updateLinkData

5.4.3.2.3
The data displayed for a roadway link shall include the

current speed for the link in MPH.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.3.1
The speed displayed for a roadway link shall be the speed

provided by the data source for the roadway link (if any).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.4

 The data displayed for a roadway link shall include the

recent travel time history in minutes and seconds. (INRIX

supplies link travel times to the thousandth of a minute.)

Travel Times

/ Toll Rates

View Travel Route

Details

viewTravelRouteDetails,

getHistoryBucketTimes, toBucketArray

5.4.3.2.4.1
The recent travel time history shall be displayed in 5

minute increments for the period of 1 hour.

Travel Times

/ Toll Rates

View Travel Route

Details

viewTravelRouteDetails,

getHistoryBucketTimes, toBucketArray

5.4.3.2.4.2

When the travel time for a travel route is computed, it shall

be included in the recent history interval that began most

recently but has not yet ended.

Travel Times

/ Toll Rates

View Travel Route

Details

TravelRouteImpl:computeTravelTime,

toBucketArray

CHART R3B3 Detailed Design 6-42 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.3.2.4.3

The quality of each displayed travel time for a roadway

link shall include a quality indicator of Low, Medium, or

High.

Travel Times

/ Toll Rates

View Travel Route

Details

viewTravelRouteDetails,

getHistoryBucketTimes, toBucketArray,

TravelRouteFactoryImpl:updateLinkData

5.4.3.2.4.4

If multiple travel time computations are completed within

the same recent history interval, the system shall display

only the most recent travel time.

Travel Times

/ Toll Rates

View Travel Route

Details

toBucketArray

5.4.3.2.5
The data displayed for a roadway link shall include

configuration data for the roadway link.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.1

The configuration data displayed for a roadway link shall

include the name of the system that provides data for the

roadway link.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.2

The configuration data displayed for a roadway link shall

include the ID of the roadway link as specified in the

system that provides data for the roadway link.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.3

The configuration data displayed for a roadway link shall

include the name of the roadway link as specified in the

system that provides data for the roadway link.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.4

The configuration data displayed for a roadway link shall

include the roadway route name or number where the

roadway link is located.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.5
The configuration data displayed for a roadway link shall

include the direction of traffic flow on the roadway link.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.6
The configuration data displayed for a roadway link shall

include the length of the roadway link.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.7
The configuration data displayed for a roadway link shall

include the county in which the roadway link is located.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.2.5.8

The configuration data displayed for a roadway link shall

include the distance from the prior link included in the

travel route (if any).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3

The details displayed shall include data pertaining to the

toll rate source and toll rate settings for the travel route (if

any).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.1
The data displayed for a toll rate source shall include the

recent toll rate history.

Travel Times

/ Toll Rates

View Travel Route

Details

viewTravelRouteDetails,

getHistoryBucketTimes, toBucketArray

CHART R3B3 Detailed Design 6-43 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.3.3.1.1
The recent toll rate history shall be displayed in 5 minute

increments for the period of 1 hour.

Travel Times

/ Toll Rates

View Travel Route

Details

viewTravelRouteDetails,

getHistoryBucketTimes, toBucketArray

5.4.3.3.1.2

If multiple toll rate updates are received within the same

recent history interval, the system shall display only the

latest toll rate update.

Travel Times

/ Toll Rates

View Travel Route

Details

toBucketArray

5.4.3.3.2
The data displayed for a toll rate source shall include its

configuration data.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.2.1

The configuration data displayed for a toll rate source shall

include the name of the system that supplies the toll rate

data for the travel route.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.2.2
The configuration data displayed for a toll rate source shall

include the start ID for the source.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.2.3
The configuration data displayed for a toll rate source shall

include the end ID for the source.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.2.4
The configuration data displayed for a toll rate source shall

include the description of the source.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.3

The toll rate settings displayed for a travel route shall

include an indication as to whether or not toll rate alerts are

enabled for the travel route.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.4

The toll rate settings displayed for a travel route shall

include the operations center that is to receive toll rate

alerts for the travel route (when enabled).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.5

The toll rate settings displayed for a travel route shall

include an indication as to whether or not toll rate

notifications are enabled for the travel route.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.3.6

The toll rate settings displayed for a travel route shall

include the notification group that is to receive toll rate

notifications for the travel route (when enabled).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.4
The details displayed shall include the travel route’s

preferred and alternate destination names.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.5
The details displayed shall include the location settings for

the travel route.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.5.1

The location settings displayed for the travel route shall

include the source of the location settings (derived from

links, or entered by the user).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

CHART R3B3 Detailed Design 6-44 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.3.5.2
The location settings displayed for the travel route shall

include the county(ies) in which the travel route is located.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.5.3

The location settings displayed for the travel route shall

include the roadway route(s) on which the travel route is

located.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.5.4

The location settings displayed for the travel route shall

include the direction of travel corresponding to each

roadway route on which the travel route is located.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.5.5
The location settings displayed for the travel route shall

include the length of the travel route (in miles).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6

The details displayed shall include the travel time settings

for the travel route if the travel route includes one or more

roadway links.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.1

The travel time settings displayed for a travel route shall

include an indication as to whether or not travel times for

the travel route are enabled.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.2

The travel time settings displayed for a travel route shall

include the maximum travel time allowed for the travel

route. (Sanity check number, prevents display of numbers

higher than this threshold)

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.3

The travel time settings displayed for a travel route shall

include the minimum travel time allowed for the travel

route. (Sanity check number, constrains displayed travel

times to this minimum)

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.4

The travel time settings displayed for a travel route shall

include the alert/notification travel time. (The travel time

that when exceeded causes an alert and/or notification to be

issued if enabled).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.5

The travel time settings displayed for a travel route shall

include an indication as to whether or not travel time alerts

are enabled for the travel route.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.6

The travel time settings displayed for a travel route shall

include the operations center that is to receive travel time

alerts for the travel route (when enabled).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.7

The travel time settings displayed for a travel route shall

include an indication as to whether or not travel time

notifications are enabled for the travel route.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

CHART R3B3 Detailed Design 6-45 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.3.6.8

The travel time settings displayed for a travel route shall

include the notification group that is to receive travel time

notifications for the travel route (when enabled).

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.6.9

The travel time settings displayed for a travel route shall

include the maximum number of links allowed to be below

the link data quality threshold for the route's travel time to

be used.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.7
The details displayed shall include the toll rate settings for

the travel route.

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.3.7.1

The toll rate settings displayed for the travel route shall

include an indication as to whether toll rates are enabled for

the travel route (if the travel route has a toll rate source

specified)

Travel Times

/ Toll Rates

View Travel Route

Details
viewTravelRouteDetails

5.4.4
The system shall allow the user to view the details for a

roadway link that is contained in a travel route.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.1
The link details shall include the current travel time for the

link.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.2
The link details shall include the time when the status was

obtained.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.3 The link details shall include the travel time trend.
Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.4 The link details shall include the current speed for the link.
Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.5
The link details shall include the recent travel time history

for the link.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails,

getHistoryBucketTimes, toBucketArray

CHART R3B3 Detailed Design 6-46 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.4.6 The link details shall include the external system name.
Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.7 The link details shall include the link name.
Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.8
The link details shall include the county or counties the link

is in.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.9
The link details shall include the route type of the roadway

route.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.10
The link details shall include the roadway route number or

name.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.11 The link details shall include the travel direction.
Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.12 The link details shall include the length of the link.
Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.13
The link details shall include the geographic coordinates of

the starting point of the link.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

5.4.4.14
The link details shall include the geographic coordinates of

the ending point of the link.

Travel Times

/ Toll Rates

View Travel Route

Roadway Link

Details

viewTravelRouteLinkDetails

CHART R3B3 Detailed Design 6-47 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

5.4.5
The system shall allow a suitably privileged user to modify

a travel route that exists in the system.

Travel Times

/ Toll Rates

Edit Travel Route,

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute,

TravelRouteImpl:setConfig, elements from

5.4.1 (Add Route) requirements

5.4.5.1

The system shall allow the user to modify all travel route

attributes as specified in 5.4.1 (“add a travel route to the

system”).

Travel Times

/ Toll Rates

Set Travel Route

Properties

addEditTravelRouteForm, addEditTravelRoute

5.4.6
The system shall allow a suitably privileged user to remove

a travel route that exists in the system.

Travel Times

/ Toll Rates

Remove Travel

Route
removeTravelRoute, TravelRouteImpl:remove

5.4.6.1
The system shall require the user to confirm their choice to

remove a travel route from the system.

Travel Times

/ Toll Rates

Remove Travel

Route
removeTravelRoute

5.4.6.2

The system shall warn the user if they are attempting to

remove a travel route that is known to be used by one or

more other CHART objects.

Travel Times

/ Toll Rates

Remove Travel

Route
removeTravelRoute

6 PROVIDE TRAVELER INFORMATION HEADER N/A N/A

6.1

BROADCAST INFORMATION. The system shall

provide audible and visual or textual display messages to

several types of devices. The content of the message and

the trigger to activate the device (where necessary) are

initiated (or calculated and dynamically updated in the case

of queue length and travel time) by an earlier process.

HEADER N/A N/A

6.1.2 The system shall broadcast traveler information via DMSs. HEADER N/A N/A

6.1.2.1
The traveler information available for broadcast via DMSs

shall include Travel Time.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm ,

Chart2DMSImpl:addTravInfoMsg

6.1.2.2
The traveler information available for broadcast via DMSs

shall include Toll Rates.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm ,

Chart2DMSImpl:addTravInfoMsg

6.1.2.3

The system shall allow a user with appropriate rights to

manage message templates used to broadcast traveler

information via DMSs.

Travel Times

/ Toll Rates

Configure Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList,

filterDMSTravInfoMsgTemplateList,

sortDMSTravInfoMsgTemplateList,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1
The system shall allow the user to create a new DMS

message template.

Travel Times

/ Toll Rates

Add Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm ,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

CHART R3B3 Detailed Design 6-48 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.3.1.1
The system shall require the user to specify the size of the

DMS (rows / cols) the template applies to.

Travel Times

/ Toll Rates

Add Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.2
The system shall allow the user to specify the message

content for a maximum of 2 pages of a DMS message.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.3
The system shall allow the user to specify the message

content to appear on each row of a DMS message page.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateFormMessa

geTemplateFactoryImpl:createDMSTravInfoM

sgTemplate

6.1.2.3.1.3.1 The message content of a row may include free form text.
Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.3.2
The message content of a row may include one or more

data fields.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.3.2.1
The system shall support a data field type used to include a

travel route’s current travel time in a message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.3.2.2

The system shall support a data field type used to include a

travel route’s current travel time range in a message

template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.3.2.3
The system shall support a data field type used to include a

travel route’s current toll rate in a message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.3.2.4
The system shall support a data field type used to include a

travel route’s destination in a message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

CHART R3B3 Detailed Design 6-49 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.3.1.3.2.4.1

The system shall automatically set the width of a

destination field to be the maximum width available

between the characters and/or fields that occur to the left of

destination field and the characters and/or fields that occur

to the right of the destination field.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm

6.1.2.3.1.3.2.4.2

The system shall allow the user to manually set the width

of a destination field to a value greater than one and less

than or equal to the maximum destination width determined

by the system.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm

6.1.2.3.1.3.2.5
The system shall support a data field type used to include

the system’s toll rate effective time in a message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.3.2.6
The system shall support a data field type used to include a

travel route’s length in a message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.4

The system shall allow the user to specify that each row of

the DMS message is to be left, center, or right justified.

(Note: justification of a row that contains a maximum-

width travel route destination has no effect, as the content

will be structured to fill the entire row.)

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.5
The system shall allow a single message template to be

configured to contain data from multiple travel routes.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.5.1
The system shall use an index to identify the data source

for each field.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.5.1.1

Fields with a common index shall have their data supplied

by a common data source. (For example, a travel time data

field with index 1 and a destination field with index 1

would get both of those pieces of data from the same travel

route)

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

TemplateRow:formatMulti,

DMSTravInfoMsgDataSupplier:getData

CHART R3B3 Detailed Design 6-50 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.3.1.5.2
The system shall allow message templates to contain data

fields for at least 6 different data sources.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.6
The system shall allow the user to specify the formats for

each field type included in the message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.6.1

The system shall allow the user to specify one justification

to be used within all destination data fields in the template.

(The specified justification will be used when a destination

name is smaller than the destination field)

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.6.2
The system shall allow the user to specify one format to be

used for all travel time fields in the template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.6.3
The system shall allow the user to specify one format to be

used for all travel time range fields in the template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.6.4
The system shall allow the user to specify one format to be

used for all toll rate fields in the template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDM

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.6.5
The system shall allow the user to specify one format to be

used for all toll rate time fields in the template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.6.6
The system shall allow the user to specify one format to be

used for all travel route length fields in the template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.7

The system shall allow the user to specify how the system

should utilize the template when data is unavailable for one

or more data fields.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

CHART R3B3 Detailed Design 6-51 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.3.1.7.1

The system shall allow the user to specify that the system

should not display a message using the template if any data

field has missing data.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.7.2

The system shall allow the user to specify that the system

should not display any page in a message using the

template if any data field on that page is missing data.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

STravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.7.3

The system shall allow the user to specify that the system

should not display any row in a message using the template

if any data field on the row is missing data. (Note that

when a template is used in a DMS traveler information

message, the user can choose to use automatic row

positioning to help format messages with missing rows.)

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.8
The system shall allow the user to specify the page timing

to use when displaying a DMS message using the template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.8.1

The system shall allow the user to specify the time each

page should be displayed before blanking the sign in

preparation display the next page (page on time).

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.8.2

The system shall allow the user to specify the time the

DMS should remain blank after displaying a page prior to

displaying the next page (page off time).

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.9
The system shall allow the user to enter a description for

the message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate

6.1.2.3.1.10

The system shall indicate when any row of the message

template is specified (or attempted to be specified) to be

wider than the target sign width of the template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm

CHART R3B3 Detailed Design 6-52 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.3.1.11

The system shall show a graphical representation of a

sample message, using dummy data in data fields, that

could result from use of the message template as currently

defined. (Note: it is not possible to use real data as the

template is not associated with actual data feeds at this

time.)

Travel Times

/ Toll Rates

View Traveler

Information Message

True Display, Format

Traveler Information

Message, Replace

Traveler Information

Message Template

Tags

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm

6.1.2.3.1.11.1

The system shall automatically update the graphical

representation of the sample message as valid changes are

made to the template. (Valid changes are those that do not

make a row exceed the width of the template.)

Travel Times

/ Toll Rates

View Traveler

Information Message

True Display

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm

6.1.2.3.1.12
The system shall allow the user to perform a spelling check

on the message template per requirement 1.2.1.3.

Travel Times

/ Toll Rates

Check Traveler

Information Message

Template Spelling

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm

6.1.2.3.1.13

The system shall prevent a template from being saved if the

template contains any words that exist in the system’s

banned word dictionary (and flagged as applicable to DMS

devices).

Travel Times

/ Toll Rates

Check Traveler

Information Message

Template For Banned

Words

MessageTemplateFactoryImpl:createDMSTrav

InfoMsgTemplate,

MessageTemplateFactoryImpl:setConfig

6.1.2.3.2
The system shall allow the user to edit an existing DMS

message template.

Travel Times

/ Toll Rates

Edit Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateImpl:setConfig

6.1.2.3.2.1

The system shall allow all actions as specified in

requirement 6.1.2.3.1 when editing a message template,

except that the sign size cannot be changed.

Travel Times

/ Toll Rates

Edit Traveler

Information Message

Template

createOrUpdateDMSTravInfoMsgTemplate,

submitDMSTravInfoMsgTemplateForm,

MessageTemplateImpl:setConfig

6.1.2.3.3
The system shall allow the user to remove an existing DMS

message template from the system.

Travel Times

/ Toll Rates

Remove Traveler

Information Message

Template

removeDMSTravInfoMsgTemplate,

MessageTemplateImpl:remove

6.1.2.3.3.1

The system shall display a warning message asking the user

to confirm their action prior to removing a message

template.

Travel Times

/ Toll Rates

Remove Traveler

Information Message

Template

removeDMSTravInfoMsgTemplate

6.1.2.3.3.2

The system shall prevent a message template from being

removed from the system if it is known to be used by any

DMS.

Travel Times

/ Toll Rates

Remove Traveler

Information Message

Template

removeDMSTravInfoMsgTemplate

6.1.2.3.4
The system shall allow the user to view a list of DMS

message templates that exist in the system.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

CHART R3B3 Detailed Design 6-53 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.3.4.1 The system shall display data for each message template.
Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.1 The system shall display the template name.
Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.2 The system shall display the target sign size.
Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.3

The system shall display a text representation of the

message template, including all fields and text included in

the template.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.4
The system shall display the format specified for travel

time fields that exist in the template (if any).

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.5
The system shall display the format specified for travel

time range fields that exist in the template (if any).

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.6
The system shall display the format specified for toll rate

fields that exist in the template (if any).

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.7
The system shall display the format specified for toll rate

time fields that exist in the template (if any).

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.8
The system shall display the format specified for route

length fields that exist in the template (if any).

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

getDMSTravInfoMsgTemplateList

6.1.2.3.4.1.9

The system shall display a graphical representation of a

sample message that could result from the use of the

message template, using dummy data in data fields.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates, View

Traveler Information

Message True

Display

getDMSTravInfoMsgTemplateList

6.1.2.3.4.2
The system shall allow the list of message templates to be

sorted.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

sortDMSTravInfoMsgTemplateList

CHART R3B3 Detailed Design 6-54 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.3.4.2.1
The system shall allow the list of message templates to be

sorted by template name.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

sortDMSTravInfoMsgTemplateList

6.1.2.3.4.2.2
The system shall allow the list of message templates to be

sorted by target sign size.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

sortDMSTravInfoMsgTemplateList

6.1.2.3.4.3
The system shall allow the list of message templates to be

filtered.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

filterDMSTravInfoMsgTemplateList

6.1.2.3.4.3.1
The system shall allow the list of message templates to be

filtered by target sign size.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

filterDMSTravInfoMsgTemplateList

6.1.2.3.4.3.2

The system shall allow the list of message templates to be

filtered by whether or not the template contains any travel

time fields.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

filterDMSTravInfoMsgTemplateList

6.1.2.3.4.3.2.1
The system shall allow the list of message templates to be

filtered on any specific travel time field value.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

filterDMSTravInfoMsgTemplateList

6.1.2.3.4.3.3

The system shall allow the list of message templates to be

filtered by whether or not the template contains any toll

rate fields.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

filterDMSTravInfoMsgTemplateList

6.1.2.3.4.3.3.1
The system shall allow the list of message templates to be

filtered on any specific toll rate field value.

Travel Times

/ Toll Rates

View Traveler

Information Message

Templates

filterDMSTravInfoMsgTemplateList

6.1.2.4
The system shall allow a user with appropriate rights to

manage travel routes associated with a DMS.

Travel Times

/ Toll Rates

Specify DMS

Traveler Information

Message Settings

viewEditDMSTravelRoutesForm,

setDMSTravelRoutes

6.1.2.4.1
The system shall allow the user to view the travel routes

associated with a DMS.

Travel Times

/ Toll Rates

View Associated

Travel Routes
GUIDMSDataClasses

6.1.2.4.2
The system shall allow the user to associate travel routes

with a DMS.

Travel Times

/ Toll Rates

Add Travel Route To

DMS

viewEditDMSTravelRoutesForm,

setDMSTravelRoutes,

Chart2DMSImpl:setRelatedRoutes

6.1.2.4.3
The system shall allow the user to disassociate travel routes

from a DMS.

Travel Times

/ Toll Rates

Remove Travel

Route From DMS

viewEditDMSTravelRoutesForm,

setDMSTravelRoutes,

Chart2DMSImpl:setRelatedRoutes

CHART R3B3 Detailed Design 6-55 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.5
The system shall allow a user with appropriate rights to

manage traveler information messages for a DMS.

Travel Times

/ Toll Rates

Specify DMS

Traveler Information

Message Settings,

View Traveler Info

Message Settings

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

6.1.2.5.1
The system shall allow the user to create a traveler

information message for use on a specific DMS.

Travel Times

/ Toll Rates

Add Traveler

Information Message

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm,

Chart2DMSImpl:addTravInfoMsg

6.1.2.5.1.1

The system shall require the user to select a previously

defined message template to be used for the traveler

information message.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getDMSTravInfoMsgTemplateDataJSON

6.1.2.5.1.1.1

The system shall allow only message templates whose

target sign size exactly matches the DMS size (rows and

columns) to be selected for use in a traveler information

message for the DMS.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getDMSTravInfoMsgTemplateDataJSON,

Chart2DMSImpl:addTravInfoMsg

6.1.2.5.1.1.2
The system shall show a text representation of the selected

message template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

6.1.2.5.1.1.2.1

The text representation of the message template shall

identify fields that are to be associated with a common data

source. (In other words, if there are 2 fields for one data

source and 2 fields for another, the system needs to identify

these associations to the user)

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

6.1.2.5.1.2

The system shall require the user to select one or more

travel routes that are associated with the DMS for use as

data source(s) for the traveler information message.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

6.1.2.5.1.2.1

The system shall allow the user to select a travel route for

each separate data source specified in the message

template. (For example, if the message template contains

fields with 2 different index numbers, the system shall

allow 2 travel route selections)

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

6.1.2.5.1.2.1.1

The system shall allow the user to select “None” as the

travel route for a data source specified in the message

template.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

CHART R3B3 Detailed Design 6-56 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.5.1.2.1.1.1

The system shall handle messages that do not have a travel

route selected for a data source specified in the message

template using the setting for the template that determines

how missing data is to be handled. (See requirement

6.1.2.3.1.7)

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format, Replace

Traveler Information

Message Template

Tags

DMSTravInfoMsgTemplateModel:formatMulti

6.1.2.5.1.2.1.2

The lists of travel routes presented for selection as a data

source for the template shall include only those data

sources that can provide ALL data fields specified in the

template for that source. (For example, if a template has

toll rate and travel time fields for a single data source, only

travel routes that can provide those 2 pieces of data will be

listed).

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

6.1.2.5.1.3

The system shall show a graphical representation of the

DMS message that results from the selected message

template and data source(s).

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

DMSTravInfoMsgTrueDisplayMgr:updateGIF,

discoverDMSClasses, WebChart2DMS:create,

WebChart2DMS:setupDMSTravInfoMsgs,

WebChart2DMS:updateConfig,

WebChart2DMS:update_ModelChange,

WebDMSFactory:createDMS,

DynImageCleanupTask:run

6.1.2.5.1.3.1
The system shall use actual data from each data source

specified in the message in each data field, when available.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format, Replace

Traveler Information

Message Template

Tags

WebChart2DMS:update_ModelChange

6.1.2.5.1.3.2
The system shall use dummy data in each data field for

which actual data from the source is not available.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format, Replace

Traveler Information

Message Template

Tags

DMSTravInfoMsgTrueDisplayMgr:updateGIF

6.1.2.5.1.4
The system shall allow the user to specify that the message

is to use automatic row positioning.

Travel Times

/ Toll Rates

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm

6.1.2.5.1.4.1

When automatic row positioning is enabled for a traveler

information message rows of the message shall be

automatically positioned..

Travel Times

/ Toll Rates

Format Traveler

Information Message

eDisplayMgr:updateGIF,

DMSTravInfoMsgTemplateModel:formatMulti

CHART R3B3 Detailed Design 6-57 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.5.1.4.1.1
Any phase (page on a sign display) with one line of text

shall be displayed on line two on a 3-line or 4-line DMS.

Travel Times

/ Toll Rates

Format Traveler

Information Message

DMSTravInfoMsgTrueDisplayMgr:updateGIF,

DMSTravInfoMsgTemplateModel:formatMulti

6.1.2.5.1.4.1.2

Any phase (page on a sign display) with two lines of text

shall have that text displayed on lines one and three on a 3-

line or 4-line DMS.

Travel Times

/ Toll Rates

Format Traveler

Information Message

DMSTravInfoMsgTrueDisplayMgr:updateGIF,

DMSTravInfoMsgTemplateModel:formatMulti

6.1.2.5.1.4.1.3

Any phase (page on a sign display) with three lines of text

shall have that text displayed on lines one, two and three on

a 3-line or 4-line DMS.

Travel Times

/ Toll Rates

Format Traveler

Information Message

DMSTravInfoMsgTrueDisplayMgr:updateGIF,

DMSTravInfoMsgTemplateModel:formatMulti

6.1.2.5.1.5

When a new traveler information message is created for a

DMS, the system will by default initialize the message to

an inactive state.

Travel Times

/ Toll Rates

Add Traveler

Information Message

submitDMSTravInfoMsgForm,

Chart2DMSImpl:addTravInfoMsg

6.1.2.5.2

The system shall allow the user to edit a traveler

information message that has been previously configured

for a DMS.

Travel Times

/ Toll Rates

Edit Traveler

Information Message

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm,

Chart2DMSImpl:modifyDMSTravInfoMsg

6.1.2.5.2.1
The system shall allow the user to edit all aspects of the

message as detailed in requirement 6.1.2.5.1.

Travel Times

/ Toll Rates

Edit Traveler

Information Message,

Specify Traveler

Information Message

Format

getAddEditDMSTravInfoMsgForm,

submitDMSTravInfoMsgForm,

Chart2DMSImpl:modifyDMSTravInfoMsg

6.1.2.5.3
The system shall allow the user to view the traveler

information messages currently configured for a DMS.

Travel Times

/ Toll Rates

View DMS Traveler

Information

Messages

GUIDMSDataClasses

6.1.2.5.3.1
The system shall display a graphical representation of each

traveler information message.

Travel Times

/ Toll Rates

View DMS Traveler

Information

Messages

DMSTravInfoMsgTrueDisplayMgr:updateGIF

6.1.2.5.3.1.1
The system shall use actual data from each data source

specified in the message in each data field, when available.

Travel Times

/ Toll Rates

View DMS Traveler

Information

Messages

DMSTravInfoMsgTrueDisplayMgr:updateGIF

6.1.2.5.3.1.2
The system shall use dummy data in each data field for

which actual data from the source is not available.

Travel Times

/ Toll Rates

View DMS Traveler

Information

Messages

DMSTravInfoMsgTrueDisplayMgr:updateGIF

6.1.2.5.3.2
The system shall display the current status of each traveler

information message, (Enabled or Disabled)

Travel Times

/ Toll Rates

View DMS Traveler

Information

Messages

GUIDMSDataClasses

6.1.2.5.4
The system shall allow the user to remove a traveler

information message from a DMS.

Travel Times

/ Toll Rates

Remove Traveler

Information Message

removeDMSTravInfoMsg,

Chart2DMSImpl:removeDMSTravInfoMsg

CHART R3B3 Detailed Design 6-58 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.2.5.4.1
The system shall confirm the user’s request to remove a

traveler information message from a DMS.

Travel Times

/ Toll Rates

Remove Traveler

Information Message

removeDMSTravInfoMsg

6.1.2.5.4.2

The system shall prevent a traveler information message

from being removed from a DMS if it is currently enabled

for display on that DMS.

Travel Times

/ Toll Rates

Remove Traveler

Information Message

DMSControlModulePkg:Chart2DMSImpl:rem

oveTravInfoMsg

6.1.2.6
The system shall allow a user with appropriate rights to

manage the travel time display schedule for a DMS.

Travel Times

/ Toll Rates

Set DMS Travel

Time Display

Schedule

setDMSTravelTimeDisplaySchedule,

Chart2DMSImpl:setTravelTimeSchedule

6.1.2.6.1
The system shall allow the user to choose to use the

system-wide travel time display schedule for the DMS.

Travel Times

/ Toll Rates

Set DMS Travel

Time Display

Schedule

setDMSTravelTimeDisplaySchedule,

Chart2DMSImpl:setTravelTimeSchedule

6.1.2.6.2
The system shall allow the user to choose to override the

system-wide travel time schedule for the DMS.

Travel Times

/ Toll Rates

Set DMS Travel

Time Display

Schedule

setDMSTravelTimeDisplaySchedule,

Chart2DMSImpl:setTravelTimeSchedule

6.1.2.6.2.1

The system shall allow the user to specify that the DMS is

permitted to display travel time messages during all hours

of the day (24/7).

Travel Times

/ Toll Rates

Set DMS Travel

Time Display

Schedule

setDMSTravelTimeDisplaySchedule,

Chart2DMSImpl:setTravelTimeSchedule

6.1.2.6.2.2

The system shall allow the user to specify time periods

during the day when the DMS may display travel time

messages.

Travel Times

/ Toll Rates

Set DMS Travel

Time Display

Schedule

setDMSTravelTimeDisplaySchedule,

Chart2DMSImpl:setTravelTimeSchedule

6.1.7
The system shall allow a device to be activated even if it is

not used for an event (e.g., to display travel time).

Travel Times

/ Toll Rates

Activate Traveler

Information Message

setDMSTravInfoMsgEnabledFlag,

Chart2DMSImpl:setTravInfoMsgEnabledFlag

6.1.7.1
The system shall allow a user to activate a pre-configured

traveler information message on a DMS.

Travel Times

/ Toll Rates

Enable Traveler

Information Message

setDMSTravInfoMsgEnabledFlag,

Chart2DMSImpl:setTravInfoMsgEnabledFlag

6.1.7.1.1

When a traveler information message is activated on a

DMS, the system shall automatically create a DMS

message based on the message template and data sources

specified for the message.

Travel Times

/ Toll Rates

Activate Traveler

Information Message,

Format Traveler

Information Message,

Replace Traveler

Information Message

Tags

Chart2DMSImpl:setTravInfoMsgEnabledFlag,

DMSControlModulePkg:/EnabledTravInfoMsg

Cmd:execute,

DMSTravInfoMsgHandler:checkMessage

6.1.7.1.1.1

The system shall replace any destination fields in the

message template with a destination name from the travel

route specified as the data source for the field.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti,

DMSTravInfoMsgDataSupplier:getData

CHART R3B3 Detailed Design 6-59 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.7.1.1.1.1

The system shall use the preferred, alternate 1, or alternate

2 destination name specified in a travel route which is the

longest destination name that will fit within the width of

the destination field as specified in the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti,

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.1.2

The system shall justify the destination name within the

destination field in the message template according to the

destination justification setting specified in the message

template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

6.1.7.1.1.1.3

If the travel route specified as the data source for a

destination field is not available, the system shall alter or

disable the traveler information message as specified by the

missing data setting for the message template. (Remove the

row containing the destination field, remove the page

containing the destination field, or disable the entire

message)

Travel Times

/ Toll Rates

Format Traveler

Information Message
DMSTravInfoMsgTemplateModel:formatMulti

6.1.7.1.1.2

The system shall replace any travel time fields in the

message template with the current travel time from the

travel route specified as the data source for the field.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti,

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.2.1
If the travel time field is for the actual travel time, the

actual specific travel time shall be used.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti,

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.2.2

If the travel time field is for a travel time range, the actual

travel time shall be mapped into a range according to a

system-wide travel time range configuration, and the range

shall be displayed instead of the actual travel time.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti,

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.2.2.1

The system shall allow travel time ranges to be defined by

adding / subtracting a specified number of minutes from the

actual travel time.

Travel Times

/ Toll Rates

Configure Travel

Time And Toll Rate

Settings

getTravelTimeRangesForm,

setTravelTimeRanges,

TravelTimeRange:constructor

6.1.7.1.1.2.2.2

The system shall allow the number of minutes added /

subtracted to obtain a travel time range to be configurable

based on the range in which the actual travel time falls.

(Example: travel time 1 – 10 minutes, add/subtract 1

minute to obtain the range. Travel time 11 – 20 minutes,

add/subtract 2 minutes to obtain the range, etc.)

Travel Times

/ Toll Rates

Configure Travel

Time And Toll Rate

Settings

getTravelTimeRangesForm,

setTravelTimeRanges,

TravelTimeRange:constructor

6.1.7.1.1.2.3
The travel time data shall be displayed according to the

format specified within the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

CHART R3B3 Detailed Design 6-60 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.7.1.1.2.4
The travel time data shall be right justified within the travel

time field in the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

6.1.7.1.1.2.5

If the current travel time falls below the minimum travel

time specified for the travel route that is specified as the

data source for the travel time, the minimum travel time

shall be used in place of the actual travel time. (This

applies whether the actual travel time is displayed or a

travel time range. In the case of a range, the range will be

obtained using the minimum travel time)

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime

6.1.7.1.1.2.6

If the travel time data is unavailable or disabled for the

travel route specified as the data source for a travel time

field, the system shall alter or disable the traveler

information message as specified by the missing data

setting for the message template. (Remove the row

containing the travel time field, remove the page containing

the travel time field, or disable the entire message.)

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgTemplateModel:formatMulti

6.1.7.1.1.2.6.1
Travel time data for a travel route shall be considered

disabled if the travel route no longer exists in the system.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.2.6.2
The travel time data for a travel route shall be considered

disabled if travel times are disabled for the travel route.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime,

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.2.6.3

The travel time data for a travel route shall be considered

unavailable if the travel time for the travel route does not

meet the minimum quality setting for N or more roadway

links in the travel route, where N is a setting specified for

the travel route.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime ,

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.2.6.4

The travel time data for a travel route shall be considered

unavailable if the travel time for the travel route cannot be

obtained from its underlying source (for example from

INRIX).

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime

6.1.7.1.1.2.6.5

The travel time data for a travel route shall be considered

unavailable if the travel time for the travel route exceeds

the maximum displayed travel time as specified for the

travel route.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteImpl:computeTravelTime ,

DMSTravInfoMsgDataSupplier:getData

CHART R3B3 Detailed Design 6-61 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.7.1.1.2.6.6

The travel time data for a travel route shall be considered

unavailable if the travel route does not have any roadway

links specified.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

StalenessWatcherTimerTask in

TravelRouteModule

6.1.7.1.1.3

The system shall replace any toll rate fields in the message

template with the current toll rate data from the travel route

specified as the data source for the field.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti,

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.3.1
The system shall format the toll rate according to the toll

rate format specified in the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

6.1.7.1.1.3.2
The system shall right justify the toll rate within the toll

rate field in the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

6.1.7.1.1.3.3

If the toll rate data is unavailable or disabled for the travel

route specified as the data source for a toll rate field, the

system shall alter or disable the traveler information

message as specified by the missing data setting for the

message template. (Remove the row containing the toll

rate field, remove the page containing the toll rate field, or

disable the entire message.)

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgTemplateModel:formatMulti

6.1.7.1.1.3.3.1

The toll rate data for a travel route shall be considered

unavailable if the travel route is no longer defined in the

system.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.3.3.2
The toll rate data for a travel route shall be considered

disabled if toll rates are disabled for the travel route.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteFactoryImpl:updateTollData

6.1.7.1.1.3.3.3

The toll rate data for a travel route shall be considered

unavailable if the toll rate data is not present for the travel

route. (For example, if Vector has not yet provided data for

the travel route).

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TravelRouteFactoryImpl:updateTollData

6.1.7.1.1.4

The system shall replace any toll rate time fields in the

message template with the latest toll rate time from any toll

rate source specified for inclusion in the message. (Each

toll rate may have its own toll rate time, but in practice only

one time will be included in a message, and the times for

all toll rates will match, so the latest time for any toll rate in

the message will be used)

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData

CHART R3B3 Detailed Design 6-62 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.7.1.1.4.1
The system shall format the toll rate time according to the

toll rate time format specified in the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

6.1.7.1.1.4.2
The system shall right justify the toll rate time within the

toll rate time field in the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

6.1.7.1.1.4.3

If the toll rate time data is unavailable or disabled, the

system shall alter or disable the traveler information

message as specified by the missing data setting for the

message template. (Remove the row containing the toll

rate time field, remove the page containing the toll rate

time field, or disable the entire message.)

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgTemplateModel:formatMulti

6.1.7.1.1.4.3.1

The toll rate time data shall be considered unavailable if all

travel routes specified as the data sources for toll rate fields

within the message are no longer defined in the system.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.4.3.2

The toll rate time data shall be considered disabled if toll

rates are disabled for all travel routes specified as sources

for toll rate data fields within the message.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.4.3.3

The toll rate time data shall be considered unavailable if

toll rate time data is not available for any of the travel

routes specified as sources for toll rate data fields within

the message.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.4.3.4

The toll rate time data shall be considered disabled if there

are no toll rate data sources specified for the message, or all

toll rate time fields are disabled/unavailable. (This includes

the cases where there are no toll rate fields specified in the

message template, there are no travel routes assigned for

any of those fields, or data is not available is disabled for

all of those fields. In other words, toll rate times will not

be included in the message if toll rates are not)

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData

6.1.7.1.1.5

The system shall replace any distance fields in the message

template with the length of the travel route specified as the

data source for the field.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgDataSupplier:getData,

TemplateRow:formatMulti

6.1.7.1.1.5.1
The system shall format the distance according to the

distance format specified in the message template.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

CHART R3B3 Detailed Design 6-63 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.7.1.1.5.2
The system shall right justify the distance within the

distance field.

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

TemplateRow:formatMulti

6.1.7.1.1.5.3

If the travel route specified as the source for the distance

field is unavailable, the system shall alter or disable the

traveler information message as specified by the missing

data setting for the message template. (Remove the row

containing the distance field, remove the page containing

the distance field, or disable the entire message.)

Travel Times

/ Toll Rates

Replace Traveler

Information Message

Template Tags

DMSTravInfoMsgTemplateModel:formatMulti

6.1.7.1.2

When a traveler information message is activated on a

DMS, the DMS shall place the message in its arbitration

queue in the appropriate “bucket”.

Travel Times

/ Toll Rates

Activate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

6.1.7.1.2.1

The system shall place all DMS traveler information

messages that contain one or more toll rate fields into the

specified toll rate arbitration queue bucket for the DMS

according to 1.5.2.1.4.19. (If a message contains only toll

rates, or if it contains toll rates AND travel times, it goes in

this toll rate bucket)

Travel Times

/ Toll Rates

Activate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

6.1.7.1.2.2

The system shall place all DMS traveler information

messages that contain travel time or travel time range

fields but NOT any toll rate fields into the specified travel

time arbitration queue bucket for the DMS according to

1.5.2.1.4.18. (If a message has travel times AND toll rates,

the message goes in the bucket for toll rates as identified in

6.1.7.1.2.1 instead)

Travel Times

/ Toll Rates

Activate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

6.1.7.1.2.3

The system shall place all DMS traveler information

messages that do not contain travel time, travel time range,

or toll rate fields into the specified travel time arbitration

queue bucket for the DMS according to 1.5.2.1.4.18.

Travel Times

/ Toll Rates

Activate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

6.1.7.1.3

The system shall utilize the DMS message arbitration rules

specified in requirement 4.3.1.6 to determine if an active

traveler information message is to be displayed on the

DMS.

Travel Times

/ Toll Rates

Activate Traveler

Information Message
N/A (existing implementation will work as is)

6.1.7.1.4

The system shall utilize the DMS message combination

rules specified in requirement 4.3.1.6 to determine if an

active traveler information message is to be combined with

another message on the DMS arbitration queue.

Travel Times

/ Toll Rates

Activate Traveler

Information Message
N/A (existing implementation will work as is)

CHART R3B3 Detailed Design 6-64 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.7.1.5
The system shall allow only one traveler information

message to be active at any time on a single DMS.

Travel Times

/ Toll Rates

Activate Traveler

Information Message
Chart2DMSImpl:setTravInfoMsgEnabledFlag

6.1.7.1.5.1

The system shall deactivate any other traveler information

message currently active for a DMS prior to activating a

different traveler information message.

Travel Times

/ Toll Rates

Activate Traveler

Information Message
Chart2DMSImpl:setTravInfoMsgEnabledFlag

6.1.7.1.6
The system shall update traveler information messages as

new data is provided by the message’s data sources.

Travel Times

/ Toll Rates

Update Traveler

Information Message
Chart2DMSImpl:RouteUpdate

6.1.7.1.6.1

The system shall maintain the location of the DMS

message within the arbitration queue when a traveler

information message is updated.

Travel Times

/ Toll Rates

Update Traveler

Information Message
N/A (existing implementation will work as is)

6.1.7.1.6.2
The system shall create the updated message as specified in

6.1.7.1.1.

Travel Times

/ Toll Rates

Format Traveler

Information Message,

Replace Traveler

Information Message

Tags

Covered by elements specified within all the

6.1.7.1.1 requirements.

6.1.7.2
The system shall allow a user to deactivate a traveler

information message that is currently active on a DMS.

Travel Times

/ Toll Rates

Disable Traveler

Information Message

setDMSTravInfoMsgEnabledFlag

6.1.7.2.1

The system shall remove the traveler information message

from the DMS arbitration queue when the traveler

information message is deactivated.

Travel Times

/ Toll Rates

Deactivate Traveler

Information Message
Chart2DMSImpl:setTravInfoMsgEnabledFlag

6.1.7.3

The system shall automatically remove a traveler

information message that is active from the arbitration

queue of a DMS when data required to construct the

message (as specified in 6.1.7.1.1) is missing and the

application of the missing data setting specified in the

message template results in the message being disabled or

with zero pages.

Travel Times

/ Toll Rates

Deactivate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

6.1.7.4
The system shall log all traveler information messages that

are displayed on a DMS in the operations log.

Travel Times

/ Toll Rates

Activate Traveler

Information Message,

Update Traveler

Information Message

N/A (existing implementation will work as is)

6.1.7.5
The system shall log a message in the operations log when

a user deactivates a traveler information message.

Travel Times

/ Toll Rates

Deactivate Traveler

Information Message
Chart2DMSImpl:setTravInfoMsgEnabledFlag

CHART R3B3 Detailed Design 6-65 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

6.1.7.6

The system shall log a message in the operations log when

the system automatically removes a traveler information

message from a DMS arbitration queue due to missing

data.

Travel Times

/ Toll Rates

Deactivate Traveler

Information Message
DMSTravInfoMsgHandler:checkMessage

6.1.7.7

The system shall activate a traveler information message

according to a DMS's travel time schedule, if the message

contains no toll rate tags and is currently enabled.

Travel Times
Monitor Travel Time

Schedule

Chart2DMSFactoryImpl:checkTravInfoMsgSc

hedule

6.1.7.8

The system shall deactivate a traveler information message

according to a DMS's travel time schedule, if the message

contains no toll rate tags and is currently active.

Travel Times
Monitor Travel Time

Schedule

Chart2DMSFactoryImpl:checkTravInfoMsgSc

hedule

9
SYSTEM MAINTAINABILITY, AVAILABILITY,

SECURITY, AND DATA DISTRIBUTION
HEADER N/A

9.4 Data Distribution HEADER N/A

9.4.1

The system shall allow a system administrator to control a

user’s access to information in the system by

granting/denying user functional rights.

Public /

Private Data

Sharing

Set Role Functional

Rights, Set User

Roles

addEditRole

9.4.1.1
The system shall allow a system administrator to control a

user’s access to Traffic Event related information.

Public /

Private Data

Sharing

Set Traffic Event

Rights

addEditRole

9.4.1.1.2

The system shall allow a system administrator to control a

user’s access to External Traffic Events by

granting/denying the View External Traffic Events

functional right.

Public /

Private Data

Sharing

Set Traffic Event

Rights

addEditRole

9.4.1.1.3

The system shall allow a system administrator to control a

user’s access to view sensitive incident details associated

with Traffic Events by granting/denying the View Traffic

Event Sensitive Incident Details functional right.

Public /

Private Data

Sharing

Set Traffic Event

Rights
addEditRole

9.4.1.1.4

The system shall allow a system administrator to control a

user’s access to Traffic Event’s log entries by

granting/denying the View Traffic Event Log functional

right on a per organization basis.

Public /

Private Data

Sharing

Set Traffic Event

Rights
addEditRole

9.4.1.2
The system shall allow a system administrator to control a

user’s access to device related information.

Public /

Private Data

Sharing

Set Role Functional

Rights, Set User

Roles

addEditRole

9.4.1.2.1

The system shall allow a system administrator to control a

user’s access to External DMS devices by granting/denying

the View External DMS functional right.

Public /

Private Data

Sharing

Set DMS Rights,

View DMS List
addEditRole

CHART R3B3 Detailed Design 6-66 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

9.4.1.2.2

The system shall allow a system administrator to control a

user’s access to External TSS devices by granting/denying

the View External TSS functional right.

Public /

Private Data

Sharing

Set TSS Rights, View

Detector List
addEditRole

9.4.1.2.3

The system shall allow a system administrator to control a

user’s access to sensitive configuration data associated with

DMS devices by granting/denying the View DMS Sensitive

Config functional right on a per organization basis.

Public /

Private Data

Sharing

Set DMS Rights addEditRole

9.4.1.2.4

The system shall allow a system administrator to control a

user’s access to sensitive configuration data associated with

TSS devices by granting/denying the View TSS Sensitive

Config functional right on a per organization basis.

Public /

Private Data

Sharing

Set TSS Rights, View

Detector Details
addEditRole

9.4.1.2.5

The system shall allow a system administrator to control a

user’s access to sensitive configuration data associated with

HAR and SHAZAM devices by granting/denying the View

HAR Sensitive Config functional right on a per

organization basis.

Public /

Private Data

Sharing

Set HAR and

SHAZAM Rights
addEditRole

9.4.1.2.6

The system shall allow a system administrator to control a

user’s access to sensitive configuration data associated with

Cameras by granting/denying the View Camera Sensitive

Config functional right on a per organization basis.

Public /

Private Data

Sharing

Set Camera Rights addEditRole

9.4.1.2.7

The system shall allow a system administrator to control a

user’s access to sensitive configuration data associated with

Monitors by granting/denying the View Monitor Sensitive

Config functional right on a per organization basis.

Public /

Private Data

Sharing

Set Monitor Rights addEditRole

9.4.1.2.8

The system shall allow a system administrator to control a

user’s access to TSS detailed traffic parameters (VSO data)

by granting/denying the View VSO Detailed Data

functional right on a per organization basis.

Public /

Private Data

Sharing

Set TSS Rights, View

Detector List
addEditRole

9.4.1.2.9

The system shall allow a system administrator to control a

user’s access to TSS summarized traffic parameters (VSO

data) by granting/denying the View VSO Summary Data

functional right on a per organization basis

Public /

Private Data

Sharing

Set TSS Rights, View

Detector List
addEditRole

9.4.2

The system shall protect certain information maintained in

the system by limiting a user’s access to / view of that

information based on the user’s functional rights.

Public /

Private Data

Sharing

Set Role Functional

Rights, Set User

Roles

addEditRole

9.4.2.1

The system shall allow a suitably privileged user to view

all external Traffic Events currently in the system (View

External Traffic Event functional right).

Public /

Private Data

Sharing

Set Traffic Event

Rights
getOpenTrafficEventsXML

CHART R3B3 Detailed Design 6-67 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

9.4.2.2

The system shall allow a suitably privileged user to view

sensitive information associated with Traffic Events of type

incident which convey details about fatalities (View

Traffic Event Sensitive Incident Details functional right).

This information is conveyed through the incident type and

event name.

Public /

Private Data

Sharing

Set Traffic Event

Rights
viewEventDetails

9.4.2.3

The system shall allow a suitably privileged user to view

Traffic Event Log entries (View Traffic Event Log

functional right).

Public /

Private Data

Sharing

Set Traffic Event

Rights
viewEventDetails

9.4.2.4

The system shall allow a suitably privileged user to view

all external DMS devices currently in the system (View

External DMS functional right).

Public /

Private Data

Sharing

Set DMS Rights,

View DMS List

chartlite.servlet.dms_dynlist_classes,

DMSControlClassDiagram-ExternalDMS CD,

ExternalDMS:getStatus SD,

ExternalDMS:updateStatus SD,

ExternalDMS:getConfiguration SD,

9.4.2.5

The system shall allow a suitably privileged user to view

all external TSS devices currently in the system (View

External TSS functional right).

Public /

Private Data

Sharing

Set TSS Rights, View

TSS List

chartlite.servlet.tss_dynlist_classes

9.4.2.6

The system shall allow a suitably privileged user to view

sensitive configuration data associated with a DMS (View

DMS Sensitive Config functional right).

Public /

Private Data

Sharing

Set DMS Rights GUIDMSDataClasses

9.4.2.6.1

Sensitive configuration data for a DMS includes: Comm

Settings including: Drop Address, Port Mgr. Connection

Timeout, Port Type, Baud, Data Bits, Parity, Stop Bits,

Flow Control, Def Phone Number (ISDN & POTS), per

Port Manager phone numbers.

Public /

Private Data

Sharing

Set DMS Rights GUIDMSDataClasses

9.4.2.7

The system shall allow a suitably privileged user to view

sensitive configuration data associated with a TSS (View

TSS Sensitive Config functional right).

Public /

Private Data

Sharing

Set TSS Rights, View

Detector Details
GUITSSDataClasses

9.4.2.7.1

Sensitive configuration data for a TSS includes: Comm

Settings including: Comm Settings including: Drop

Address, Port Mgr, Port Type, Baud, Data Bits, Parity, Stop

Bits, Flow Control, Def Phone Number (ISDN & POTS),

per Port Manager phone numbers.

Public /

Private Data

Sharing

Set TSS Rights, View

Detector Details
GUITSSDataClasses

9.4.2.8

The system shall allow a suitably privileged user to view

sensitive configuration data associated with a HAR (View

HAR Sensitive Config functional right).

Public /

Private Data

Sharing

Set HAR and

SHAZAM Rights
GUIHARDataClasses

CHART R3B3 Detailed Design 6-68 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

9.4.2.8.1

Sensitive configuration data for a HAR includes: Default

Phone Number, Access Code, Port Manager Connection

Timeout, Port Type, per Port Manager phone numbers.

Public /

Private Data

Sharing

Set HAR and

SHAZAM Rights
GUIHARDataClasses

9.4.2.9

The system shall allow a suitably privileged user to view

sensitive configuration data associated with a SHAZAM

(View HAR Sensitive Config functional right

Public /

Private Data

Sharing

Set HAR and

SHAZAM Rights
GUISHAZAMClasses

9.4.2.9.1

Sensitive configuration data for a SHAZAM includes:

Default Phone Number, Access Code, Port Manager

Connection Timeout, Port Type, per Port Manager phone

numbers.

Public /

Private Data

Sharing

Set HAR and

SHAZAM Rights
GUISHAZAMClasses

9.4.2.10

The system shall allow a suitably privileged user to view

sensitive configuration data associated with a Camera

(View Camera Sensitive Config functional right).

Public /

Private Data

Sharing

Set Camera Rights GUIVideoDataClasses

9.4.2.10.1

Sensitive configuration data for a Camera with a Sending

Device of type Encoder includes: IP Video Fabric, IP,

Encoder Type, Port, Multicast Address, Multicast port.

Public /

Private Data

Sharing

Set Camera Rights GUIVideoDataClasses

9.4.2.10.2
Sensitive configuration data for a Camera with a Sending

Device of type Switch includes: Switch, Input Port.

Public /

Private Data

Sharing

Set Camera Rights GUIVideoDataClasses

9.4.2.10.2

Sensitive configuration data for a Camera with a Control

Device of type IP Via Codec includes: IP, Port, Baud, Bits,

Parity, Stop Bits, Flow Control.

Public /

Private Data

Sharing

Set Camera Rights GUIVideoDataClasses

9.4.2.10.3

Sensitive configuration data for a Camera with a Control

Device of type Comm Port includes: Port, Baud, Bits,

Parity, Stop Bits, Flow Control.

Public /

Private Data

Sharing

Set Camera Rights GUIVideoDataClasses

9.4.2.10.4

Sensitive configuration data for a Camera with a Control

Device of type Command Processor includes: Command

Processor name.

Public /

Private Data

Sharing

Set Camera Rights GUIVideoDataClasses

9.4.2.11

The system shall allow a suitably privileged user to view

sensitive configuration data associated with a Monitor

(View Monitor Sensitive Config functional right).

Public /

Private Data

Sharing

Set Monitor Rights GUIVideoDataClasses

9.4.2.11.1

Sensitive configuration data for a Monitor with a Receiving

Device of type Decoder includes IP Video Fabric, IP, Type,

TCP Port Video Port.

Public /

Private Data

Sharing

Set Monitor Rights GUIVideoDataClasses

9.4.2.11.2
Sensitive configuration data for a Monitor with a Receiving

Device of type Switch includes Switch, Output Port.

Public /

Private Data

Sharing

Set Monitor Rights GUIVideoDataClasses

10 SYSTEM INTEGRATION HEADER N/A

CHART R3B3 Detailed Design 6-69 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.1

The system shall interface with other regional ATMS’s in

the area. Suggestion/example to be validated: RITIS,

Regional 911, IEN, CAPWIN, EMMA/MEGIN,

WEBEOC, 511, etc.

EXISTING &

FUTURE
N/A

10.1.1
The system shall support the SAE ATIS J2354 standard for

event data exchange with external systems (e.g. RITIS).

EXISTING &

FUTURE
N/A

10.1.1.1
The system shall support the importation of event data from

external systems using the SAE ATIS J2354 standard.
EXISTING

Import RITIS Event

Data

EventAtisImportChartClasses,

handleExternalImport

10.1.1.1.1

The system shall translate SAE ATIS J2354 standard

formatted event data from RITIS into a compatible

CHART external event.

EXISTING
Translate RITIS

Event Data

EventAtisImportTranslationClasses,

handleEITranslationTask,

eventTranlsationStep1Translate

10.1.1.2
The system shall export event data to external systems

using the SAE ATIS J2354 standard.

External

Interface

Provide Traffic Event

Data To External

Systems

TrafficEventExportHandler:getTrafficEventLis

t

10.1.1.2.1

The system shall translate CHART event data into SAE

ATIS J2354 standard formatted event data with CHART

extensions.

External

Interface

Provide Traffic Event

Data To External

Systems

TrafficEventExportHandler:getTrafficEventLis

t

10.1.1.2.2
The system shall support a method for external systems to

obtain an inventory of CHART events.

External

Interface

Provide Traffic Event

Data To External

Systems

TrafficEventRequesthandler:processRequest,

TrafficEventExportHandler:getTrafficEventLis

t

10.1.1.2.3
The system shall support a method for external system to

receive updates to the status of CHART events

External

Interface

Provide Traffic Event

Data To External

Systems

TrafficEventRequesthandler:processRequest,

TrafficEventExportHandler:getTrafficEventLis

t

10.1.3
The system shall support the TMDD standard for DMS

data exchange with external systems.

External

Interface

Provide DMS Data to

External Systems,

Import RITIS DMS

Data

(see sub reqs for details)

10.1.3.1
The system shall support the import of DMS data from

external systems using the TMDD standard.

External

Interface

Import RITIS DMS

Data

DMSImportTranslationClasses,

handleDITranslationTask,

dmsTranslationStep1Translate

10.1.3.1.1

The system shall translate DMS data in TMDD standard

format with RITIS extensions into compatible CHART

external DMS formatted data.

External

Interface

Translate RITIS

DMS Data, Create

CHART External

DMS

DMSImportTranslationClasses,

handleDITranslationTask,

dmsTranslationStep1Translate

10.1.3.2
The system shall support the export of DMS data to

external systems using the TMDD standard.

External

Interface

Provide DMS Data

To External Systems
See sub reqs.

CHART R3B3 Detailed Design 6-70 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.1.3.2.1

The system shall translate CHART DMS formatted data

into TMDD standard formatted DMS data with CHART

extensions.

External

Interface

Provide DMS Data

To External Systems

DMSRequestHandlerProcessRequest,

getDMSInventoryList, getDMSStatusList

10.1.3.2.2
The system shall support a method for external systems to

obtain an inventory of CHART DMSs.

External

Interface

Provide DMS Data

To External Systems

DMSRequestHandlerProcessRequest,

getDMSInventoryList,

10.1.3.2.3
The system shall support a method for external system to

receive updates to the CHART DMS inventory.

External

Interface

Provide DMS Data

To External Systems

DMSRequestHandlerProcessRequest,

getDMSInventoryList,

10.1.3.2.4
The system shall support a method for external systems to

obtain the status of CHART DMSs.

External

Interface

Provide DMS Data

To External Systems

DMSRequestHandlerProcessRequest,

getDMSStatusList,

10.1.3.2.5
The system shall support a method for external system to

receive updates to the status of CHART DMSs.

External

Interface

Provide DMS Data

To External Systems

DMSRequestHandlerProcessRequest,

getDMSStatusList,

10.1.4
The system shall support the TMDD standard for TSS data

exchange with external systems

External

Interface

Provide Detector

Data To External

Systems, Import

RITIS Detector Data

See sub reqs.

10.1.4.1
The system shall support the import of TSS data from

external systems using the TMDD standard.

External

Interface

Import RITIS

Detector Data

TSSImportTranslationClasses,

handleTITranslationTask,

tssTranslationStep1Translate

10.1.4.1.1

The system shall translate TSS data in TMDD standard

format with RITIS extensions into compatible CHART

external TSS formatted data.

External

Interface

Translate RITIS

Detector Data, Create

External TSS

handleTITranslationTask,

tssTranslationStep1Translate

10.1.4.2
The system shall support the export of TSS data to external

systems using the TMDD standard.

External

Interface

Provide Detector

Data to External

Systems

Use case only

10.1.4.2.1

The system shall translate CHART TSS formatted data into

TMDD standard formatted TSS data with CHART

extensions.

External

Interface

Provide Detector

Data to External

Systems

Use case only

10.1.4.2.2
The system shall support a method for external systems to

obtain an inventory of CHART TSSs.

External

Interface

Provide Detector

Data to External

Systems

Use case only

10.1.4.2.3
The system shall support a method for external system to

receive updates to the CHART TSS inventory.

External

Interface

Provide Detector

Data to External

Systems

Use case only

10.1.4.2.4
The system shall support a method for external systems to

obtain the status of CHART TSSs.

External

Interface

Provide Detector

Data to External

Systems

Use case only

CHART R3B3 Detailed Design 6-71 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.1.4.2.5
The system shall support a method for external system to

receive updates to the status of CHART TSSs.

External

Interface

Provide Detector

Data to External

Systems

Use case only

10.1.5
The system shall support the TMDD standard for HAR data

exchange with external systems.

External

Interface

Provide HAR Data to

External Systems
Use case only

10.1.5.1

The system shall support the import of HAR data from

external systems using the TMDD standard. [FUTURE,

NEW]

FUTURE N/A

10.1.5.1.1

The system shall translate HAR data in TMDD standard

format with RITIS extensions into compatible CHART

external TSS formatted data. [FUTURE, NEW]

FUTURE N/A

10.1.5.2
The system shall support the export of HAR data to

external systems using the TMDD standard.

External

Interface

Provide HAR Data

To External Systems
Use case only

10.1.5.2.1

The system shall translate CHART HAR formatted data

into TMDD standard formatted HAR data with CHART

extensions.

External

Interface

Provide HAR Data

To External Systems
Use case only

10.1.5.2.2
The system shall support a method for external systems to

obtain an inventory of CHART HAR.

External

Interface

Provide HAR Data

To External Systems
Use case only

10.1.5.2.3
The system shall support a method for external system to

receive updates to the CHART HAR inventory.

External

Interface

Provide HAR Data

To External Systems
Use case only

10.1.5.2.4
The system shall support a method for external systems to

obtain the status of CHART HARs.

External

Interface

Provide HAR Data

To External Systems
Use case only

10.1.5.2.5
The system shall support a method for external system to

receive updates to the status of CHART HARs.

External

Interface

Provide HAR Data

To External Systems
Use case only

10.1.6
The system shall support the TMDD standard for beacon

(SHAZAM) data exchange with external systems.

External

Interface

Provide SHAZAM

Data To External

Systems

Use case only

10.1.6.1

The system shall support the import of beacon data from

external systems using the TMDD standard. [FUTURE,

NEW]

FUTURE N/A

10.1.6.1.1

The system shall translate beacon data in TMDD standard

format with RITIS extensions into compatible CHART

external beacon formatted data. [FUTURE, NEW]

FUTURE N/A

CHART R3B3 Detailed Design 6-72 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.1.6.2
The system shall support the export of beacon data to

external systems using the TMDD standard.

External

Interface

Provide SHAZAM

Data To External

Systems

Use case only

10.1.6.2.1

The system shall translate CHART beacon formatted data

into TMDD standard formatted beacon data with CHART

extensions.

External

Interface

Provide SHAZAM

Data To External

Systems

Use case only

10.1.6.2.2
The system shall support a method for external systems to

obtain an inventory of CHART beacons.

External

Interface

Provide SHAZAM

Data To External

Systems

Use case only

10.1.6.2.3
The system shall support a method for external system to

receive updates to the CHART beacon inventory.

External

Interface

Provide SHAZAM

Data To External

Systems

Use case only

10.1.6.2.4
The system shall support a method for external systems to

obtain the status of CHART beacons.

External

Interface

Provide SHAZAM

Data To External

Systems

Use case only

10.1.6.2.5
The system shall support a method for external system to

receive updates to the status of CHART beacons.

External

Interface

Provide SHAZAM

Data To External

Systems

Use case only

10.7 The system shall support external connections. EXISTING N/A

10.7.1

All external connections shall be made in conjunction with

MDOT security policy (e.g., through a protected facility to

restrict public access to and limit compromise of the back-

end CHART servers).

EXISTING N/A

10.7.2
The system shall monitor and maintain the state of external

connections established by the system.
EXISTING

Monitor External

System Connection

10.7.2.1
The system shall provide an indication to the users of any

connections which are detected to be down.
EXISTING

View External

Connection Status,

Configure External

Connection Alert and

Notification Settings

viewExternalConnectionStatus

CHART R3B3 Detailed Design 6-73 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.7.2.1.1

If configured to do so, the system shall generate an

External Connection Alert when an external connection

transitions to the “Failed” state and remains there for more

than a configurable connection-specific amount of time.

External

Interface

Create External

Connection Alert

getExternalConnectionAlertAndNotificationSet

tingsForm,

setExternalConnectionAlertAndNotificationSet

tingsForm,

ExternalSystemConnectionImpl:sendNotificati

onsIfNecessary,ExtSysConnectionUpdateStatu

s

10.7.2.1.2

If configured to do so, the system shall issue a notification

when an external connection transitions to the “Failed”

state and remains there for more than a configurable

connection-specific amount of time.

External

Interface

Send External

Connection

Notification

getExternalConnectionAlertAndNotificationSet

tingsForm,

setExternalConnectionAlertAndNotificationSet

tingsForm,

ExternalSystemConnectionImpl:sendNotificati

onsIfNecessary,ExtSysConnectionUpdateStatu

s

10.7.2.1.3

If configured to do so, the system shall generate an

External Connection Alert when an external connection

transition to the “Warning” state and remains there for

more than a connection-specific amount of time. Time

spent in the connection failure state contributes towards the

total duration in the “Warning” state.

External

Interface

Create External

Connection Alert

getExternalConnectionAlertAndNotificationSet

tingsForm,

setExternalConnectionAlertAndNotificationSet

tingsForm,

ExternalSystemConnectionImpl:sendNotificati

onsIfNecessary,ExtSysConnectionUpdateStatu

s

10.7.2.1.4

If configured to do so, the system shall issue a notification

when an external connection transition to the “Warning”

state and remains there for more than a connection-specific

amount of time. Time spent in the connection failure state

contributes towards the total duration in the “Warning”

state.

External

Interface

Send External

Connection

Notification

getExternalConnectionAlertAndNotificationSet

tingsForm,

setExternalConnectionAlertAndNotificationSet

tingsForm,

ExternalSystemConnectionImpl:sendNotificati

onsIfNecessary,ExtSysConnectionUpdateStatu

s

10.7.2.2
The system shall monitor and maintain the state of the

connections to RITIS used for import of data from RITIS. *
EXISTING

Monitor External

System Connection

CHART R3B3 Detailed Design 6-74 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.7.2.2.1

The system shall automatically attempt to re-establish the

any RITIS connection used for import of data from RITIS

when it is detected to be down or when it seems

unreasonably inactive *

EXISTING

Re-establish

Connection To

External System

10.7.2.3
The system shall monitor and maintain the state of the

connection to INRIX.
Travel Times Import INRIX Data

10.7.2.4
The system shall monitor and maintain the state of the

connection to VECTOR.
Toll Rates Import Vector Data

10.7.3
The system shall allow a user to view the status of external

connections established by the system.

External

Interface

View External

Connection Status

viewExternalConnectionStatus

10.7.3.1
The system shall display the name of the external system

connection.

External

Interface

View External

Connection Status
viewExternalConnectionStatus

10.7.3.2
The system shall display the current status of the external

system connection (OK, WARNING, or FAILED).

External

Interface

View External

Connection Status
viewExternalConnectionStatus

10.7.3.3

The system shall display descriptive text that provides

details about the status if the status is WARNING or

FAILED.

External

Interface

View External

Connection Status
viewExternalConnectionStatus

10.7.3.4
The system shall display the time the status transitioned

into its current state.

External

Interface

View External

Connection Status
viewExternalConnectionStatus

10.7.3.5
The system shall display the time that status was last

confirmed.

External

Interface

View External

Connection Status
viewExternalConnectionStatus

10.7.4

The system will allow an administrator to manage

public/private key pairs for use by external client

applications.

External

Interface

Manage External

Clients, Generate

Key Pair

generateKeyPair, downloadPrivateKey

10.7.4.1
The system shall allow an administrator to add an external

client application to the system.

External

Interface
Add External Client

getAddEditExternalClientForm,addEditExterna

lClient

10.7.4.1.1
The system shall require a client application ID for the

external client application.

External

Interface
Add External Client

getAddEditExternalClientForm,addEditExterna

lClient

10.7.4.1.2
The system shall require a name for the external client

application.

External

Interface
Add External Client

getAddEditExternalClientForm,addEditExterna

lClient

10.7.4.1.3
The system shall support a description for the external

client application.

External

Interface
Add External Client

getAddEditExternalClientForm,addEditExterna

lClient

10.7.4.1.4
The system shall support contact information for the point

of contact for the external client application.

External

Interface
Add External Client

getAddEditExternalClientForm,addEditExterna

lClient

10.7.4.1.5
The system shall require a public key for authenticating the

external client application.

External

Interface
Add External Client

getAddEditExternalClientForm,addEditExterna

lClient

CHART R3B3 Detailed Design 6-75 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.7.4.1.5.1
The system shall allow an administrator to generate a

public/private key pair.

External

Interface
Generate Key Pair

generateKeyPair, downloadPrivateKey

10.7.4.1.5.1.1

The system shall allow an administrator to export a

generated private key file for the administrator to distribute

to client system personnel.

External

Interface
Generate Key Pair

generateKeyPair, downloadPrivateKey

10.7.4.1.6
The system shall allow the user to specify whether the

external client is a data supplier to CHART.

External

Interface
Add External Client getAddEditExternalClientForm

10.7.4.1.7
The system shall allow the user to specify whether the

external client is a consumer of CHART data.

External

Interface
Add External Client getAddEditExternalClientForm

10.7.4.1.7.1

The system shall allow the user to specify the user roles

that the external client consumer will be given upon

successful authentication.

External

Interface
Add External Client getAddEditExternalClientForm

10.7.4.2

The system shall allow an administrator to modify the

settings for an external client application registered with

the system.

External

Interface
Edit External Client getAddEditExternalClientForm

10.7.4.2.1

The system shall allow an administrator to modify the

settings that were specified when adding an external client

application according to requirement 10.7.4.1 and its

subrequirements.

External

Interface
Edit External Client getAddEditExternalClientForm

10.7.4.3
The system shall allow an administrator to remove an

external client application from the system.

External

Interface

Remove External

Client

removeExternalClient

10.7.4.3.1
The system shall prompt the user for confirmation before

removing an external client application from the system.

External

Interface

Remove External

Client

removeExternalClient

10.7.4.4

The system will allow an administrator to view the external

client applications that have been configured for access to

CHART.

External

Interface

View External

Clients

viewExternalClientList,createDynList,getDynL

istSubjects

10.7.4.3

The system shall allow an administrator to register a public

key and associated client application ID with one or more

CHART services.

External

Interface
Add External Client

getAddEditExternalClientForm,addEditExterna

lClient

10.7.4.4

The system shall allow an administrator to export a

generated private key file for the administrator to distribute

to client system personnel.

External

Interface
Generate Key Pair downloadPrivateKey

10.7.5

The system shall allow an administrator to maintain a list

of external agencies used when importing objects from

external systems.

External

Interface

Configure External

Agencies To Orgs

Mapping

getExternalOrgToAgencyMappings,setExternal

OrgToAgencyMappings

CHART R3B3 Detailed Design 6-76 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.7.5.1

Each External Agency will be specified for use with a

specific External System and should be unique with that

External System.

External

Interface

Configure External

Agencies To Orgs

Mapping

getExternalOrgToAgencyMappings,setExternal

OrgToAgencyMappings

10.7.5.2

The system shall require an administrator to specify a Chart

Organization to be associated with an External Agency

when creating / updating the External Agency.

External

Interface

Configure External

Agencies To Orgs

Mapping

getExternalOrgToAgencyMappings,setExternal

OrgToAgencyMappings

10.8
The system shall integrate event data from external systems

together with internally created CHART events.
EXISTING N/A

10.8.1

Upon initial receipt of event data from an external system,

the system shall open a CHART event and designate that

event an external event.

EXISTING

Create CHART

External Traffic

Event

handleExternalImport

10.8.1.1

When a candidate external event satisfies any external

event import rule which specifies that an alert be sent, the

system shall send an External Event Alert to the specified

Operations Center referencing the new CHART copy of the

external event.

External

Interface

 Create External

Event Alert
handleExternalImport

10.8.1.2

When a candidate external event satisfies any external

event import rule which indicates that the event should be

marked as interesting, the system shall mark the new

CHART copy of the external event as “interesting”.

External

Interface

Flag Interesting

RITIS Events
handleExternalImport

10.8.1.3

When a new CHART external event is created the system

shall set its owning organization based on a mapping,

defined in the system, between External System / agency

and CHART organizations.

External

Interface

Map External

Agency To Org
handleExternalImport

10.8.1.3.1

When a new CHART external event is created and there is

no owning organization mapped for the external system /

agency, the system shall set its owning organization to a

configurable default owning Organization.

External

Interface

Map External

Agency To Org
handleExternalImport

10.8.1.4

When a new CHART external event is created, the system

shall import data into CHART which is available from the

external sources.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.1

When a new CHART external event is created, the system

shall import the event creation time if it is available from

the external source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.2

When a new CHART external event is created, the system

shall import the event closed time if it is available from the

external source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

CHART R3B3 Detailed Design 6-77 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.8.1.4.3

When a new CHART external event is created, the system

shall import the scene cleared time if it is available from

the external source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.4

When a new CHART external event is created, the system

shall import the event state if it is available from the

external source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.5
When a new CHART external event is created, the system

shall import the external system name.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.6
When a new CHART external event is created, the system

shall import the external event ID.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.7
When a new CHART external event is created, the system

shall import the external agency.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.8

When a new CHART external event is created, the system

shall import the location description if it is available from

the external source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.9
When a new CHART external event is created, the system

shall import the CHART event type.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.10

When a new CHART external event is created, the system

shall import lane status if it is available from the external

source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.11

When a new CHART external event is created, the system

shall import vehicles involved data if it is available from

the external source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.4.12

When a new CHART external event is created, the system

shall import geolocation data (lat/long) if it is available

from the external source.

External

Interface

Create CHART

External Traffic

Event

Use Case only

10.8.1.5

When a candidate external event satisfies any external

event import rule which specifies that a notification should

be sent, the system shall send a notification to the specified

notification group.

External

Interface

Send External Event

Notification
handleExternalImport

10.8.2

Upon receipt of updates to a CHART external event data

from an external system, the system shall update the

corresponding CHART external event. *

EXISTING

Update Existing

CHART External

Traffic Event

handleExternalImport

CHART R3B3 Detailed Design 6-78 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.8.2.1

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s creation time if it

is available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.2

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s closed time if it is

available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.3

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s scene cleared time

if it is available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.4

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s traffic event state.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.5

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s location

description if it is available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.6

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s event description if

it is available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.7

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s CHART event

type information.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.8

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s lane status if it is

available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.2.9

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s vehicles involved

if it is available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

CHART R3B3 Detailed Design 6-79 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.8.2.10

Upon receipt of updates to a CHART external event from

an external system, the system shall update the

corresponding CHART external event’s geolocation data

(lat/lon) if it is available from the external source.

External

Interface

Update Existing

CHART External

Traffic Event

Use Case Only

10.8.3

Upon receipt of an event closure notification from an

external system, the system shall close the corresponding

CHART external event.

EXISTING N/A

10.8.4

The system shall archive external event data into the

CHART archive database after the archive timeout expires

following closure of the external event.

EXISTING N/A

10.8.5

The system shall allow a suitably privileged user to close

external events. (This is expected to be done only be by

very few highly privileged users, and only for events which

are “stale” and believed to be truly closed by the

originating agency.) *

EXISTING N/A

10.8.6
The system shall allow a suitably privileged user to request

a list of external traffic events.
EXISTING N/A

10.8.7

The system shall optionally hide external events associated

with an external connection that has been detected to be

down for an administrator configurable period of time.

EXISTING N/A

10.8.8

The system shall allow a suitably privileged user to manage

zero or more rules for determining which external events

the system is to import into CHART (and by implication,

which external events to exclude from CHART).

External

Interface

Configure External

Event Import Rules,

View Event Import

Rules

viewTrafficEventInclusionRules

10.8.8.1
The system shall allow a suitably privileged user to create

and store zero or more external event import rules.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.1

The system shall allow a suitably privileged user to indicate

if an External Event Alert is associated with the rule and, if

so, which operations center to send it to when the rule is

satisfied.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.2

The system shall allow a suitably privileged user to indicate

if the satisfaction of a rule should cause the external event

to be marked as “interesting.”

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3

The system shall allow a suitably privileged user to define

criteria all of which must be satisfied for the external event

import rule to be satisfied.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

CHART R3B3 Detailed Design 6-80 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.8.8.1.3.1
The system shall support the use of geographical

coordinates as an external event import rule criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.1.1

The system shall support the use of one or more named

geographical areas (see Section 1.1.1.3.2) as a criterion in

an external event import rule. The intent is that an external

event is said to satisfy an external event import rule’s

geographic coordinate’s criterion if its latitude and

longitude are found within any of the rule’s named

geographical areas.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.1.1.1

The system shall support an “Empty” geographical area

which matches an external event’s lack of latitude and/or

longitude values

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.1.1.2

The system shall support an “Any” geographical coordinate

criterion which matches any external event’s geographical

coordinates.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.2
The system shall support the use of one or more U.S. states

as an external event import rule criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.2.1.1
The system shall support an “Empty” U.S. state criterion

which matches an external event’s lack of a state value.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.2.2
The system shall support an “Any” state which matches

any external event’s state.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.3
The system shall support the use of route type, as defined

in CHART, as an external event import rule criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.3.1

The system shall support an “Empty” route type criterion

which matches an external event’s lack of a route type

value.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.2.2
The system shall support an “Any” state which matches

any external event’s state.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.4

The system shall support the use of partial matching of text

in key text fields of an external event as an external event

rule criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.4.1

The system shall support the use of partial matching text in

the external event’s name as an external event rule

criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

CHART R3B3 Detailed Design 6-81 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.8.8.1.3.4.2

The system shall support the use of partial matching text in

the external event’s description as an external event rule

criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.4.3

The system shall support the use of partial matching text in

the external event’s route number as an external event rule

criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.4.4

The system shall support the use of partial matching text in

the external event’s county as an external event rule

criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.5
The system shall support the use of lanes closed as an

external event rule criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.5.1
The system shall support an “Empty” lanes closed which

matches an external event’s lack of a lanes closed value.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.5.2
The system shall support an “Any” lanes closed value

which matches any external event’s closed lanes value.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.3.6
The system shall support the use of one or more CHART

Event Types as an external event rule criterion.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.1.4

The system shall allow a suitably privileged user to indicate

if a notification is associated with the rule and, if so, which

notification group to notify when the rule is satisfied.

External

Interface

Add Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.8.8.2
The system shall allow a suitably privileged user to delete

an external event import rule.

External

Interface

Delete Event Import

Rule

removeTrafficEventInclusionRule

10.8.8.3

The system shall allow a suitably privileged user to modify

an external event import rule by providing the same criteria

options as when creating a rule.

External

Interface

Edit Event Import

Rule

getAddEditTrafficEventInclusionRuleForm,ad

dEditTrafficEventInclusionRule

10.9
The system shall integrate DMS data from external systems

together with internally created CHART DMS data.

External

Interface

Import RITIS DMS

Data
Use Case Only

10.9.1

Upon receipt of an update to a candidate external DMS, the

system shall update the corresponding external DMS, if it

exists.

External

Interface

Update Existing

CHART External

DMS

handleDMSImportTask

ExternalDMS:updateStatus

DMSControlClassDiagram2

10.9.2

The system shall allow a suitably privileged user to manage

the importing of a DMS from an external system into the

CHART system.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates,

getCandidates

CHART R3B3 Detailed Design 6-82 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.9.2.1
The system shall allow a suitably privileged user to view a

list of candidate external DMSs.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates,

getCandidates

10.9.2.1.1
The system shall display the name of each candidate

external DMS

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.9.2.1.2
The system shall display the agency of each candidate

external DMS.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.9.2.1.3
The system shall display the location description of each

candidate external DMS.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.9.2.1.4
The system shall indicate if each candidate external DMS is

already an external DMS in the CHART system.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.9.2.1.5
The system shall indicate if each candidate external DMS

was previously rejected for importing.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.9.2.1.6
The system shall allow the user to filter the list of candidate

external DMSs as an aid in deciding which to import

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.9.2.1.6.1

The system shall allow the user to filter the list of candidate

external DMSs by zero or more Agencies. Filtering by

zero Agencies means to not filter by Agency.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.9.2.1.6.2

The system shall allow the user to filter the list of candidate

external DMSs by zero or more named geographical area

(see Section 1.1.1.3.2). Filtering by zero named

geographical areas means not to filter by geographical area.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.9.2.1.6.3

The system shall allow the user to filter the list of candidate

external DMSs by whether user-entered text partially

matches the device name, device description, location

description, county, or route name.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

D,ExternalDeviceManagerClasses,

searchCandidates, setCandidates

eviceQueryForm

10.9.2.1.6.4

The system shall allow the user to filter the list of candidate

external DMSs by whether they are included in CHART’s

list of external DMSs.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.9.2.1.6.5

The system shall allow the user to filter the list of candidate

external DMSs by whether they are excluded from

CHART’s list of external DMSs.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

CHART R3B3 Detailed Design 6-83 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.9.2.1.6.6

The system shall allow the user to filter the list of candidate

external DMSs by whether they are neither included nor

excluded from CHART’s list of external DMSs (i.e. an

import decision has not yet been made).

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.9.2.2
The system shall allow a suitably privileged user to create

an external DMS from a candidate external DMS.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

DMSControlCD2

10.9.2.2.1

When a new external DMS is created the system shall set

its owning organization based on a mapping, defined in the

system, between External System / agency and CHART

organizations.

External

Interface

Map External

Agency To CHART

Org

setCandidates

10.9.2.2.1.1
The system shall use a configurable default owning

organization for the DMS if a mapping does not exist.

External

Interface

Map External

Agency To CHART

Org

setCandidates

10.9.2.3

The system shall allow a suitably privileged user to delete

an external DMS from the CHART system (Note: This

does not prevent its use as a candidate external DMS)..

External

Interface
Delete External DMS Use case only

10.9.2.3.1

When a user deletes an external DMS, the system shall

mark the corresponding candidate external DMS as

“excluded.”

External

Interface
Delete External DMS Use case only

10.9.2.4
The system shall allow a suitably privileged user to indicate

if an external DMS was rejected for import.

External

Interface

Configure Candidate

External DMSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.1
The system shall integrate TSS data from external systems

together with internally created CHART TSS data.

External

Interface

Import RITIS

Detector Data
Use Case Only

10.10.1

Upon receipt of an update to a candidate external TSS, the

system shall update the corresponding external TSS, if it

exists.

External

Interface

Update Existing

CHART External

TSS

handleTSSImportTask

10.10.2

The system shall allow a suitably privileged user to manage

the importing of a TSS from an external system into the

CHART system.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.10.2.1
The system shall allow a suitably privileged user to view a

list of candidate external TSSs

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.10.2.1.1
The system shall display the name of each candidate

external TSS.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

CHART R3B3 Detailed Design 6-84 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.10.2.1.2
The system shall display the agency of each candidate

external TSS.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.10.2.1.3
The system shall display the location description of each

candidate external TSS.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.10.2.1.4
The system shall indicate if each candidate external TSS is

already an external TSS in the CHART system.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.10.2.1.5
The system shall indicate if each candidate external TSS

was previously excluded for importing.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.10.2.1.6
The system shall allow the user to filter the list of candidate

external TSSs as an aid in deciding which to import.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm

10.10.2.1.6.1

The system shall allow the user to filter the list of candidate

external TSSs by zero or more Agencies. Filtering by zero

Agencies means to not filter by Agency.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.10.2.1.6.2

The system shall allow the user to filter the list of candidate

external TSSs by zero or more named geographical areas

(see Section 1.1.1.3.2). Filtering by zero named

geographical areas means to not filter by geographical area.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.10.2.1.6.3

The system shall allow the user to filter the list of candidate

external TSSs by whether user-entered text partially

matches the device name, device description, location

description, county, or route name.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.10.2.1.6.4

The system shall allow the user to filter the list of candidate

external TSSs by whether they are included in CHART’s

list of external TSSs.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.10.2.1.6.5

The system shall allow the user to filter the list of candidate

external TSSs by whether they are excluded from

CHART’s list of external TSSs.

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.10.2.1.6.6

The system shall allow the user to filter the list of candidate

external TSSs by whether they are neither included nor

excluded from CHART’s list of external TSSs (i.e. an

import decision has not yet been made)

External

Interface

Filter Candidate

External Device List

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.10.2.2
The system shall allow a suitably privileged user to create

an external TSS from a candidate external TSS.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

CHART R3B3 Detailed Design 6-85 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.10.2.2.1

When a new external TSS is created the system shall set its

owning organization based on a mapping, defined in the

system, between External System / agency and CHART

organizations.

External

Interface

Map External

Agency To CHART

Org

setCandidates

10.10.2.2.1.1
The system shall use a configurable default owning

organization for the TSS if a mapping does not exist.

External

Interface

Map External

Agency To CHART

Org

setCandidates

10.10.2.3

The system shall allow a suitably privileged user to delete

an external TSS from the CHART system. (Note: This

does not prevent its use as candidate external TSS.)

External

Interface
Delete External TSS

Use Case only

10.10.2.3.1
When a user deletes an external TSS, the system shall mark

the corresponding candidate external TSS as “excluded.”

External

Interface
Delete External TSS Use Case Only

10.10.2.4
The system shall allow a suitably privileged user to indicate

if an external TSS was rejected for import.

External

Interface

Configure Candidate

External TSSs

getExternalDeviceQueryForm,submitExternal

DeviceQueryForm,ExternalDeviceManagerCla

sses, searchCandidates, setCandidates

10.11

The system shall integrate with INRIX for the purpose of

requesting travel times for routes configured within

CHART.

Travel Times Import INRIX Data

10.11.1
The system shall pull data from the INRIX system web

service at a configurable periodic interval.
Travel Times Import INRIX Data

10.11.1.1

The system shall raise an External Connection Alert if the

data cannot be successfully retrieved from the INRIX

system web service for a configurable period of time.

Travel Times

Import INRIX Data,

Create External

Connection Alert

10.11.1.2

The system shall raise an External Connection Alert if the

data retrieved from the INRIX system web service does not

conform to the documented format.

Travel Times

Import INRIX Data,

Create External

Connection Alert

10.11.1.3

The system shall raise an External Connection Alert if the

data retrieved from the INRIX system web service does not

contain one or more links that have been associated with

CHART travel routes.

Travel Times

Import INRIX Data,

Create External

Connection Alert

10.11.2
The system shall archive data used to create travel time

messages.
Travel Times

Archive Link Data,,

Archived Route Data

10.11.2.1

The system shall archive all raw data received from the

INRIX system web service for a configurable period of

time.

Travel Times Archive Link Data

CHART R3B3 Detailed Design 6-86 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.11.2.2

The system shall archive, for a configurable period of time,

all data for each configured travel route sufficient to

determine the travel time messages that were displayed at a

particular time for that travel route.

Travel Times Archive Route Data

10.11.3

The system shall allow an administrator to import link

definitions from the INRIX distribution CD via an offline

process.

Travel Times Import INRIX Links

10.11.3.1

Each import of INRIX link definitions from the distribution

CD shall fully replace all previously imported INRIX link

definitions. (Note: INRIX guarantees that roadway links

will never be deleted (even links that are supplanted by a

collection of smaller links that lie within the older, larger

link). So this should not invalidate any existing CHART

Travel Routes as long as the bounding rectangle includes

all roadway links currently configured in those existing

CHART travel routes (see 10.11.3.2).)

Travel Times Import INRIX Links

10.11.3.2

The system shall import only those INRIX link definition

whose start and end points lie within a configurable

bounding rectangle.

Travel Times Import INRIX Links

10.12

The system shall integrate with VECTOR for the purpose

of asynchronously receiving toll rate information for routes

configured within CHART.

Toll Rates Import Vector Data

10.12.1

The system shall allow the VECTOR system to post toll

rate update documents to a web service hosted at a

configurable publicly accessible IP address and port.

Toll Rates Import Vector Data

10.12.1.1

The system shall verify that posted data has originated from

the VECTOR system by requiring that the posted data be

digitally signed with a previously provided private key.

Toll Rates
Authenticate External

System

10.12.1.2
The system shall validate all data posted by the VECTOR

system against the published XSD.
Toll Rates Import Vector Data

10.12.2
The system shall return a response XML document each

time data is received from the VECTOR system.
Toll Rates Import Vector Data

10.12.2.1

The system shall return a success code and a list of

accepted toll routes each time the VECTOR system

successfully posts a toll rate update.

Toll Rates Import Vector Data

CHART R3B3 Detailed Design 6-87 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.12.2.1.1

The system shall set the External Connection state to OK

when a valid, complete message is received from the

VECTOR system.

Toll Rates Import Vector Data

10.12.2.2

The system shall return a failure code and a list of error

code/error message pairs each time the VECTOR system

posts invalid data.

Toll Rates Import Vector Data

10.12.2.2.1

The system shall reject any toll rate data that does not have

a digital signature with an authorizationError error code

with corresponding error text.

Toll Rates Import Vector Data

10.12.2.2.2

The system shall reject any toll rate data that contains a

digital signature that cannot be read with the previously

provided public key by returning an authorizationError

error code with corresponding error text.

Toll Rates Import Vector Data

10.12.2.2.3

The system shall reject any toll rate data that does not

validate correctly against the published XSD by returning

an invalidXML error code with corresponding error text.

Toll Rates Import Vector Data

10.12.2.2.4

The system shall reject any toll rate update that has a

startDateTime that is more than a configurable number of

minutes in the future by returning an invalidStartDateTime

error code with corresponding error text.

Toll Rates Import Vector Data

10.12.2.2.5

The system shall reject any toll rate update that has an

expirationDateTime that is not later than the posted

startDateTime by returning an invalidExpirationDateTime

error code with corresponding error text.

Toll Rates Import Vector Data

10.12.2.3

The system shall set the External Connection state to

WARNING each time the VECTOR system posts data that

fails validation or authorization.

Toll Rates Import Vector Data

10.12.2.4

The system shall set the External Connection state to

WARNING each time the VECTOR system posts data

does not contain data for any toll route (start id/destination

id pair) that is associated with a CHART system travel

route.

Toll Rates Import Vector Data

10.12.2.5

The system shall set the External Connection state to

FAILED if it does not receive any data from the VECTOR

system for a configurable period of time (expected to be on

the order of 1 hour).

Toll Rates Import Vector Data

CHART R3B3 Detailed Design 6-88 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.12.2.6

If configured to do so, the system shall generate an alert if

it does not receive any data from the VECTOR system for a

configurable

period of time (expected to be on the order of 1 hour).

Toll Rates Import Vector Data

10.12.2.7

If configured to do so, the system shall issue a notification

if it does not receive any data from the VECTOR system

for a configurable

period of time (expected to be on the order of 1 hour).

Toll Rates Import Vector Data

10.12.2.8

The system shall reject in full any toll rate update from the

VECTOR system that contains any errors and shall not use

any toll rate from said update document. (Other than

sending the appropriate error code in the XML response,

the system shall otherwise react as if no document had been

sent at all.)

Toll Rates Import Vector Data

10.12.3

The system shall completely replace all current toll rates

with the posted data each time the VECTOR system

successfully posts a toll rate update.

Toll Rates

Provide Toll Data to

CHART Travel

Routes

10.12.3.1

The system shall immediately clear the current toll rate for

any VECTOR system toll route that is not included in the

most recently posted VECTOR system toll rate update

document.

Toll Rates

Provide Toll Data to

CHART Travel

Routes

10.12.3.2

The system shall immediately clear the current toll rate for

any VECTOR system toll route that is included in the most

recently posted VECTOR system toll rate update document

but does not include the optional rate element.

Toll Rates

Provide Toll Data to

CHART Travel

Routes

10.12.3.3

The system shall immediately set the current toll rate for

every VECTOR system toll route that is included in the

most recently posted VECTOR system toll rate update

which contains a valid value in the optional rate element.

Toll Rates

Provide Toll Data to

CHART Travel

Routes

10.12.4

The system shall support an optional field that specifies the

expiration date/time of all toll rates in each posted

VECTOR system update document.

Toll Rates Expire Toll Rates

10.12.4.1

The system shall discontinue use of any toll rate posted by

the VECTOR system whose expiration date/time has

expired.

Toll Rates Expire Toll Rates

CHART R3B3 Detailed Design 6-89 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.12.4.2
If configured to do so, the system shall generate an alert

each time a toll rate that is in use expires.
Toll Rates

Create Toll Rate

Alert

10.12.4.3
If configured to do so, the system shall issue a notification

each time a toll rate that is in use expires.
Toll Rates

Send Toll Rate

Notification

10.12.4.4
The system shall not automatically expire toll rates posted

by the VECTOR system without an expiration date/time.
Toll Rates Expire Toll Rates

10.12.5

The system shall maintain an online cache of all posted toll

rate updates for each route for a configurable period of

time. (Expected to be on the order of one hour.)

Toll Rates
View Travel Route

Details

10.12.6

The system shall archive all toll rate updates posted by the

VECTOR system and shall keep them available for offline

inquiry for a configurable period of time. (Expected to be

on the order of one week.)

Toll Rates
Archive Toll Rate

Data

10.12.7

The system shall archive, for a configurable period of time,

all data for each configured travel route sufficient to

determine the toll rate messages that were displayed at a

particular time for that travel route.

Toll Rates

Archive CHART

Travel Route Toll

Rate Data

10.12.8

The system shall allow the VECTOR system to post toll

rate

update documents to a backup web service hosted at a

configurable publicly

accessible IP address and port.

Toll Rates Import Vector Data

10.12.8.1
The system shall support the generation of alerts and

notifications when the backup web service is posted to.
Toll Rates Import Vector Data

10.12.8.1.1

If configured to do so, the system shall generate an

External

Connection Alert each time the VECTOR system posts toll

rate data to the

backup web service.

Toll Rates Import Vector Data

10.12.8.1.2

The system shall allow an administrator to configure

minimum

interval that must expire between issued notifications to

inform that the

VECTOR system is posting toll rate data to the backup web

service.

Toll Rates Import Vector Data

CHART R3B3 Detailed Design 6-90 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.12.8.1.3

If configured to do so, and if the minimum interval has

expired

since the last such push notification, the system shall issue

a notification

when the VECTOR system posts toll rate data to the

backup web service.

Toll Rates Import Vector Data

10.13

CHART Export Service. The system shall provide a

service for the purpose of providing CHART information

to authorized third-party clients.

External

Interface

Provide Data to

External Systems
Use case only

10.13.1
The external export service shall export data for CHART

devices and Traffic Events.

External

Interface

Provide Data to

External Systems
Use Case only

10.13.1.1
The external export service shall export data on CHART

DMSs to authorized third-party clients who request it.

External

Interface

Provide DMS Data to

External Systems

10.13.1.2
The external export service shall export data on CHART

TSSs to authorized third-party clients who request it.

External

Interface

Provide Detector

Data To External

Systems

10.13.1.3
The external export service shall export data on CHART

HARs to authorized third-party clients who request it.

External

Interface

Provide HAR Data

To External Systems

10.13.1.4
The external export service shall export data on CHART

SHAZAMs to authorized third-party clients who request it.

External

Interface

Provide SHAZAM

Data To External

Systems

10.13.1.5

The external export service shall export data on CHART

Cameras to authorized third-party clients who request it.

[FUTURE, NEW]

FUTURE N/A

10.13.1.6

The external export service shall export data on CHART

Traffic Events to authorized third-party clients who request

it.

External

Interface

Provide Traffic Event

Data To External

Systems

10.13.2

The system shall allow third-party clients to post request

documents to a web service hosted at a configurable

publicly accessible IP address and port.

External

Interface

Provide Data To

External Systems

10.13.2.1

The system shall verify that posted data has originated from

an authorized third-party system by requiring that the

posted data be digitally signed with a previously provided

private key and include a client application ID authorized

to be used with that key.

External

Interface

Authenticate External

System

10.13.2.2 Each request document shall contain a CHART user login.
External

Interface

Authenticate External

System

CHART R3B3 Detailed Design 6-91 12/23/2008

Req No. Requirement Type Use Case(s) Additional Element(s)

10.13.2.3

Response data shall be limited to include only data that the

provided CHART user login has sufficient functional rights

to access.

External

Interface

Provide Data To

External Systems

10.13.2.4
The system shall validate all data requests posted by a

third-party system against the published XSD.

External

Interface

Provide Data To

External Systems

10.13.3
The system shall return a response XML document each

time a data request is received from a third-party system.

External

Interface

Provide Data To

External Systems

10.13.3.1
The system shall return an error code and corresponding

error text for each data request that contains errors.

External

Interface

Provide Data To

External Systems

10.13.3.2
The system shall return valid XML as defined by the

system ICD and XSD for each valid data request.

External

Interface

Provide Data To

External Systems

CHART R3B3 Detailed Design 7-1 12/19/2008

7 Acronyms/Glossary
Arbitration Queue A prioritized queue containing messages for display or broadcast on a traveler

information device.

CCTV Closed Circuit Television

CHART Coordinated Highways Action Response Team

CORBA Common Object Request Broker Architecture. CORBA is the CHART

application’s architecture for distributed computing.

CORBA Event A CORBA mechanism using which different CHART components exchange

information without explicitly knowing about each other.

DMS Dynamic Message Sign

EORS Emergency Operations Reporting System

FMS Field Management Server

GUI Graphical User Interface

HAR Highway Advisory Radio

HIS Highway Information Systems

IOR Interoperable Object Reference

ISDN Integrate Services Digital Network

ISS Information System Specialists

JRE Java Run-time Environment

MDOT Maryland Department of Transportation

MDSHA Maryland State Highway Administration

MdTA Maryland Transportation Authority

NTCIP National Transportation Communications for ITS Protocol

POTS Plain Old Telephone Service

RITIS Regional Integrated Transportation Information System

RTMS Remote Traffic Microwave Sensor

SHA State Highway Administration

SOC Statewide Operations Center

Synchronized HAR A HAR entity that is comprised of one or more HAR transmitters (also known

as constituent HARs).

TSS Traffic Sensor System

TTS Text to Speech

